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Abstract. The main idea of this paper is to investigate the motion properties of the smallest body under

the gravitational forces of the three collinear spherical primaries. Here we place the three primaries on

the same line where the masses of two primary bodies are taken equal and third primary body is having

the solar radiation effect. The effects of Coriolis and centrifugal forces on the system is considered.

Therefore this system is recognized as collinear perturbed Moulton-Copenhagen configuration. After

determining the equations of motion and quasi-Jacobi integral, we numerically illustrate the locations of

equilibrium points (in-plane and out-of-plane), regions of motion, Poincaré surfaces of section, basins

of attraction and periodic orbits. And then the examination of stability for the equilibrium points lie

either in-plane or out-of-plane are examined.

1. Introduction

One of the extensions of the restricted three-body problem is the restricted four-body problem in

the fields of Mathematics and theoretical Physics. Where two types of configurations are found in the

literature. First when the three-primaries are placed at the vertices of a triangle and the second when

the three-primaries are placed at the same horizontal line. Till now many researchers have studied

about the first type of configuration with various types of perturbations while the second type of

configuration is studied by very few researchers. But it is also an interesting configuration for study.
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We are also interested to study this less studied configuration with variable mass, solar radiation

pressure and perturbations in Coriolis as well as centrifugal forces.

We would like to elaborate our literature review about the above said configuration. [1] studied

the four-body problem with spherical primaries and investigated the existence and uniqueness of the

equilibrium points. [2] performed the relative equilibrium solutions in the restricted four-body problem

and also presented the survey of solutions for arbitrary masses. [3] studied the restricted four-body

problem. [4] studied the number of equivalence classes in the restricted four body problem. [5] extended

the model considered by Arenstorff and studied the collinear relative equilibria of the planar N-body

problem. [6] investigated the restricted 3-body problem by supposing both the primaries as solar

radiation effects. A complete solution of the problems of existence and linear stability of the equilibrium

points are performed for various values of radiation pressure. They found one of the Lagrangian points

is stable when both the primaries are having radiation pressure. Four out-of-plane equilibrium points

exists when the radiation pressure of the smaller body is very high. When both the primaries are

luminous then L8, 9 are linearly unstable while L6, 7 are stable for an interval of radiation pressure. [7]

investigated the restricted three-body problem by supposing the solar radiation pressure. And found

the stability of the orbits.

[8] investigated the symmetrical central configuration in three cases and discussed their bifurcations

as well as spectral stability. His results are applicable in the rational parameterizations and computer

algebra. [9] investigated the asymptotic solutions of the restricted planar problem of four bodies out

of which two equal primaries are placed at the same line with equal distance. They got atmost

six equilibrium points. They also illustrated numerically the Poincaré cuts, homo-and hetero-clinic,

symmetric and non-symmetric asymptotic orbits by using forward and backward integration. They

also perform the characteristic curves for a fixed value of the mass parameter and the stability of these

families of curves. [10] examined the stability of the periodic orbits in the frame of four-body problem

where three-primary bodies are placed in the same straight line. And these bodies are moving around

their center of mass. [11] studied the restricted four-body problem where three spherical primaries

are placed at the vertices of a triangle. After formulation of the equations of motion, they have

found eleven equilibrium points. [12] illustrated the restricted four bodies problem. They also analyzed

numerically allowed regions and zero velocity surfaces. [13] investigated the motion properties of the

fourth body under the gravitational forces and solar radiation pressures of the three primaries which

are placed at the vertices of an equilateral triangle. They observed that the perturbation parameters

used are influenced the locations of the equilibrium points and their stability. [14] studied the restricted

four-body problem with radiation pressure and they performed the complete analysis of the position

of equilibria and their stability in the space. [15] investigated three-dimensional case of the restricted

four-body problem with equal radiation pressures. They present the complete study of position and
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stability of equilibrium points. [16] investigated the planar restricted four-body problem in the Moulton-

Copenhagen configuration. They performed the evolution of families of symmetric periodic orbits as

the mass parameter µ evolves. They also analysed the evolution of spiral points which represents

the heteroclinic orbits connecting to equilibrium points. [17] performed the dynamics of the circular

restricted 4-body problem with three primaries at the collinear configuration. And they examined the

linear stability of the equilibrium points. They also proved the existence of periodic orbits by applying

the Lyapunov theorem.

The effect of variation of mass is studied by many researchers: [18] determined the equations

of motion of the variable mass infinitesimal body in the restricted three-body problem by using the

Lagrangian approach. To conserve the time in space, they have used the Meshcherskii transformation.

[19] illustrated the mass variation effects in the restricted four-body problem by supposing that the

primaries are moving in elliptical orbits around their common center of mass. [20] performed the

dynamical properties of the infinitesimal body in the restricted six-body problem under the consideration

that the infinitesimal body varies its mass according to the Jeans law. After an adequate formulation,

they have illustrated the equilibrium points, regions of motion and basins of attraction for this model.

[21] extended the idea of [18] and found the all the equilibrium points are unstable for this model. [22–

24] also studied the variation effects of the mass of the infinitesimal body in the restricted problems.

This manuscript is arranged in various sections as: Overview of the literature is presented in section

1. The equations of motion and quasi-Jacob integral are performed in section 2 while section 3

presents the locations of equilibrium points. Sections 4 illustrate the regions of motion and section

5 explained the Poincaré surfaces of section. Section 6 and 7 illustrate the basins of attraction and

periodic orbits respectively. Finally examination of the stability for the equilibrium points are done in

section 8, and drawn the conclusion in section 9.

2. Equations of motion

r0
r2r1

m0 (0, 0)

m(x, y , z)

m2(1/2, 0)m1(−1/2, 0)
x

yz

Figure 1. Collinear perturbed Moulton-Copenhagen configuration

Out of four bodies, the collinear placed three bodies are known as primaries of masses m0, m1, and

m2 respectively. The fourth smallest body is moving in space under the gravitational forces of the
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three primaries while the smallest body is not affecting them (figure-1). The primary of mass m0 is

having the effect of solar radiation pressure with radiation parameter β0. We also assume that the

Coriolis and centrifugal forces are affecting to the system with parameters α1 and α2. Considering

the synodic axis and fixing the units of G m1, G m2 and the distance between two primaries m1m2,

separately taken as unity and also G m0 = µ, we get the value of mean motion ω as
√

2(1 + 4µ).

Adopting the method used by [25] and [16], the equations of motion of the smallest body of variable

mass can be written as:

ṁ

m
(ẋ − ωα1 y) + ẍ − 2ωα1 ẏ =

∂Ω

∂x
,

ṁ

m
(ẏ + ωα1 x) + ÿ + 2ωα1 ẋ =

∂Ω

∂y
,

ṁ

m
ż + z̈ =

∂Ω

∂z
,

(2.1)

where,

Ω =
1

2
ω2 α2 (x2 + y2) +

µβ0
r0

+
1

r1
+

1

r2
,

r20 = x2 + y2 + z2,

r21 = (x + 1/2)2 + y2 + z2,

r22 = (x − 1/2)2 + y2 + z2.

(2.2)

We have considered the mass variation of the smallest body therefore we can not investigate the

motion properties directly and hence we will follow the Jean’s law [26] and Meshcherskii space-time

transformations [27] which are as follow:

m = minit e
−ε1 t , (x, y , z) =

1
√
ε2

(ξ, η, ζ), (2.3)

where ε1 is variation constant and ε2 =
m

minit
, where minit is the initial mass of the smallest body.

Utilizing Eqs. (2.1) and (2.3), we obtain

ξ̈ − 2ωα1 η̇ =
∂ V

∂ξ
,

η̈ + 2ωα1 ξ̇ =
∂ V

∂η
,

ζ̈ =
∂ V

∂ζ
,

(2.4)



Int. J. Anal. Appl. (2022), 20:44 5

where,

V =
ω2 α2

2
(ξ2 + η2) +

ε21
8

(ξ2 + η2 + ζ2) + ε
3/2
2

{
µβ0
ρ0

+
1

ρ1
+

1

ρ2

}
,

ρ20 = ξ2 + η2 + ζ2,

ρ21 = (ξ +
√
ε2/2)2 + η2 + ζ2,

ρ22 = (ξ −
√
ε2/2)2 + η2 + ζ2.

(2.5)

The Eq. (2.4) reveals the Quasi-Jacobi integral as

(ξ̇2 + η̇2 + ζ̇2) = 2 V − E − 2

∫ t

t0

(
∂V

∂t

)
dt, (2.6)

where E is the quasi-Jacobi energy constant. If we suppose ε1 = 0 and ε2 = 1, then the above

variable mass system will reduce to the constant mass system.

3. Equilibrium points

Taking zero to all derivatives w.r.t. time in Eq. (2.4), we get

∂ V

∂ξ
= 0, (3.1a)

∂ V

∂η
= 0, (3.1b)

∂ V

∂ζ
= 0. (3.1c)

After numerically solving Eqs. (3.1a) and (3.1b) by taking ζ = 0, we get the equilibrium points in in-

plane motion while solving Eqs. (3.1a) and (3.1c) by taking η = 0, we get the out-of-plane equilibrium

points. We will discuss about these equilibrium points in two sub-sections in-plane equilibrium points

and out-of-plane equilibrium points. (In this calculations, we have used ε1 = 0.2, ε2 = 0.4, α1 = α2 =

1.2, µ = 0.25, β0 = 0.95.)

3.1. In-plane equilibrium points. After numerically solving Eqs. (3.1a) and (3.1b) by taking ζ = 0,

we get six in-plane equilibrium points out of which four are collinear equilibrium points L1, 2, 3, 4 and

two are non-collinear equilibrium points L5, 6. These equilibrium points are presented in figure (2).

We observed from this figure that out of four collinear equilibrium points, two L1, 2 and L3, 4 are

symmetrical about η-axis respectively as well as L5, 6 are symmetrical about ξ-axis. We have plotted

these for various values of variation parameters (ε1 = 0 & ε2 = 1 (red), ε1 = 0.2 & ε2 = 0.8 (blue),

0.4 (purple), and given in the sub-figure (2(a)). We observed from here that as increase the value of

the parameter ε2, locations of the equilibrium points are moving away. The sub-figure (2(b)) shows

the locations of the equilibrium points for the variation of the centrifugal force parameter α2 = 1.2

(purple), 1.6 (blue) and 2 (red). This sub-figure reveals that as increase the value of the parameter
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α2, the locations of equilibrium points L2, 3 are unchanged while the locations of equilibrium points

L1, 4, 5, 6 are moving towards the origin. Finally, it is also observed that when the primaries are placed

at the vertices of an equilateral triangle, there are eleven equilibrium points exist [11] while when the

three primaries are placed on the same straight line then we got six equilibrium points.

L1 L2 L3 L4

L5

L6

L1 L2 L3 L4

L5

L6

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

ξ

η

(a) Locations at ε1 = 0 & ε2 = 1

(red), ε1 = 0.2 & ε2 = 0.8 (blue), 0.4

(purple)

L1 L2 L3 L4

L5

L6

L1 L2 L3 L4

L5

L6

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

ξ

η

(b) Locations at α2 = 2 (red) & , 1.6

(blue), 1.2 (purple)

Figure 2. Locations of in-plane equilibrium points.

3.2. Out-of-plane equilibrium points. And when we numerically solve Eqs. (3.1a) and (3.1c) by

taking η = 0, we get the out-of-plane equilibrium points and we noticed here that when we plotted

the locations of equilibrium points for the constant mass, then there is no out-of-plane equilibrium

point (sub-figure (3(a))) while when we consider the variable mass case then we got two out-of-plane

equilibrium points (L7,8) along ζ-axis (sub-figure (3(b))).The equilibrium points (L7,8) are symmetrical

about ξ-axis. These two equilibrium points are additional evaluation in this research.

L1 L2 L3 L4

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

ξ

ζ

(a) Locations at ε1 = 0 & ε2 = 1

(red)

L1
L2 L3 L4

L7

L8

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

ξ

ζ

(b) Locations at ε1 = 0.2 and ε2 =

0.8 (blue), 0.4 (purple)

Figure 3. Locations of out-of-plane equilibrium points.
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4. Regions of motion

Utilising the method given by [28], we have performed the regions of motion of the smallest body

for various values of the variation parameters used and given in figures (3) (at ε1 = 0, ε2 = 1) and

(4) (at ε1 = 0, ε2 = 0.4). To illustrate the regions of motion, we have to evaluate first the value of

energy constant (E) corresponding to equilibrium points and then with the help of this value, we have

performed the allowed regions of motion. These regions are shown in the figures as white parts while

colored parts are prohibited regions. In both the figures, sub-figures (a), (b) and (c) are representing

the regions corresponding to the equilibrium points L1, 4, L2, 3 and L5, 6 respectively. The sub-figure

(a) reveals that smallest body can move every where except near the equilibrium points L5, 6 and the

equilibrium points L1, 4 act as gateway for the regions near the equilibrium points L2, 3. The sub-figure

(b) reveals that the smallest body can move every where except near the equilibrium points L1, 4, 5, 6

and the parking points L2, 3 act as gateway for the regions around the equilibrium points L2, 3. The

sub-figure (c) reveals that the smallest body can move every where and there is no prohibited regions.

The main difference in both the figures that as reduces the value of variation parameter ε2, the regions

are shrinking.

L1 L2 L3 L4

L5

L6

-1.5-1.0-0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

ξ

η

(a) Corresponding to L1, 4

L1 L2 L3 L4

L5

L6

-1.5-1.0-0.50.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

ξ

η

(b) Corresponding to L2, 3

L1 L2 L3 L4

L5

L6

-1.5-1.0-0.50.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

ξ

η

(c) Corresponding to L5, 6

Figure 4. Regions of motion at ε1 = 0 & ε2 = 1 in ξ − η–plane.
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(a) Corresponding to L1, 4

L1 L2 L3 L4

L5

L6

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

ξ
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(b) Corresponding to L2, 3

L1 L2 L3 L4

L5

L6
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(c) Corresponding to L5, 6

Figure 5. Regions of motion at ε1 = 0.2 & ε2 = 0.4 in ξ − η–plane.
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5. Poincaré surfaces of section

This section performed the Poincaré surfaces of section with the help of Eqs. (2.4) and (2.6).

For this, we have to rewrite the system of equations into phase space and then draw until when the

orbit intersects the plane η̇ ≥ 0. Finally, we get the surfaces of section in ξ − ξ̇–plane by using well

known Mathematica software for various values of the variation parameters and given in figure (6).

Sub-figure (6(a)) perform the Poincaré surfaces of section with three shapes for the value of ε1 = 0

and ε2 = 1 (blue). We observed from here that these surfaces are symmetrical about both axes and

also as we move away from the origin on the middle shape along ξ̇-axis, there are some chaos. Some

chaos are found on the other two shapes also. As we have supposed the effects of the variation

parameters (ε1 = 0.2 and ε2 = 0.4 (dark yellow), three shapes are reduced to a single shape, which is

also symmetrical about both axes. We observed from here that there are some partial chaos at some

places. For the same two cases (constant mass case (sub-figure-(7(a))) (blue) and variable mass case

(sub-figure-(7(b)))(dark yellow)), we have plotted the Poincaré surfaces of section in η-η̇- plane and

observed that in the constant mass case there are chaos along η-axis only while there is no chaos in

the variable mass case.

-0.6-0.4-0.20.0 0.2 0.4 0.6

-5

0

5

ξ

ξ


(a) For ε1 = 0 & ε2 = 1

-0.10 -0.05 0.00 0.05 0.10

-3

-2

-1

0

1

2

3

ξ

ξ


(b) For ε1 = 0.2 & ε2 = 0.4

Figure 6. Poincaré surfaces of section in ξ − ξ̇–plane.

-0.6-0.4-0.2 0.0 0.2 0.4 0.6

-200

-100

0

100

200

η

η


(a) For ε1 = 0 & ε2 = 1

-0.5 0.0 0.5

-4

-2

0

2

4

η

η


(b) For ε1 = 0.2 & ε2 = 0.4

Figure 7. Poincaré surfaces of section in η − η̇–plane.
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6. Basins of attraction

Basins of attracting domain is also one of the most important dynamical behaviour of the smallest

body. In this section, we have illustrated the basins of attraction of the smallest body by using very

fast, simple and accurate method known as Newton-Raphson method. This attracting domain is the

composition of all initial conditions that converge to specific equilibrium points. Here we have plotted

the basins of attracting domain in two ξ − η and ξ − ζ planes. The formula used for this problem is

as follows:

ξn+1 = ξn −
Vξ Vη η − Vη Vξ η
Vξ ξ Vη η − Vξ η Vη ξ

,

ηn+1 = ηn −
Vη Vξ ξ − Vξ Vξ η
Vξ ξ Vη η − Vξ η Vη ξ

,

(6.1)

where ξn and βn are the values of nth step for ξ and η in the Newton-Raphson iterative process.

(ξ, η) will be a member of the attracting domain if the initial point converges rapidly to one of the

equilibrium points. This process stops when it will converges to an attractor. The classification of

equilibrium points on the plane will be differentiated by the color code.

The figure (8) shows the basins of attracting domain for two values of variation parameters ε2 (= 1

(8(a)) and 0.4 (8(b))) in the ξ−η-plane. The sub-figures (8(a)) and (8(b)) show that the attracting

points L1, 2, 3, 4 represent the cyan and yellow color regions respectively. In the same sequence of the

figures L5, 6 represent (purple, yellow) and (green, orange) color regions respectively. The basins of

attracting domain for all these points extend to infinity.

Similar way we can say that figure (9) corresponds to the basins of attracting domain in the ξ − ζ-
plane. We observed from here that the equilibrium points L7, 8 represent the red color regions which

are also extending to infinity. In this way, we got the final version of the basins of attracting domain.

(a) For ε1 = 0 & ε2 = 1 (b) For ε1 = 0.2 & ε2 = 0.4

Figure 8. Basins of attracting domain in ξ − η–plane.
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(a) For ε1 = 0.2 & ε2 = 0.4

Figure 9. Basins of attracting domain in ξ − ζ–plane.

7. Periodic orbits

We also have plotted the periodic orbits for the motion of smallest body for the two values of

variation parameter ε2 (= 1 (blue) (10(a)) and 0.4 (dark yellow) (10(b))). To perform this, we have

numerically solved Eq. (2.4) through well known software mathematica and plotted the periodic orbits

in 3D. There is no periodic orbits when ε2 = 1 while we get the periodic orbits when ε2 = 0.4. i.e. in

the variable mass case we get the periodic orbits with period 8.87 units.

(a) For ε1 = 0 & ε2 = 1 (b) For ε1 = 0.2 & ε2 = 0.4

Figure 10. Periodic orbits in ξ − η − ζ–plane.

8. Stability states

Utilizing the method adopted by [29], we shall examine numerically the stability states for the

equilibrium points. Since L1, 2 and L3, 4 are symmetrical about η-axis as well as L5 and L6 are
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symmetrical about ξ-axis. Therefore examination of the stability of L1, 2, 5 are sufficient to show the

stability of all equilibrium points. And hence we can write the characteristic polynomial of the Eq.

(2.4) as:

λ6 +D5 λ
5 +D4 λ

4 +D3 λ
3 +D2 λ

2 +D1 λ+D0 = 0, (8.1)

where

D5 = − 3 ε1,

D4 = 4α21 ω
2 − (Vξ ξ)

0 − (Vη η)0 − (Vζ ζ)0 +
15

4
ε21,

D3 = 2 ε1 ((Vξ ξ)
0 + (Vη η)0 + (Vζ ζ)0 −

5

4
ε21 − 4α21 ω

2)

D2 =
15

16
ε41 +

3

2
ε21 (4α21 ω

2 − (Vξ ξ)
0 − (Vη η)0 − (Vζ ζ)0 )

− [ {4α21 ω2 − (Vξ ξ)
0 − (Vη η)0} (Vζ ζ)0

+ ((Vξ η)0)2 + ((Vξ ζ)0)2 + ((Vη ζ)0)2 − (Vξ ξ)
0 (Vη η)0 ],

D1 = −
3

16
ε51 +

ε31
2
{ (Vξ ξ)

0 + (Vη η)0 + (Vζ ζ)0 − 4α21 ω
2}

+ ε1 [((Vξ η)0)2 + ((Vξ ζ)0)2 + ((Vη ζ)0)2 − (Vξ ξ)
0 (Vη η)0

+ { 4α21 ω
2 − (Vξ ξ)

0 − (Vη η)0 } (Vζ ζ)0 ],

D0 =
1

64
ε61 +

1

16
ε41{4α21 ω2 − (Vξ ξ)

0 − (Vη η)0 − (Vζ ζ)0}

−
1

4
ε21 [{4α21 ω2 − (Vξ ξ)

0 − (Vη η)0 } (Vζ ζ)0 + ((Vξ η)0)2 + ((Vξ ζ)0)2

+ ((Vη ζ)0)2 − (Vξ ξ)
0 (Vη η)0 ] + ((Vξ ζ)0)2 (Vη η)0 + (Vξ ξ)

0 ((Vη ζ)0)2

+ ((Vξ η)0)2 (Vζ ζ)0 − (Vξ ξ)
0 (Vη η)0 (Vζ ζ)0 − (Vξ η)0 (Vξ ζ)0 (Vη ζ)0 .

(8.2)

The superscript zero represents the values of the derivatives of the potential function V correspond-

ing to the equilibrium point. For the constant mass case, the odd coefficients D5, D3 and D1 will be

zero . We have numerically solved Eq. (8.1) for the variable mass case corresponding to the equilib-

rium points and given in tables (1, 2, 3 and 4) from where we confirmed that all the equilibrium points
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either in-plane or out-of-plane are unstable because all the roots have either at-least one positive real

root or a positive real part of the complex roots.

Table 1. The nature of in-plane equilibrium points at ε1 = 0, ε2 = 1, α2 = 1 and β0 = 1.

Equi l ibr ium Point Roots
Nature

ξ − Co. η − Co.

± 1.0356396848 0.0000000000
± 2.6473050713 i

Unstable
± 2.8061479556 i

± 2.6234882293

± 0.1761807154 0.0000000000
±8.8544129960 i

Unstable
± 8.9276549619 i

± 12.2516795838

0.0000000000 ± 0.6894807659
± 1.3003188696 ± 1.9211530815 i

Unstable
0.0000000000 ± 2.0000000004 i

Table 2. The nature of in-plane equilibrium points at ε1 = 0.2, ε2 = 0.4, α2 = 1.2

and β0 = 0.95.

Equi l ibr ium Point Roots
Nature

ξ − Co. η − Co.

± 0.6288018960 0.0000000000
0.0999999999 ± 3.4738810655 i

Unstable
0.1000000016 ± 2.9690461144 i

± 2.6336942928

± 0.1092538595 0.0000000000
0.0999999999 ± 8.8249482704 i

Unstable
0.1000000438 ± 8.9883987793 i

− 11.9524281617

12.1524281617

0.0000000000 ± 0.3977956241
− 0.9888291999 ± 2.3431920592 i

Unstable
0.1000000000± 2.1908902302 i

1.1888291999± 2.3431920592 i
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Table 3. The nature of in-plane equilibrium points at ε1 = 0.2,ε2 = 0.4, α2 = 1.6 and

β0 = 0.95.

Equi l ibr ium Point Roots
Nature

ξ − Co. η − Co.

± 0.5923124748 0.0000000000
0.0999999999± 4.8786946978 i

Unstable
0.1000000002± 3.5550084695 i

- 2.7826632083

2.9826632083

± 0.1081823998 0.0000000000
0.0999999992± 8.8796742957 i

Unstable
0.1000000034± 9.3056717985 i

− 11.6181117601

11.8181117601

0.0000000000 ± 0.3447013956
0.0999999959± 2.2502672920 i

Unstable
0.0999999996 ± 4.0824376436 i

0.1000000049 ± 2.5298221281 i

Table 4. The nature of out-of-plane equilibrium points at ε1 = 0.2,ε2 = 0.4, α2 = 1.2

and β0 = 0.95.

Equi l ibr ium Point Roots
Nature

ξ − Co. ζ − Co.

0.0000000000 ± 3.8279383927
0.1000000000 ± 1.4202504309 i

Unstable
0.1000000003 ± 3.3797495688 i

- 0.0726801523

0.2726801523

9. Conclusion

The motion properties of the smallest body is investigated under the influence of three spherical

primaries placed on the same horizontal line. Out of these bodies, one is placed at the common

center (also taken as origin) of the other two primaries bodies which are placed at equal distance from

the origin. The third primary body is having the effects of solar radiation pressure and the smallest

body is varying its mass according to the Jeans law. We also have taken the perturbation effects of
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Coriolis and centrifugal forces. The determined perturbed equations of motion and the quasi-Jacobi

integral are shown the effects of the perturbations taken by us. After numerical evaluations from the

system of equations of motion, we found eight equilibrium points, out of these equilibrium points, six

are in-plane equilibrium points and two are out-of-plane equilibrium points. In the in-plane equilibrium

points, four are collinear i.e. lie on the ξ−axis and two are non-collinear i.e. lie on the η−axis as

well as two out-of-plane equilibrium points are lie on the ζ−axis. We observed from the figures for

the in-plane equilibrium points that as increase the values of the variation parameters (ε1 and ε2)

and the perturbation in centrifugal force, the locations of the equilibrium points are moving away and

towards the origin respectively. While the perturbation in Coriolis force is not affecting the location of

equilibrium points. We also observed that there is no out-of-plane equilibrium points in the constant

mass case while two out-of-plane equilibrium points are exists in the variable mass case. And as

increase the values of the variation parameters, the locations of the equilibrium points are moving

away from the origin. The allowed and prohibited regions of motion are illustrated corresponding to

each equilibrium points. Where the shaded regions shown the prohibited regions and white regions

corresponds to the allowed regions. From here we revealed that as increase the value of the variation

parameters, the shaded regions shrink. Next in the Poincaré surfaces of section, we observed that

surfaces are symmetrical about both the axes except the case of constant mass in the η-η̇-plane. We

also found the chaos at some places of the surfaces. In the basins of attraction section, it is found

that all the eight attracting points are extending to infinity. We also plotted the periodic orbits in

three-dimensions for both the cases (Constant mass case and variable mass case) and observed that

in the constant mass case orbits move spirally upward which is not periodic while in the variable mass

case the orbit is periodic with time period 8.87 units. Finally, we have examined the stability of all

equilibrium points (in-plane and out-of-plane) and found that all these equilibrium points are unstable.
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