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Abstract. In this paper, we study to solve two additive A-functional inequalities with 3k-variables in

a-homogeneous F spaces. Then we will show that the solutions of the first and second inequalities
are additive mappings.

1. Introduction

Let X and Y be a normed spaces on the same field K, and f : X — Y. We use the notation || - ||

for all the norm on both X and Y. In this paper, we investisgate some additive A-functional inequality
in a-homogeneous F-spaces.

In fact, when X is a a1-homogeneous F-spaces and that Y is a ax-homogeneous F-spaces we solve

and prove the Hyers-Ulam-Rassias type stability of two forllowing additive a-functional inequality.
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where X is a fixed complex number with }A} <1, aj,ar € RY, ag,as <1 and mis a fixed integer
with m > 1.

The Hyers-Ulam stability was first investigated for functional equation of Ulam in [19] concerning
the stability of group homomorphisms.

The functional equation
fx+y)=1(x)+1(y)

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an
additive mapping.

The Hyers [9] gave firts affirmative partial answer to the equation of Ulam in Banach spaces. After
that, Hyers'Theorem was generalized by Aoki [1] additive mappings and by Rassias [18] for linear
mappings considering an unbouned Cauchy diffrence. Ageneralization of the Rassias theorem was
obtained by Gdavruta [6] by replacing the unbounded Cauchy difference by a general control function
in the spirit of Rassias’ approach.

The Hyers-Ulam stability for functional inequalities have been investigated such as in [5], [10], [13],
[16], [17], [18]. Gilany showed that is if satisfies the functional inequality

[2F (x) +2f (y) = Fx =y)[| < [[Fx +y) ] (1.3)
Then f satisfies the Jordan-von Newman functional equation
2f(x) +2f(y) = f(x+y) + f(x —y) (1.4)

. Gilanyi [8] and Fechner [5] proved the Hyers-Ulam stability of the functional inequality (1.3).

Next Chookil [16] proved the of additive B-functional inequalities in non-Archimedean Banach spaces
and in complex Banach spaces, and Harin Lee? [11] proved the Hyers-Ulam stability of additive (G-
functional inequalities in p-homogeneous F space.

Recently, the author has studied the additive inequalities of mathematicians around the world, on
spaces complex Banach spaces , non-Archimedan Banach spaces or additive 8-functional inequalities
in p-homogeneous F-space..

So in this paper, we solve and proved the Hyers-Ulam stability for two ff-functional inequalities
(1.1)-(1.2), ie the a-functional inequalities with 3k-variables. Under suitable assumptions on spaces
X and Y, we will prove that the mappings satisfying the a-functional inequatilies (1.1) or (1.2).

Thus, the results in this paper are generalization of those in [2], [11] for a-functional inequatilies with
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3k- variables.
The paper is organized as followns: In section preliminarier we remind a basic property such as We

only redefine the solution definition of the equation of the additive function and F*-space .

Section 3: is devoted to prove the Hyers-Ulam stability of the addive A- functional inequalities (1.1)
when when X is a aj-homogeneous F-spaces and that Y is a ap-homogeneous F-spaces.
Section 4: is devoted to prove the Hyers-Ulam stability of the addive A\- functional inequalities (1.2)

when when X is a aj-homogeneous F-spaces and that Y is a ax-homogeneous F-spaces.

2. Preliminaries

2.1. F*- spaces.
Definition 2.1.

Let X be a (complex) linear space. A nonnegative valued function || - || is an F-norm if it satisfies

the following conditions:

(1) XH =0 if and only if x =0;
(2) )\XH - HXH for all x € X and all X with )A) =1
(3) x+yH < HXHJrHyH for all x,y € X;

(4) AnX

=0, Ay — 0;

(5) ||Anx]| = 0, x, — 0.

Then (XH . D is called an F*-space. An F-space is a complete F*-space. An F-norm is called

B
B-homgeneous (ﬁ > 0) if HtxH = ’t‘ HXH for all x € X and for all t € C and (XH . H) is called

a-homogeneous F-space.
2.2. Solutions of the inequalities. The functional equation
fx+y)=1(x)+1(y)

is called the cauchuy equation. In particular, every solution of the cauchuy equation is said to be an

additive mapping.
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3. Hyers-Ulam-Rassias stability Additive A-functional inequalities (1.1) in a-homogeneous F-spaces

Now, we first study the solutions of (1.1). Note that for these inequalities, when X is a a3-

homogeneous F-spaces and that Y is a ax-homogeneous F-spaces. Under this setting, we can show

that the mapping satisfying (1.1) is additive. These results are give in the following.

Lemma 3.1. Let m € N and a mapping f : X — Y satilies

k k
Xty N\ Xty _ Xty
f((mH)Z Dk ZZJ) Zf( 2k J) Zf( Dk )
Jj=1 Jj=1 J=1 Jj=1 Y
Xj+ Y, a Xj+Y
<P+ 23) - () - 21 (@) (1)
J=1 J=1 J=1 J=1 Y
for all x;, yj, z; € X for j =1 — n, then f : X =Y s additive
Proof. Assume that f : G — Y satisfies (3.1).
We replacing (xl, e X Ve Y 21, ...,zk) by(O, ...,0,0,...,0,0, 0) in (3.1), we have
|2k (@)]| < Mk - 1)FO)| <0
therefore
an a?
(|2 = prex =) r@], <o
So £(0) = 0.
Replacing (X1, ..., Xk, Y1, -, i 21, .., ) by (0,...,0,0,...,0,2,0, ...,0)), in (3.1), we get
lF(-2) —f(—z)Hygo
and so f is an odd mapping. Replacing (Xl, s Xir Y10 o Yy Z1s ...,zk)
by (X1, «ves Xies Vi, ooy Yieo m - S — vy, m - 2 — y ) i (3.1), we have
Xi+y u Xj + Y i
(o + om) - (F5) - 2
J=1 Jj= J=1 J=1
Xty u Xi t+ Y Xty
G T Y _ R/ _ G T Y
S UG SIS (I I S EET) e
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X1t+y1
for all xq, ..., Xk, Y1, ..., Yk, M=5+

(2 +325) - 20 - 2rta)|

Jj=1

— v, ..., m¥3¥% — v € G. From (3.1) and (3.2) we infer that
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S
|
—
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|
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—
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S
N—
N——

Jj= Jj= Jj=1 J=1
Xji+y u Xj + Y
<P+ 2a) -2 () -2 1@) 3
J=1 J=1 Jj=1 J=1 Y
and so
Xi+y, al X+ Y
(X +2a) =L (o) + X f(a)
Jj= J= J=1 J=
for all x;, yj, z; € G for j = 1 — n, as we expected. O

Theorem 3.2. Let r > g—f m € Z,m > 1, 8 be nonngative real number, and let f : X — Y be a

mapping such that

(mmZXﬁyf_iz)_zf(mxf'”f_z)_if@f”f)‘

J=1 ' J=1 2k ' J=1 2k Y
k XJ+_VJ k k )<J+yJ k

<P 5+ 2a) 205 - @)

k
ol X Il + 3 1) (3.4)
j=1 j=1 j=1
for all x;, yj, z; € X for all j = 1 — n. Then there exists a unique mapping ¢ : X — Y such that

Hf(x) - h(x)H ZZ:f (g + 2kar)

o= = W =

0|x|x- (3.5)
for all x € X

Proof. Assume that f : X — Y satisfies (3.4).
Replacing (X1, ..., Xk, Y1, -+, Yi: 21, -, ) by(0,...,0,0,...,0,0, ..., 0) in (3.4), we have

|k (@), = [rex - D), <0
therefore

(" - =) [r@)], <o
Sof (0) =
Next we

replacing (X1, ..., Xk, Y1, .-, Yk, 21, -, Zk) by (kx,0,...,0, kx,0,...,0,0, ...,0) in (3.4), we get
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[+ 1)x) = F(mx) = £ ()|, < 2678

XH; (3.6)

for all x € X. Thus for g € N,
we replacing (X1, ..., Xi, Y1, -, Yk, Z1, -, Zk) by(kx,0,...,0,kx,0,...,0,¢x,0, ...,0) in (3.4), we have

f((m—q+1)x) —f((m—q)x)—f(x)

Y

Af((g+1)x) — f(gx) — f(x)

<

+9(2ka1r + thlf)

XHX (3.7)

for all x € X.
For (3.6) and (3.7)

m_ll [F((m=a+1)x) = £((m—a)x) = F(x)],
<5 IM(F(a+1%) = Flax) = £+ e(mzl ok <)
" " (3.8)
for all x € X.
From (3.7) and (3.8) and triangle inequality, we have
(1= A1) |[F(mx) = me ()|,
= (1= A" mf [F((a+1x) = Flax) - F(x)|,
mz_j 1= |A®)|| (F((g+ 1)x) = F(ax) — f(x)HY
<3 a9 = 1009 = 09, = 3 [ate(ia+ 29 =t = (),
(mzl (2K + goar) XH;) (3.9)
for all x € X. from
3 [F(m=a+1)x) = F((m—a)x) = F(x)||, = mzl |(F((a+1%) = Flax) = F(x)|,

g=1 g=1
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Since |A| < 1, the mapping f satisfies the inequalities

J

G(Zq 1 (2K 4 g™r) |1 x

Hf(mx) — mf(x)HY <

(1= [A")
for all x € X.
Therefore
9<Zm;11 (2ka1r+qa1r) ’XH )
X q X
|70 - mr(2)], < R (3.10)
for all x € X. So
X X
| () = mer ()], = Z () = m el

9(227;1 (2ka1r+qa1r)> p—1 mazf
S (1 — P\‘)malr = mori

A

for all nonnegative integers p, / with p > [ and all x € X. It follows from (3.11) that the sequence
{m"f(%)} is a cauchy sequence for all x € X. Since Y is complete, the sequence {m"f(2;)}
coverges.

So one can define the mapping ¢ : X — Y by d)(x) = limp0o m"f(55) for all x € X. Moreover,
letting / = 0 and passing the limit m — oo in (3.11), we get (3.5).

It follows from (3.4) that

H ((m+1)2“”—2 ) - qu( Xf”—zj)—éaxf';k”)Hy

J=1

. (M+1) e~x+y 1 o a Ty 1

= Jim e (r (S5 ;&Myj_m”;%)_;f(;&zkyj_wzf)
1 Xj +y

i),

. 1 - 1 o I T N A |
= n||—>moo mn>\<<f<mz)92kyj + WZZJ> _Zf(ﬁxjgkyj> _Zf(ﬁzj»

J=1 J=1 J=1 J=1 Y

+ lim_ malnrO(ZHxJHﬁZ||yj||x+Z||zJ||x>

az “ Xj+yj a X +yj al
= || ¢(Z ZZJ) Zcb( ) =Y e(z) (3.12)

Jj=1 Jj=1 Y
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for all x;, yj,z € X forall j=1—n.

om0 $) Sl )-S50
e ; 2k J 2k y

o355+ 2 5) - L o(%5) - Lols)

Y J=1

< A

N4

for all x;,yj,z; € X forall j =1 — n. So by lemma 3.1 it follows that the mapping ¢ : X — Y is
additive. Now we need to prove uniqueness, Suppose ¢’ : X — Y is also an additive mapping that
satisfies (3.5). Then we have

|60 =@ (0, = m="le () —#'(25) v

mn

< (o Gom) ~ 7 G| + 19 ) =G
2.m%2" - 305 (g% + 2k

,
(1 — |>\|a2)ma1nr(ma1r _ maz)eHXHX (3.13)
which tends to zero as n — oo for all x € X. So we can conclude that ¢(X) — ¢’(x) for all x € X_This

proves thus the mapping ¢ : X — Y is a unique mapping satisfying(3.5) as we expected.
O

Theorem 3.3. Let r < % m € Z,m > 1, 6 be nonngative real number, and let f : X — Y be a
mapping such that

(<m+1>zxf+%_§z)_zf( CRSTNAN JIE R
j=1 i Jj=1 2k J Jj=1 2k Y
Xi+y a ul x—l—y «
<P v 2e) -2 ) -2 7))
J= J= = Y

k
e(giju;@uyju;@uzju;) (314

for all x;, yj, z; € X for all j =1 — n. Then there exists a unique mapping ¢ : X — Y such that

760~ ()|, < (12_?‘;‘52;;”_":;” ol (3.15)

for all x € X.

The rest of the proof is similar to the proof of Theorem 3.2.
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4. Hyers-Ulam-Rassias stability Additive A-functional inequalities (1.2) in a-homogeneous F-spaces

Additive B-functional inequality in complex Banach space Now, we study the solutions of (1.2).
Note that for these inequalities, when X is a ai-homogeneous F-spaces and that Y is a ap-
homogeneous F-spaces

. Under this setting, we can show that the mapping satisfying (1.2) is additive. These results are

give in the following.

Lemma 4.1. Let m € N and a mapping f : Y — Y satisfies

Jj=1 J=1 Jj=1 J=1 Y
Xi + Y, K +V al Xi + Y,
= A(f((r'7+1)z Jzkj_z J)_Zf( sz_ J)_Zf(12kj)> (4.1)
Jj= J= J=1 J=1 Y

for all x;, yj, z; € X for j =1 — n, then f : X =Y Is additive

Proof. Assume that f : X — Y satisfies (4.1).
Replacing (X1, ..., Xk, Y1, -1 Yk, 21, -, Z) by(0,...,0,0,...,0,0,...,0) in (4.1), we have

|k -1, < |, <o

(k=2 = ) @), <0

So £(0) = 0. Replacing (X1, ..., Xk, Y1, - Yk Z1, -, 2) by (0,...,0,0,...,0,=2,0,...,0)), in (4.1), we
get

lr(-2)-(-2)||, <0

and so f is an odd mapping. Replacing (X1, ..., Xk, Y1, -\ Yk, Z1, -1 Zk)

X1ty L XtV ;
XN — vy, om 2 — y ) in (4.1), we have

by (X1, ., Xk, Y1 -es Vi M-

om0 355025 0) - 3ot ) - )

: J:

A(f(i“” iw) if(“”) if(v»)

J=1 = Jj=1 J=1

[y

<

(4.2)

Y
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X1t+y1
for all xq, ..., Xk, Y1, ..., Yk, M=5+

(St z> ﬁ;(“%) > )]

Jj=1

— v, ..., m¥3¥% — v € G. From (4.1) and (4.2) we infer that

IN
/_\
/—\

—~~
3
+
H
N—r
\><
_l’_
s
|
\_/
|
M=
-+
/N
X
N+
<
|
-
N———
|
M=
~+
—
X
X+
S
N———
N———

Jj= Jj=1 Jj=1
k
sx%%z&;”QSQ—Z%ﬁXQ—ZNm) @3)
J=1 J=1 J=1 J=1 Y
and so
X+, (Y,
(X +23) :;f( )T f(3)
J= J= J= J=

for all x;, yj, z; € G for j = 1 — n, as we expected. O

Theorem 4.2. [et r > g—f m € Z,m > 1, 8 be nonngative real number, and let f : X — Y be a

mapping such that

(5552 5o -5 -

J=1 J=1 J=1 J=1 Y
SNGCIE) - = SRS S R BN ST R
- = 2k jzlf = 2k J = 2k .

k k k
+0( 3 Ibslly + D lall + - lll) (4.4)
j=1 j=1 j=1
for all x;, yj, z; € X for all j = 1 — n. Then there exists a unique mapping ¢ : X — Y such that

Hf(x) - h(x)H ZZ:f (g + 2kar)

o= = W =

0|x|x- (4.5)
for all x € X

Proof. Assume that f : X — Y satisfies (4.4).
Replacing (X1, ..., Xk, Y1, -, Yi: 21, -, ) by(0,...,0,0,...,0,0, ..., 0) in (4.4), we have e

|k (@), = [rex - D), <0
therefore

(" - =) [r@)], <o
Sof (0) =
Next we

replacing (X1, ..., Xi, Y1, .-, Yk, 21, -, Zk) by (kx,0,...,0, kx,0,...,0,0, ...,0) in (4.4), we get
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[+ 1)x) = F(mx) = £ ()|, < 2678

XH; (4.6)

for all x € X. Thus for g € N,
we replacing (X1, ..., Xi, Y1, -, Yk, Z1, -, Zk) by(kx,0,...,0,kx,0,...,0,¢x,0, ...,0) in (4.4), we have

f((m—=qg+1)x) = f((m—aq)x) — f(x)

Y

Af((g+1)x) — f(gx) — f(x)

<

+9(2ka1r + thlf)

XHX (4.7)

for all x € X.
For (4.6) and (4.7)

m_ll [F((m=a+1)x) = £((m—a)x) = F(x)],
<5 IM(F(a+1%) = Flax) = £+ e(mzl ok <)
" " (4.8)
for all x € X.
From (4.7) and (4.8) and triangle inequality, we have
(1= A1) |[F(mx) = me ()|,
= (1= A" mf [F((a+1x) = Flax) - F(x)|,
mz:jl (1= A% (F((g+ 1)x) = F(ax) — f(x)HY
<3 e - ) - 1], - 3 et ) - o 0],
(mzl 2kT 4 ) xH;) (4.9)
for all x € X. from
3 [F(m=a+1)x) = F((m—a)x) = F(x)||, = mzl |(F((a+1%) = Flax) = F(x)|,

g=1 g=1
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Since |A| < 1, the mapping f satisfies the inequalities

9<Zq [ (2k™T 4 g™ |1x
(1= 2™)

J

Hf(mx) - mf(x) H <

for all x € X.

therefore

o( o 2k + go)

r
)
X

Hf(x) B mf(%)HY - (1- ‘)\‘a2)ma1r (4.10)
forall x € X. So
|m'e(Z) = ()| < Z () = mre ()|
r 1
: 6<(Zl_ | k(‘ik ,:aq ) > st My (4.11)

J=l

for all nonnegative integers p, / with p > [ and all x € X. It follows from (4.11) that the sequence
{m"f(%)} is a cauchy sequence for all x € X. Since Y is complete, the sequence {m"f(2;)}
coverges.

So one can define the mapping ¢ : X — Y by d)(x) = limp0o m"f(55) for all x € X. Moreover,
letting / = 0 and passing the limit m — oo in (4.11), we get (4.5).

It follows from (4.4) that

220) 3 ot

-

(3552 32a) o

= =1 =1 =1 v
k k k
_ 1 xi+y 1 1 X+ y; 1
= Jim WO(WZ ot WZZJ) - f(ﬁz ok J) B Z“WZJ))
Jj=1 Jj=1 Jj=1 J=1 Y
+n||_>mOO e Z||)9|\X+Z||yj||x+2||zj||x
(m—l—l) O mx+y 1
< Jim, I e (7 (S5 2 Jzkj_ﬁzzf>_zf(mn i)
j=1 Jj=1 J=1
k
1
—Zf(ﬁzjn
j=1 v
XY - X+,
a
=PITo(lm e D E 57 + 3 a) - 0(mp —a) -2 o6(a)| (412
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for all x;,y;,z; € X forall j=1—n. So

k k k
||¢(z“yf >z)- 2¢(“”)—Z¢<ZJ>
j=1 Jj=1 Jj=1 =1 Y
o - - X+ (St
< Al ¢( . J>_Z¢<m ok _Zf>_z¢(7)
j=1 j=1 Jj=1 J=1 Y

for all x;,yj,z; € X forall j =1 — n. So by lemma 4.1 it follows that the mapping ¢ : X — Y is
additive. Now we need to prove uniqueness ,Suppose ¢’ : X — Y is also an additive mapping that
satisfies (4.5) . Then we have

X

|60 =@ (0, = m="le () —#'(25) v

mn

<men((lo(Z5) = F(Z5)|, + e (=5) = F(=0)]|)
5 mean . Z;nz_ll (qalr 4 2ka1r)

o 0|x||5 4.13
(1 _ |>\| )mnalr(malr o ma2> H HX ( )

which tends to zero as n — oo for all x € X. So we can conclude that ¢(x) = ¢'(x) for all x € X.This
proves thus the mapping ¢ : X — Y is a unique mapping satisfying(4.5) as we expected.
O

Theorem 4.3. Let r < % m € Z,m > 1, 6 be nonngative real number, and let f : X — Y be a
mapping such that

(X + 22) - X))

j=1 j=1 Jj=1 j=1 Y
a Xj + Y a d Xj + Y - Xj + Y
j j N J R N Y J
< P22 -3 ) - S - ) - )|

K k k
(3 Isllsc+ Il + 2 lall) (4.14)
j=1 j=1 j=1
for all x;, yj, z; € X for all j =1 — n. Then there exists a unique mapping ¢ : X — Y such that

Z;ngll (qalr + 2ka1r

TP )

|76 =40

6]Ix|Ix- (4.15)

for all x € X.

The proof is similar to theorem 4.2.
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5. Conclusion

In this paper, | have shown that the solutions of the first and second k — variable B-functional

inequalities are additive mappings. The Hyers-Ulam stability for these given from theorems. These

are the main results of the paper , which are the generalization of the results [2], [11].
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