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Abstract. In this paper, we introduce the concepts of invariant convergence in probability, statisti-

cally invariant convergence in probability, invariant convergence almost surely, invariant convergence

in distribution and invariant convergence in Lp- norm for sequences of random variables. Also, we

investigate some inclusion relations.

1. Introduction

In probability theory, we know several different notions of convergence of random variables. The

convergence of sequences of random variables to some limit random variable is an essential concept

in probability theory and its applications to statistics.

The natural density of a set K of positive integers is defined by

δ(K) := lim
n→∞

1

n
|{k ≤ n : k ∈ K}|,

where |{k ≤ n : k ∈ K}| denotes the number of elements of K not exceeding n.

The concept of statistical convergence of number sequences was introduced by Fast [5]. In [25]

Schoenberg established some basic features of statistical convergence and studied the notion as a

summability method.

A continuous linear functional ϕ on `∞, the space of real bounded sequences, is said to be a invariant

limit if

(a) ϕ(x) ≥ 0 when the sequence x = (xn) has xn ≥ 0 for all n,
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(b) ϕ(e) = 1 where e = (1, 1, 1, ...) and

(c) ϕ(xσ(m)) = ϕ(x) for all x ∈ l∞,

where σ : N+ → N+. A sequence x ∈ l∞ is said to be invariant convergent to ` if all of its invariant

limits are equal to `.

The mappings σ are one-to-one and such that σk(m) 6= m for all k,m ∈ N+ and σk(m) =

σ(σk−1(m). Thus ϕ extends the limit functional on the space of convergent sequences, in the sense

that ϕ(x) = lim x for all convergent sequences x . In the case σ is the translation mapping σ(m) =

m + 1, the σ-mean is often called a Banach limit and Vσ, the set of bounded sequences all of whose

invariant means are equal, is the set of almost convergent sequences.

It can be shown that

Vσ = {(xk) ∈ `∞ : lim
n→∞

1

n + 1

n∑
k=0

xσk(m) = ` uniformly in m}.

In this case, we write σ− lim xn = `. The set of all strongly invariant convergent sequences is denoted
by

[Vσ] = {(xk) ∈ `∞ : lim
n→∞

1

n + 1

n∑
k=0

|xσk(m) − `| = 0 uniformly in m}.

In [18], the concept of σ-statistically convergent sequence was introduced as follows:

A sequence x = (xk) is said to be σ-statistically convergent to ` if for everyε > 0,

lim
n→∞

1

n
|{k ≤ n : |xσk(m) − `| ≥ ε}| = 0

uniformly in m.

Throughout the paper, {Xn} will denote a sequence of random variables where each Xn is defined

on the same sample spaceW with respect to a given class of events S and a given probability function

P : S → R.
The concept of statistical convergence in probability of a sequence of random variables {Xn} was

introduced in [8] as follows:

A sequence of random variables {Xn} is said to be statistically convergent in probability to a random
variable X if for any ε, δ > 0

lim
n→∞

1

n
|k ≤ n : P (|Xk −X| ≥ ε) ≥ δ| = 0.

The reader can also see [9–11] for related works.

A sequence of random variables {Xn} is said to be strongly Cesàro summable in probability to a

random variable X if for each ε > 0,

lim
n→∞

1

n

n∑
k=1

P (|Xk −X| ≥ ε) = 0.

Let {Xn} be a sequence of random variables. We say {Xn} is bounded in probability, if for every

ε > 0, there exists Mε > 0 such that P (|Xn| > ε) < Mε for all n.
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For more information on the concepts covered in this article, see articles [1,2,8–12,27] on random

variables, articles [3–7], [13]- [26] on invariant convergence and statistical convergence.

2. Some new types of invariant convergence

Let denote the set of all σ mapping by M. Then⋂
{Vσ : σ ∈M}

is equal to the set of all convergent sequences (see [21]). Therefore, the definitions and theorems we

will give in this section are meaningful. The definitions we will give are more general, and the kinds of

convergence previously known for random variable sequences can be derived from the definitions we

give.

2.1. Invariant convergence in probability.

Definition 2.1. The sequence {Xn} is said to be invariant convergent in probability to a random

variable X if for any ε > 0

lim
n→∞

1

n

n∑
k=1

P (|Xσk(m) −X| ≥ ε) = 0

uniformly in m or

lim
n→∞

1

n

n∑
k=1

P (|Xσk(m) −X| < ε) = 1

uniformly in m. In this case, we write σ − limP (|Xn − X| ≥ ε) = 0 or σ − limP (|Xn − X| < ε) = 1.

The class of all sequences of random variables which are invariant convergent in probability will be

denoted by V Pσ .

⋂{
V Pσ : σ ∈M

}
is equal to the set of all random variable sequences which are convergent in probability.

2.2. Statistically invariant convergence in probability.

Definition 2.2. The sequence {Xn} is said to be statistically invariant convergent in probability to a

random variable X if for any ε, δ > 0

lim
n→∞

1

n
|k ≤ n : P (|Xσk(m) −X| ≥ ε) ≥ δ| = 0

uniformly in m. In this case, we write Xn → X(SPσ ). The class of all sequences of random variables

which are statistically invariant convergent in probability will be denoted by SPσ .

⋂
{SPσ : σ ∈M}

is equal to the set of all random variable sequences which are statistically convergent in probability.



4 Int. J. Anal. Appl. (2022), 20:42

Theorem 2.1. If a sequence of random variables {Xn} is strongly invariant convergent in probability

to X, then {Xn} is statistically invariant convergent in probability to X.

Proof. Suppose that {Xn}is strongly invariant convergent in probability to X . For an arbitrary ε > 0, δ,

we get

1

n

n∑
k=1

P (|Xσk(m) −X| ≥ ε)

=
1

n


n∑
k=1

P (|X
σk (m)

−X|≥ε)≥δ

P (|Xσk(m) −X| ≥ ε) +
n∑
k=1

P (|X
σk (m)

−X|≥ε)<δ

P (|Xσk(m) −X| ≥ ε)


≥
1

n

n∑
k=1

P (|X
σk (m)

−X|≥ε)≥δ

P (|Xσk(m) −X| ≥ ε)

≥
δ

n
|{k ≤ n : P (|Xσk(m) −X| ≥ ε) ≥ δ}|

for each m. Hence, we have

lim
n→∞

1

n
|{k ≤ n : P (|Xσk(m) −X| ≥ ε) ≥ δ}| = 0

uniformly in m, that is, {Xn} is statistically invariant convergent in probability to X. �

Theorem 2.2. If a sequence of random variables {Xn} is statistically invariant convergent in probability
to X and bounded in probability, then {Xn} is strongly invariant convergent in probability to X.

Proof. Suppose that {Xn} is statistically invariant convergent in probability to X and {Xn} is bounded,
say P (|Xσk(m) −X| > ε) < Mε for all m and k . Given ε, δ > 0, we get

1

n

n∑
k=1

P (|Xσk(m) −X| ≥ ε)

=
1

n

n∑
k=1

P (|X
σk (m)

−X|≥ε)≥δ

P (|Xσk(m) −X| ≥ ε) +
1

n

n∑
k=1

P (|X
σk (m)

−X|≥ε)<δ

P (|Xσk(m) −X| ≥ ε)

≤
ε

n

n∑
k=1

P (|X
σk (m)

−X|≥ε)≥δ

1 +
δ

n

n∑
k=1

P (|X
σk (m)

−X|≥ε)<δ

1

≤
Mε

n
|{k ≤ n : P (|Xσk(m) −X| ≥ ε)}|+

δ

n
|{k ≤ n : P (|Xσk(m) −X| ≥ ε)}|

for each m, hence we have

lim
n→∞

1

n

n∑
k=1

P (|Xσk(m) −X| ≥ ε) = 0

uniformly in m. �
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Theorem 2.3. Suppose that Xn is invariant convergent in probability to a random variable X and that

f is a continuous function. Then {f (Xn)} is invariant convergent in probability to f (X).

Proof. If f is continuous, given ε > 0 there exists δ > 0 such that |f (Xn)−f (X)| < ε for |Xn−X| < δ.

Since {Xn} is invariant convergent in probability to the random variable X, then

lim
n→∞

1

n

n∑
k=1

P (|Xσk(m) −X| < δ) = 1

uniformly in m. Thus,

lim
n→∞

1

n

n∑
k=1

P (|f (Xσk(m))− f (X)| < ε) = 1

uniformly in m. �

2.3. Invariant convergence almost surely. We say an event happens “surely” if it always happens.

We say an event happens “almost surely” if it happens with probability 1. Almost sure convergence is

one of the main modes of stochastic convergence. It may be viewed as a notion of convergence for

random variables that’s analogous to, but not the same as, the notion of pointwise convergence for

real functions. Now we will introduce invariant convergent almost surely random variable sequence.

Definition 2.3. We say that a sequence of random variables {Xn} is invariant convergent almost

surely to X if

P ( lim
n→∞

1

n

n∑
k=1

Xσk(m) = X uniformly in m) = 1

that is,

P (σ − limXn = X) = 1.

We will denote the set of all sequences of random variables {Xn} which are invariant convergent

almost surely by ASσ.

⋂
{ASσ : σ ∈M}

is equal to the set of all random variable sequences which are convergent almost surely.

Theorem 2.4. If a sequence of random variables {Xn} is invariant convergent almost surely to a

random variable X, then {Xn} is invariant convergent in probability to X.

Proof. Let {Xn} be invariant convergent almost surely to a random variable X and ε > 0. Then for

every s ≥ n, we can write

P (|Xn −X| < ε) ≥ P (|Xs −X| < ε). (2.1)

By considering the original sample space, we can write

{t : |Xs(t)−X(t)| > ε, ∀s ≥ n} ⊂ {t : |Xn(t)−X(t)| > ε}.
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Since {Xn} is invariant convergent almost surely to a random variable X, for every s ≥ n, we have

σ − limP (|Xs −X| < ε) = 1.

If we take σ − l imits of in (2.1), ∀s ≥ n, we get

σ − limP (|Xn −X| < ε) ≥ σ − limP (|Xs −X| < ε) = 1.

Thus, σ − limP (|Xn −X| < ε) = 1. �

2.4. Invariant convergence in distribution.

Definition 2.4. We say that a sequence of random variables {Xn} is invariant convergent in distribution
to a random variable X if

lim
n→∞

1

n

n∑
k=1

FX
σk (m)

= FX(x)

uniformly in m, that is

P − limFXn(x) = FX(x),

for all x at which FX(x) is continuous. The set of all sequences of random variables {Xn} which are

invariant convergent in distribution will be denoted IDσ.

⋂
{IDσ : σ ∈M}

is equal to the set of all random variable sequences which are convergent in distribution.

Theorem 2.5. If a sequence of random variables {Xn} is invariant convergent in distribution to a

number a, then {Xn} is invariant convergent in probability to a.

Proof. Since {Xn} is invariant convergent in distribution to the number a, for any ε > 0, we have

σ − limFXn(a − ε) = 0, σ − limFXn(a +
ε

2
) = 1.

We can write for any ε > 0,

σ − limP (|Xn − a| ≥ ε) = σ − lim[P (Xn ≤ a − ε) + P (Xn ≥ a + ε)]

= σ − limP (Xn ≤ a − ε) + σ − limP (Xn ≥ a + ε)

= σ − limFXn(a − ε) + σ − limP (Xn ≥ a + ε)

= 0 + σ − limP (Xn ≥ a + ε) (since σ − limFXn(a − ε) = 0)

≤ σ − limP (Xn > a +
ε

2
)

= 1− σ − limFXn(a +
ε

2
) (since σ − limFXn(a +

ε

2
) = 1)

= 0.
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Since σ− limP (|Xn− a| ≥ ε) ≥ 0, we conclude that σ− limP (|Xn− a| ≥ ε) = 0, for all ε > 0, which
means {Xn} is invariant convergent in probability to a. �

2.5. Invariant convergence in pth mean.

Definition 2.5. Let p ≥ 1 be a fixed number. A sequence of random variables {Xn} is invariant

convergent in the pth mean or in the Lp-norm to a random variable X if

lim
n→∞

1

n

n∑
k=1

E(|Xσk(m) −X|p) = 0

uniformly in m, that is,

σ − limE(|Xn −X|p) = 0.

If p = 2, it is called the mean-square invariant convergence. The set of all invariant convergent in the

pth mean or in the Lp-norm will be denoted by Epσ.

⋂
{Epσ : σ ∈M}

is equal to the set of all random variable sequences that are convergent in the pth mean or in the

Lp-norm.

Theorem 2.6. If a sequence of random variables {Xn} is invariant convergent in the Lp, (p ≥ 1)-
norm to X, then {Xn} is invariant convergent in probability to X.

Proof. For any ε > 0 and for each m, we can write

P (|Xn −X| ≥ ε) = P (|Xn −X|p ≥ εp)( since p ≥ 1)

≤
E(|Xn −X|p)

εp
by Markov’s inequality

and
1

n

n∑
k=1

P (|Xσk(m) −X| ≥ ε) ≤
1

n

n∑
k=1

E(|Xσk(m) −X|p)
εp

Since by assumption limn→∞ 1n
∑n
k=1 E(|Xσk(m) −X|p) uniformly in m, we get

σ − limP (|Xn −X| ≥ ε) = 0,

for all ε > 0. �

In case σ(m) = m + 1, we have the concepts of almost convergence in probability, statisti-

cally almost convergence in probability, almost convergence almost surely, almost convergence in

distribution and almost convergence in Lp-norm from the Definitions 2.1, 2.2, 2.3, 2.4 and 2.5,

respectively. In addition, the inclusion relations in the Theorems 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6 are also

valid between these concepts. These definitions and theorems have not been seen elsewhere until now.
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