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ABSTRACT. In this paper, we consider a differential operator A on [0,00)— By accomplishing harmonic

analysis tools with respect to the operator A we study some definitions and properties of g-Bessel

continuous wavelet transform. We also explore generalized q-Bessel Fourier transform and
convolution product on [0,00) associated with the operator A and finally a new continuous wavelet

transform associated with g-Bessel operator is constructed and investigated.

1. Introduction

For a function f e L? (R) the wavelet transform with respect to the wavelet

¢ L?(R) is defined by

W, f)(o,.0,)= I f(t)(oazm (t)dt,o, eR,0,>0 (1.1)
where,
e t-o,
¢0‘2,0'1(t)_o-1 ¢( O_l ]' (12)
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Translation T, is defined by

r, o) =p(t-0,),0, R

and dilation D, is defined by

_ t
o,0-0( L] o0

1

We can write
@, . (1)=7,D,4(t). (1.3)
From above equations, we can say that wavelet transform of the function fon Ris an integral

transform and the dilated translate of @is the kernel.

We can also express wavelet transform as the convolution:

(thf )((721‘71):(f *go,al)(o-Z)’ (1.4)
Where,

9(t)=o(-t)

Since there is a special type of convolution for every integral transform, therefore one can define
wavelet transform with respect to a integral transform using associated convolution.
The concept of wavelet is a collection of function derived from a single function called
mother wavelet, after that by applying the two operators known as translation and dilation we get a
new type of continuous wavelet transform.
Here presently, we introduce a g-Bessel operator [1] and [2].
1 - 2v 2v
Aquf(t):t—z(f(q ]‘[)—(1+q )f(t)+q f(qt)). (1.5)
The above g-Bessel operator associated with g-Bessel function by the eigenvalue equation.
H 2 2 2
Aq,vJv (X’q ) =-4 ) (X’q )
Unlike the elementary functions such as trigonometric, exponential etc the Bessel wavelets are related
to special functions and Jachkson introduced the concept of g-analysis at the beginning of the
twentieth century. We have arranged this paper as follows: In section 2, we will review briefly the
basics of g-Bessel Fourier transform, here we recall notations, some definitions of gq-Bessel Fourier

and Inverse Fourier transform and the preposition associated with other operators and convolution
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product. In section 3, some results of harmonic analysis with respect to g-Bessel operator for the

generalized g-Bessel transform is collected and the definition and properties of convolution product
is also discussed. To extend the classical theory of wavelets to the differential operatorAq]a is the

actual aim of this work.

We define a generalized wavelet, which satisfy the below admissibility condition

2d A
F... (9)(2) %<oo. (1.6)

0<C, ¢ = T
0

Where F, denotes the generalized g-Bessel Fourier transform related to operator given by
q.a

o]

F,.. (9)(2)= cqvaJ‘g (t)J, (4,0°)*dt vgel,,,(R,).

0

With
oo 1 (q2a+2;q2)
Y 1-g (a%9?)

o0

and ], (x;q) being the normalized Bessel function of index « .

Starting with a single generalized wavelet g, a family of generalized wavelets is constructed by

putting

1

Oap (X)=2a%T,,"(9,)(x), VaeR,",VbeR "U{0},

1

= Zaroniz 9

where g, (X) "

X . . .
(—j and T, ,* is generalized translation operators related to the
a :

differential operator Aq’a .
The continuous generalized q-Bessel wavelet transform of a function f el ,, (R; U{O}) at the

scale ae R; and the position b e Rg U{O} is defined by

g ( f )(a’b) - Cq,a,[ f (X) g(a,b),aXZMlqu' (1.7)
0

In section 4, we develop a relationship between the generalized wavelet transforms and q-Bessel
continuous wavelet transforms. Such a relationship helps us to build certain formulas for the

generalized g-Bessel continuous wavelet transform (CWT).
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In Section 5, we study the intertwining operator Xqto establish the continuous generalized g-
Bessel wavelet transform in form of classical one. As a result, we got a new inversion formulas for

dual operator th of x,-

2. Preliminaries
In the present section we recapitulate some facts about harmonic analysis related to the g-
Bessel operator. We cite here, as briefly as possible, only those properties actually required for the

discussion.

Throughout this section assumea >—1/2. Let the space Lq‘pya, 1< p <o denote the sets of real
functions on Rj for which

© 1/P
1], ... :D‘f ) Xzaﬂdqx} <

0

and | f ||q’wya = ?lﬁ{p| f (x)| <o,

The g-Bessel Fourier transform F, , in [3] is defined for f el,,, by

n

7 (2.1)
Foo (F)(A)=Co [ £ (1), (ALQ°) P L, VEeR,
0
where j_is normalized q-Bessel function.

o n(n+1)

; n g 2n

x,0°)=> (-1 X"
Ja( q) ;( ) (q2a+2;q2)n(q2,q2) (2.2)

Theorem 2.1 (i) The g-Bessel Fourier transform F, ,:L ,, — L, defines an isomorphism and for

all functions f e L, ,,

S (0=t (1), 1 2

(iyIff, F,(f)el,,, then
f(x) =IFq,a,n ()(2) o (x4.9°)dgpe (), (2.4)

for almost all VXGR;, where



5 Int. J. Anal. Appl. (2022), 20:33

(1+q) " 2ent (2:5)
d A)= A*d A

q/'la( ) qz((Z-I-l)

(i) Forall fel,,,NL,,, wehave

T‘Fq’a ()] A%"d,2 =T| £ () x2rid
0

0

(iv) The inverse transform is given by

/1x q d (4),

qan

0"—;8

The g-Bessel translation operators 77, X >0, is defined by

q.x?
a N 20+1 (26)
rqx(f)(y):ff(z)Dq’a(x,y,z)z d,z,
0
where

D, (xy,2 IJ (xs,0%) J., (¥s,0°) (25,07 )s*"d,s o

The convolution product of g-Bessel for two functions f,g is defined as
f*, g(x):Cq,aJ.TcT,xf (y)a(y)y**d,y, vx=0. (2.8)

0

Theorem 2.2 (i) Let 1< p<oand fel, ,. Then VX20, 7/, €L, and

q,p,a
a
quyxf

<[ty p-
q,p.@ q,p,a

(i) Forf el ,,. 1< p<oo, wehave
Fan (70x F)(2) = 5 (%, 0%) Fyn ()(4).

11
(iii) Let p,r €[1,o) such that B+F=1. If fel,,, and gel,,, then forevery x>0 we have

[zaf () a(y)y = dyy =] T (y)z5,0(y)y*dyy
0 0

(iv) For p,r,s €[1,) such that—l +£—l=£ If fel and gel then
q.p. q.p.
T S . P,
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[t %9, <1l 0l

(v) For fel,, , and gel,,, wehave

Fq,a”n(f qg) qan(f)Fq,a,,n(g)'

Definition 2.1 A function g eL,,, is a g-Bessel wavelet of order «, if it satisfies the admissibility

condition.

2d A (2.9)

Definition 2.2 Let g e L, (Rq U{O}) be a g-Bessel wavelet of order & . Then continuous g-Bessel

wavelet transform is defined as follows

x - (2.10)
Sy (f)(ab)=c,. [ f(x)g,*"dx, VaeR,", vbeR, L{0},
0
where
1 (2.11)
J(ap) =2 27, (9,). VabeR,"
1 X (2.12)
Ja = a2a+2 g9 a

The g-Bessel continuous wavelet transform has been investigated in detail in [4] from which we see

the following basis properties.

Theorem 2.3 Let be geL,, (Rq U{O}) be a g-Bessel wavelet. Then

() Forall fel,,, (]R; U{O}), the Plancherel formula we have

T| i (x)|2 x2rd X = Cl .TT
0 00

a,9

d
b2a+1d b

(i) Forall fel,,, (]R; U{O}), we have

f(x)= jUs (f)(ab)gr, bZ“”ded VxeR,.

3. Harmonic Analysis Associated with A and Generalized Fourier Transform

Let M be the map defined by Mf (X) =x*"f (X)
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Let L,,,. 1<p<oobe the class of measurable functions f on [0,00) for which

fl, o0 =M < o0,
” q,p,a,n q,p,a+2n

For AeC and xeR, put
¢‘lvn(X’qz)zxznjoﬁm (Ax’qz)- (31)

where ] is the normalized Bessel function with index & +2nis given by equation (2.1). From [4]

a+2n

see the following properties.

Theorem 3.1 (i) @, , Possess the Laplace type integral representation

Pun(4:0%)=(1+0)C(a:q°)X*" [ F, (t:9°)cos(xt:q°)d,t

O ey

when g —>1 and a>_?l

where
T, (a+1) (x2q2;q2) “ (1-q)"
C(a:q?)= g F(t:0?) = e cos(x:g?) =Y (1) g L%
( ) r. 1 r a+£ ( ) (quza 1;q2)w ( ) ~ (q;q)Zn
2 2
(i) @, , (/"L,qz) satisfies the differential equation
Bqn@un (4:0°) =270, (2.0°). (3:3)
(iii) For all AeC and xeR
Pun (2 qz)‘ < x2nelmA (3.4)
a,n 1 - .
Definition 3.1 The generalized g-Bessel Fourier transform is defined for a function fel,,,, is
defined by
2 2a+l
Fq,A(f)(i):chMn'[f(x)goaln(/lx,q )x d.x (35)
0 :
By (3.1) and (3.5) we observe that
FQ,A = Fq,a+2n © M _11 (36)
where F, ., is the Fourier-Bessel transform of order az+2n.

(i) If fely,,, then F,,(f)eC,y([0,)) and
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H qan qanw_BthZn” ”qlan

where B

ae2n 1S given in [3].

Theorem 3.2 Let f el suchthat F , (f)elL Then for almost all X=0,

q.La+2n °

f (X) = Cq,a+2n

O sy 8

Foa (F)(2) 0,0 (A%.07) 2% d 2.

Proof. By (3.1), (3.6) and theorem 2.1(ii) we have

q, a+2nj Fq A ¢a n ﬁ“X q )ﬂzm—ldqﬂ« = inCq,a+2nJ. Fq a+2n ) Ja+2n (ﬂ,X)ﬂ,zaﬂd /1
0 0

= inM 71Cq,a+2n'|. I:q,oz+2n ( f )(ﬂ) Ja+2n (ﬂ’x)ﬂ’zoﬁld A
0

for all x=>0.

Theorem 3.3 (i) For every fel,, . NL,,,. space where p>2 we have the Plancherel formula

0

(f(1)) iyt =[(F, . (f )Y dostyan (2)

0

O t—38

(i) The inverse of this transform is given by
Ig (00, n /1X q )dq:uaJan (/1)
0

Proof. (i) Let fely,,, "Ly By (3.6) and theorem 2.1 (iii) we have
_1 2
( q, a+2n f )) dqlutH?-n (/1)

)=]
0
]3( *lf ) 2a+4n+1d X
0
=J (1
0

(Fq,A ( f q:ua+2n

o t—38

2
2a+1d X

The proof of (ii) is standard.

4. Generalized Convolution Product

Definition 4.1 The generalized translation operator T, is define by the relation
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a 2n a+2n -1
T =X"M ozl oM (4.1)
where T(‘;;Z” are the Bessel translation operators of order a+2n.

Definition 4.2 Define the generalized convolution product of two functions f and gon [0,%0) by

T a 2a+1 (42)
F#,0(X)=Copoan | Ton F (V)9 (¥) Yy

0

where C is given by (1.6).

q,a+2n

From by (4.1) we have

_ - 4.
f#qg=M[(M 1f)*q'a+2n(M 1g)], (4.3)
where *, . is the Bessel convolution.
Theorem 4.1 (i) Let f bein L, ,,, 1< p<oo. Then
a 2n
4% lg 10 SX ” f ”q,l,a,n '

(i) For fel,,,,. we have

Fou(Tisn F)(A) =0, (A%, 0% F, .0 (F)(2) -

(i) If f el and gelg,,, then

q,1a,n

0

[Tt (V) a(y)y gy =[ £ (¥)Te,00 (y) y*d,y.
0

0

(iv) For f,gel,,,, then f# gel and

q.La,n

|4,

<[l 1 ]
gla.n - f g.lLa,n g g.La,n °

(v) For fel,,,, and gel,,,, we have

,n

Fou (T#,9)(2) =For (F)(2)Fu(9)(4).
Proof. (i) By (4.1) and Theorem 2.2(i) we have

Ta .I: :X2n Mz_a+2noM—lf‘
a.x.n g,.la,n a.x g,L,a,n

2 2 -1

- e oM |

a. q,La+2n

2 -1

<x" M f‘

g, a+2n
=" f]

glan ’
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(i) By (3.1), (3.6), (4.1) and Theorem 2.2(ii) we have
For (Toon T )(A) = Fyzn oM (X222 2"M 2 £)(4)
=X AMUF, ol (M) (2)
=X"2"M 7y 0y 2aM 7 ()
=0, 0 (A% 07 ) Fyzn (M H)(2)
= Pun (A%.0%) Py s (£)(2).

(iii) By (4.1) and Theorem 2.2(iii) we have
_[Tqax nf 2a+1d y inj' y4n a+2n (l\/l 1f )(y) M 719 (Y) y2a+1dqy

_ inj' y4nM —1f (y)z_gz’:(—ZnM —1g (y) y2a+1dqy
0

yZnM 1§ (y)(Xy)ZH Tg,;an 719 (y) y2a+1dqy

yZnM —lf (y)qu'zXYng (y) y2a+1dqy

Il
Ot 8 O==—8 O—=8

P T8 (Y)Y gy -
(iv) By (4.3) and Theorem 2.2(iv) we have

It 4,0l <[M~(7 #9)

q.La,n g,La+2n

-1

<|mt M g

g.l,a+2n q,L,a+2n

ol LI O ]
(v) By (3.6), (4.3) and Theorem 2.2(v) we have

Fun (1#,8)(4) = Fos (MM 1)%,.00 (M 0) ])(2)
=Foa M7 (M(M71)#, (M’lg)})(l)
=F (M7F)(2)F, (M7g)(2)
=Foa (F)(2)Fen (9)(4) -

This concludes the proof.
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5. Transmutation Operators

Definition 5.1 For a bounded function f on [0,%), define the integral transform Xq by

(5.1)

2ot (X)=(1+0)C(a:q*)x*" [F, (t:q?) f (xt)d,t

O ey

where C(a:qz) and F, (t:qz) is given Theorem 3.1(i).

Remark 5.1 (i) For n=0, X, reduces to g-Riemann Liouville integral transform of order a given by

(1+9)C(a:q*)x"[F,(t:q?) f (xt)d,t ,if x>0

[24

O L

Rua(F)(x)=
f(0), x=0.
(ii) It is checked that

a+2n,q

(iii) From Theorem 3.1(i) and (5.1) we have
O (AX.0°) = 7, (cos(xt,qz))(x) (5.3)

Definition 5.2 Define the integral transform t;(q for a differential function f on [0,) by

St () =(1+a)C(a:a) [ F, qu (O

Remark 5.2 (i) For n=0, t)(q reduces to g-Weyl integral transform of order & given by

vva,q(f)(y):(1+q)c(a:qZ)iFaG:qZJf(t)tadqt y20.

(ii) It is seen that

2 =W M (5.4)

a+2n,q ©

Theorem 5.1 (i) If f el ([0,%0),dx) then Xof €Llyan and HquHq,oo,a,n S”f”q’w.

(i) If felyy,, then 7y f ey, ([0,00).0x) and 'z, f| <[]

glan’

(iii) For any f € qul([O,oo),dX) and gel

q1an We have the duality relation
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o0

[ 2aF ()8 (X)X, x= [ £ () 2,9 (¥)d,y:

0

(iv) For all f e Lq,l,a,n we have
Fq,/\(f)z Fq,Coth(f)1 (5.5)

where Fq’C is the g-cosine Fourier transform given by

Foc (F)(2)=] f (x)cos(4x:9°)d,x, 4>0.
0

(v) Let f,g S Lq,l,a,n' Then

th(f #q g):thf*‘;(qg,

where * is the convolution product defined by

1+q .
fl>x<f2 = a+1 J-O'X 1 y’ ldqy,

with oy is a g-generalized translation given in details in [5].
(vi) Let fel,,,, and gelL,, ([O,oo),dX). Then
Zo('2F*9) = T#,(2,9). 50
Proof. (i) By (5.1) and [5.2] we have
[t
(i) By (5.1) and [5.4] we have

[t <M <R.q

) q,l,a+2n_|| ”q,l,a,n

mR,

= <[ fl
q,%,a,n q,0,a,n ||Ra+2n f ||Qv°0 - f q,%

(i) By (4.3), (5.2) we have

o0

.[;(qf (x)g(x)x*"d,x

0

Ra+2n,q ( f )(X) M _lg (X)X2a+4n+1dqx

(Y)W,.2nq (M 0)(y)d,y

Il
ct—8 Ot——,8 O——38
—

-
—_
<
~
ES

g(y)d,y.
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(iv) By (3.6), (5.4) we have

Foco th(f): Foc Wai2ng© M_l( f)
= Fq,a+2n ° Mil( f)
=F,.(f).

(v) By (4.3), (5.4) we have

th ( f #q g) :Wa+2n,q |:(M 71f )*q,a+2n (M 7lg ):|
= (Wa+2n,q M _1f )* (Wa+2n,q M _19)

=2, F*' 2,9
(vi) By (3.6), (4.3) ,(5.4) we have

f#, (qu) =M [(M O )*q,a+zn (M 71%9)]
=M [ (M) 0 (Rovangd) |
= MR, .0 | (W,20gM )9 |
S AVAR)]

This achieves the proof.

6. Generalized Wavelets

Definition 6.1 A generalized g-Bessel wavelet is a function g e L satisfying the admissibility

q,2,a,n
condition

¢ 2d A (6.1)
0<C, =|F,. (9)(4) —= <o

Remark 6.1 By (3.6) and (6.1), g€l ,,, isa generalized g-Bessel wavelet if and only if, M™g is

,n
a g-Bessel wavelet of order ar +2n, and we have

2 dA
C, =”Fq,a+2n°M_l(g)(;t)‘2 ;

0

4 =Cco,
A Mo (6.2)

Note 6.1 For gel,,,, where a€ R and be R} U{O} we have

ga,b,a,n (X) = allZTq(fb,n (ga)(x) (63)

where @, is given in (2.12) and Tq‘f‘b are the generalized translation operators defined by (4.1).
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Theorem 6.1 For all aeRf4 and beRfJI U{O} we have

n _ a+2n
Qasn (¥)=(0x)" (M7g) (%)
Proof. Using (2.11), (4.1) and (6.3) we have

9apan ( ) 1IZTqOCb n (g )(X)
(bX)zn a1/2 a+2n (|\/| 719 )(X)
(bX)Zn a?r a+2n (M —1g) (X)

(bx)Z“(M-lg);’,gz“(x),

which ends the proof.

(6.4)

Definition 6.2 Let gel,,,, (R; U{O}) be a generalized a g-Bessel wavelet. Then for a function

felyyun (]R; u{O}), the continuous generalized a g-Bessel wavelet transform by

00

¢, (F)(ab)= cqvam'f f(X)Gapan (X)X**Hd,x Vae R}, Vb eR; U{0},

0

where g, ., (X)=a""T2,(9,) and g, = 21;+2 g(x/a).
It can also be written in the form
fian(f)(ab)=a"f #, g, (b),
where #, is the generalized convolution product given by (4.2).
Theorem 6.2 We have
#0(f)(ab)=(b)" sc70 (Mf)(ab).

Proof. From (2.10), (6.4) and (6.5) we deduce that

o0

¢;g,n ( f )(a1b) = Cq,a+2n_f f (X)mxmﬂdqx

0

0
0
2n :(:Aan (M 1f)

(6.6)

(6.7)
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which concludes the proof.

Theorem 6.3 (Plancherel formula) Let g e Lq,2,a,n(R; U{O})be a generalized wavelet. For every

fel ,un (]R+ U{O}) we have the Plancherel formula

q
o
0

d
¢q . n ‘ b2a+1d b

C

9

T| f (x)|2 x2“d X = 1
0

O sy 8

Proof. By (6.2) and Theorem 2.1(i) we have
T d.,a
0

¢qgn a b ‘ b2a+ld b qa Sa+2n —lf a, b)‘ b2a+4n+ld b q

2

O ey 8

||
O ey 8

o0
0
o0
_ (~a+2n
N CM’lg .[
0

_ Cgiﬁf (x)‘2 X2 X,

0

M *lf (X)‘ X2a+4n+1dqx

Theorem 6.4 (Calderon's formula) Let gel

a2an D€ @ generalized wavelet, such that

HquA(g)Hq,a <oo. Then for f el and 0<e< d <o, the function

q,2,a,n

1% 4, da
f<7(x :C—j )(2,b) gy (X)D* 1dqb?

qgn

O'—o8

belongs to L, -

Proof. By (6.2), (6.4), (6.7) and theorem 2.1(ii) we have

da
1 6 © e d X2n 5oosa+2n M—lf a.,b M—l b2a+4n+1d b q
C_-”‘¢qgn )(2.0) G (X )b2 ldqb a’ Ca+2n oM ( )( )( g) a2
g0 M g e0

= £29(x).

Theorem 6.5 (Inversion formula) Let g el

w2an D€ @ generalized wavelet. If fel, . and

Foa(f)el

. then we have

q,1,a+2n

f(x)=5

9

O ey O,

(I¢;g,n ( f )(a’ b) ga,b,a,n (X)b2a+1dqu%

for x>0.

Proof. By (6.2), (6.4), (6.7 we have
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N d a n =2f® d a
[ @00 1570 [ = T, ol = 2

a’ Mg 0\0

O|,_\

the result shows from theorem 2.1(iii).

7. Inversion of the Intertwining Operator th Through the Generalized Wavelet Transform

To obtain inversion formulas or t)(q involving generalized wavelets, we have to establish some
preliminary lemmas.
Lemma 7.1 Let 0#gely,, Nl ,,.([0,[dx) such that F,(g)eL,,,,([0,o[ dx) and
satisfying

31 > a+2n such that F (g)(/l):O(}L”) (7.1)

c

as A—>0. Then y,,€Ll,,,, and

p2a+an+l (0 on+1 2
(00 (2) e 2] ()2, 72)

Proof. We have

9(x)=2 [F. (9)(2)cos(2x)d A

7T
So by (5.3),
49 (X) = J.h(;t)(p/l (X)d/umzn (ﬂ’)’
where
| proem (T(a+2n +1))2
h(ﬂ“) - 72_/12a+4n+1 Fc (g)(i)

Clearly, he L, ,, ([0,o0[,dx) . So by (7.2) and Theorem 6.3 we have

_ﬂh ‘d,uwz” A)=m(a,n) 7/12“"1 Fc(g)(ﬂ,)‘zdl

i T —2a-4n-1
(4 g )

n)(1,+1,),

F.(9)(2) d2
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where m(oc,n)=4”+4”+l7z'_2 (F(a+4n +1))2. By (7.1) there is a positive constant K such that

° k
I <k[A272 " Hdl= ——————— <.
! -([ 2(n—a—-2n)

From the Plancherel theorem for the cosine transform, it follows that

|2

o —g

2R (@) 025 R (0)(2) 2= flo (o) ox<e

which achieves the proof.

Lemma 7.2 Let O%#gel,,, ML, ([0, dx)such that F, (g)elL

c

adan ([0 oof, dx) and
satisfying

n>2a+4n+1 such that

c

F.(9)(4)=0(2") (73)

as A—>0. Then g€l

w.2an IS @ generalized wavelet and F, (;(q’g ) € Ly an ([0, dX).

Proof. By (7.3) and Lemma 7.1, .9 €l,,,, . F4 (;(qvg)is bounded and
Fy (%0 )(2)=0(272*"*) as 2 0.
Hence y,0 satisfies the admissibility condition (6.1).

The continuous wavelet transform on [0,00) is defined by

W (7.4)

a.9

mIH

If xﬁx

where a>0,b>0 and gel,,,, ([0, dx) is a classical wavelet on [0,0), i.e., satisfies the

admissibility condition

% 2dA
0<Cq(g)=j|Fc(g)(z) —-<w. 5)

Remark 7.1 (ii) By (5.5), (6.1) and (7.5), g € D(]R) is a generalized wavelet, if and only if t;(q’g is
a wavelet and
C(Z4)=Cy-

Lemma 7.3 Let g be asin Lemma 7.2. ThenVf € L

apan P=10r2, we have
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B, (1)(@0) =t 20 Wi (12 ) (2)|0).

Proof. By (6.6) we have

1
¢zq,g ( f )(a’b) = PRz f #q (Zq,g )a (b)

But

(Zq,g )a - %Zq (ga)

by (2.12) and (5.1). So by (5.6) and (7.4) we get

B, (1)(@0) = T 2 2(32) (D)

=ﬁﬂ€q[t%f *9, |(b)

— s 26 Woo () ()] (0),

which completes the proof.

Theorem 7.1 Let g be as in Lemma 7.2. Then we have the following inversion formulas for t;(q:

(i)If fely,,, and Fq,A(f)E Ly10:2n then for almost all x>0 we have
1 ol 7 t 2a+1 da
f (X) = C J. _[Zq |:WCI!9 ( Zq f )(a,'):|(b)><(}[q’g )a,b (X)b db a2a+4n+2 )
Xqg ON\O
(i) For fely;,,NLys,, and 0<e<d <0, the function
s 1 % t 2a+1 da
f (X) = C J.J.Zq [Wq,g ( Aq f )(a")](b)x(lq@ )a,b (X)b db g2a+an+2
Xgg €0
satisfies
lim |f<°—f| =0
e—0,6 5w q,2,a,n
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