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Abstract. In this paper, we use the concept of endomorphisms and bi-endomorphisms as a model to

create tri-endomorphisms on of BCH-algebras. We introduce the concepts of left tri-endomorphisms,

central tri-endomorphisms, right tri-endomorphisms, and complete tri-endomorphisms of BCH-algebras

and provide some properties. In addition, we obtain the properties between those tri-endomorphisms

and some subsets of BCH-algebras.

1. Introduction

The algebraic structures of BCK-algebras and BCI-algebras were studied by Iséki and his colleague

[4, 5]. In 1983, Hu and Li [3] generalized a new class of algebras from BCI-algebras, namely, a BCH-

algebra. Next, Bandru and Rafi [1] introduced a new algebra, called a G-algebra. BCH-algebras are

also being studied extensively later, [2, 3].

In this paper, we use the concept of endomorphisms and bi-endomorphisms as a model to create

tri-endomorphisms. We introduce the concepts of left tri-endomorphisms, central tri-endomorphisms,

right tri-endomorphisms, and complete tri-endomorphisms of BCH-algebras and provide some proper-

ties.

Before studying, we will review the definitions and well-known results.
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Definition 1.1. [3] A BCH-algebra is a non-empty set X with an element 0 and a binary operation

∗ satisfying the following conditions:

(BCH1) (∀x ∈ X)(x ∗ x = 0),
(BCH2) (∀x, y ∈ X)(x ∗ y = 0, y ∗ x = 0⇒ x = y),
(BCH3) (∀x, y , z ∈ X)((x ∗ y) ∗ z = (x ∗ z) ∗ y).

In a BCH-algebra X = (X, ∗, 0), the binary relation ≤ on X is defined as follows:

(∀x, y ∈ X)(x ≤ y ⇔ x ∗ y = 0).

Example 1.1. Let X = {0, a, b, c} with the following Cayley table as follows:

∗ 0 a b c
0 0 0 0 0

a a 0 c c

b b 0 0 b

c c 0 0 0

Then X = (X, ∗, 0) is a BCH-algebra.

Proposition 1.1. [2,3] Let X = (X, ∗, 0) be a BCH-algebra. Then the following hold: for all x, y ∈ X,

(BCH4) (∀x, y ∈ X)(x ∗ (x ∗ y) ≤ y),
(BCH5) (∀x ∈ X)(x ∗ 0 = 0⇒ x = 0),
(BCH6) (∀x, y ∈ X)(0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)),
(BCH7) (∀x ∈ X)(x ∗ 0 = x),
(BCH8) (∀x, y ∈ X)((x ∗ y) ∗ x = 0 ∗ y),
(BCH9) (∀x, y ∈ X)(x ≤ y ⇒ 0 ∗ x = 0 ∗ y).

For a BCH-algebra X = (X, ∗, 0), some interesting subsets of X play a significant rule in the

investigation of its properties described below.

Definition 1.2. A non-empty subset Y of a BCH-algebra X = (X, ∗, 0) is called a subalgebra of X if

x ∗ y ∈ Y for all x, y ∈ Y . A non-empty subset I of a BCH-algebra X = (X, ∗, 0) is called an ideal of

X if

(1) 0 ∈ I,
(2) (∀x, y ∈ X)(x ∗ y ∈ I, x ∈ I ⇒ y ∈ I).

2. Main results

In this section, we introduce the concepts of left tri-endomorphisms, central tri-endomorphisms,

right tri-endomorphisms, and complete tri-endomorphisms of BCH-algebras as follows.

Definition 2.1. Let X = (X, ∗, 0) be a BCH-algebra. A mapping f : X3 → X is called
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(1) a left tri-endomorphism on X if (∀w, x, y , z ∈ X)(f (x ∗ w, y, z) = f (x, y , z) ∗ f (w, y, z)),
(2) a central tri-endomorphism on X if (∀w, x, y , z ∈ X)(f (x, y ∗w, z) = f (x, y , z) ∗ f (x, w, z)),
(3) a right tri-endomorphism on X if (∀w, x, y , z ∈ X)(f (x, y , z ∗ w) = f (x, y , z) ∗ f (x, y , w)),
(4) a complete tri-endomorphism on X if (∀a, b, c, x, y , z ∈ X)(f (x ∗ a, y ∗ b, z ∗ c) = f (x, y , z) ∗
f (a, b, c)).

Example 2.1. In Example 1.1, we define fl : X3 → X by

fl(x, y , z) =

x if y = z = 0,

0 otherwise.

Then fl is a left tri-endomorphism on X.

Proposition 2.1. Let X = (X, ∗, 0) be a BCH-algebra and fl be a left tri-endomorphism on X. Then

(1) (∀y , z ∈ X)(fl(0, y , z) = 0),
(2) (∀w, x, y , z ∈ X)(x ≤ w ⇒ fl(x, y , z) ≤ fl(w, y, z)).

Proof. (1) Let y , z ∈ X. Then, by BCH1, we have fl(0, y , z) = fl(0∗0, y , z) = fl(0, y , z)∗fl(0, y , z) =
0.

(2) Let w, x, y , z ∈ X be such that x ≤ w . Then, by (1), we have 0 = fl(0, y , z) = fl(x ∗w, y, z) =
fl(x, y , z) ∗ fl(w, y, z). Hence, fl(x, y , z) ≤ fl(w, y, z). �

Similarly, the properties of central and right tri-endomorphisms are easily obtained.

Proposition 2.2. Let X = (X, ∗, 0) be a BCH-algebra and fc be a central tri-endomorphism on X.

Then

(1) (∀x, z ∈ X)(fc(x, 0, z) = 0),
(2) (∀w, x, y , z ∈ X)(y ≤ w ⇒ fc(x, y , z) ≤ fc(x, w, z)).

Proposition 2.3. Let X = (X, ∗, 0) be a BCH-algebra and fr be a right tri-endomorphism on X. Then

(1) (∀x, y ∈ X)(fr (x, y , 0) = 0),
(2) (∀w, x, y , z ∈ X)(z ≤ w ⇒ fr (x, y , z) ≤ fr (x, y , w)).

Theorem 2.1. Let X = (X, ∗, 0) be a BCH-algebra and f be a complete tri-endomorphism on X.

Then

(1) f (0, 0, 0) = 0,

(2) if S is a subalgebra of X, then f (S3) is also a subalgebra of X,

(3) if S is an ideal of X and f is bijective, then f (S3) is also an ideal of X,

(4) if f is a left tri-endomorphism on X, then f (x, y , z) ∗ f (x, 0, 0) = 0 for any x, y , z ∈ X,
(5) if f is a central tri-endomorphism on X, then f (x, y , z) ∗ f (0, y , 0) = 0 for any x, y , z ∈ X,
(6) if f is a right tri-endomorphism on X, then f (x, y , z) ∗ f (0, 0, z) = 0 for any x, y , z ∈ X,
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(7) if f is a left and right (central and right, left and central) tri-endomorphism on X, then

f (x, y , z) = 0 for any x, y , z ∈ X, i.e., f is the zero map.

Proof. (1) By BCH1, we have f (0, 0, 0) = f (0 ∗ 0, 0 ∗ 0, 0 ∗ 0) = f (0, 0, 0) ∗ f (0, 0, 0) = 0.
(2) Suppose that S is a subalgebra of X. Let a, b ∈ f (S3). Then there exist

(x1, y1, z1), (x2, y2, z2) ∈ S3 such that a = f (x1, y1, z1) and b = f (x2, y2, z2). Thus a ∗ b =
f (x1, y1, z1) ∗ f (x2, y2, z2) = f (x1 ∗ x2, y1 ∗ y2, z1 ∗ z2) ∈ f (S3). Hence, f (S3) is a subalgebra of

X.

(3) Suppose that S is an ideal of X and f is bijective. Since 0 ∈ S and by (1), we have 0 =

f (0, 0, 0) ∈ f (S3). Assume that x ∗y ∈ f (S3) and x ∈ f (S3). There exist (x1, y1, z1), (x2, y2, z2) ∈ S3

such that x ∗ y = f (x1, y1, z1) and x = f (x2, y2, z2). Since f is surjective, there exists (a, b, c) ∈ X3

such that y = f (a, b, c). Thus f (S3) 3 f (x1, y1, z1) = x ∗ y = f (x2, y2, z2) ∗ f (a, b, c) = f (x2 ∗ a, y2 ∗
b, z2 ∗ c). Since f is injective, we have x2 ∗ a, y2 ∗ b, z2 ∗ c ∈ S. Since S is an ideal of X, we get

a, b, c ∈ S. Thus y = f (a, b, c) ∈ f (S3). Hence, f (S3) is an ideal of X.

(4)-(6) It is obvious from Propositions 2.1-2.3.

(7) Suppose that f is a left and right tri-endomorphism on X. Let x, y , z ∈ X. Then, by Propositions
2.1 and 2.3, BCH1, BCH7 0 = f (0, y , z) = f (x∗x, y ∗0, z∗0) = f (x, y , z)∗f (x, 0, 0) = f (x, y , z)∗0 =
f (x, y , z). Hence, f is the zero map on X. �

Let Tl(X) (resp., Tc(X), Tr (X) and T (X)) be the set of all left tri-endomorphisms (resp., right,

central and complete tri-endomorphisms) on a BCH-algebra X = (X, ∗, 0). We define an operation ?

on Tl(X) by (∀x, y , z ∈ X)((f ? g)(x, y , z) = f (x, y , z) ∗ g(x, y , z)). Let f ∈ Tl(X) and x, y , z ∈ X.
Then (f ? f )(x, y , z) = f (x, y , z) ∗ f (x, y , z) = 0. This means that f ? f = 0X , where 0X : X3 → X is

a function that maps all members to 0. Let f , g ∈ Tl(X) be such that f ?g = 0X and g?f = 0X . Then

for all x, y , z ∈ X, 0 = (f ? g)(x, y , z) = f (x, y , z) ∗ g(x, y , z) and 0 = (g ? f )(x, y , z) = g(x, y , z) ∗
f (x, y , z). Since g(x, y , z), f (x, y , z) ∈ X, we have f (x, y , z) = g(x, y , z) for all x, y , z ∈ X. Hence,
f = g. Let f , g, h ∈ Tl(X) and x, y , z ∈ X. Then ((f ? g) ? h)(x, y , z) = (f ? g)(x, y , z) ∗ h(x, y , z) =(
f (x, y , z)∗g(x, y , z)

)
∗h(x, y , z) =

(
f (x, y , z)∗h(x, y , z)

)
∗g(x, y , z) = (f ?h)(x, y , z)∗g(x, y , z) =

((f ? h) ? g)(x, y , z). Hence, (f ? g) ? h = (f ? h) ? g.

Theorem 2.2. (Tl(X), ?, 0X), (Tc(X), ?, 0X), (Tr (X), ?, 0X), and (T (X), ?, 0X) are BCH-algebras.

Let X = (X, ∗, 0) be a BCH-algebra. We define the binary operation � on X3 as follows:

(∀(a, b, c), (x, y , z) ∈ X3)((a, b, c) � (x, y , z) = (a ∗ x, b ∗ y , c ∗ z)). Then X3 = (X, �, (0, 0, 0))
is a BCH-algebra.

Theorem 2.3. Let X = (X, ∗, 0) be a BCH-algebra and S1, S2, S3 be subsets of X. Then

(1) S1 × S2 × S3 is a subalgebra of X3 if and only if S1, S2 and S3 are subsets of X,

(2) S1 × S2 × S3 is an ideal of X3 if and only if S1, S2 and S3 are ideals of X.



Int. J. Anal. Appl. (2023), 21:43 5

Proof. (1) Suppose that S1 × S2 × S3 is a subalgebra of X3. Firstly, we will show that S1 is a

subalgebra of X. Let a, b ∈ S1. Let x ∈ S2 and u ∈ S3. Then (a, x, u), (b, x, u) ∈ S1 × S2 × S3.
Thus (a ∗b, 0, 0) = (a ∗b, x ∗ x, u ∗u) = (a, x, u)� (b, x, u) ∈ S1×S2×S3, that is, a ∗b ∈ S1. Hence,
S1 is a subalgebra of X. On the other hand, we can show that S2 and S3 are subalgebras of X.

Conversely, let (x, y , z), (a, b, c) ∈ S1 × S2 × S3. Then x ∗ a ∈ S1, y ∗ b ∈ S2, and z ∗ c ∈ S3, so
(x, y , z) � (a, b, c) = (x ∗ a, y ∗ b, z ∗ c) ∈ S1 × S2 × S3. Hence, S1 × S2 × S3 is a subalgebra of X3.

(2) Suppose that S1×S2×S3 is an ideal of X3. Since (0, 0, 0) ∈ S1×S2×S3, we have 0 ∈ Si for all
i = 1, 2, 3. Assume that a ∗x ∈ S1 and a ∈ S1. Let b ∈ S2 and c ∈ S3. Then (a, b, c) ∈ S1×S2×S3
and (x, b, c) ∈ X3. Thus (a, b, c) � (x, b, c) = (a ∗ x, b ∗ b, c ∗ c) = (a ∗ x, 0, 0) ∈ S1×S2×S3. Since
S1 × S2 × S3 is an ideal of X3, we have (x, b, c) ∈ S1 × S2 × S3, that is, x ∈ S1. Hence, S1 is an

ideal of X. Similarly, we can show that S2 and S3 are ideals of X.

Conversely, suppose that S1, S2 and S3 are ideals of X. Since 0 ∈ Si for all i = 1, 2, 3, we have

(0, 0, 0) ∈ S1×S2×S3. Assume that (a, b, c) ∗ (x, y , z) ∈ S1×S2×S3 and (a, b, c) ∈ S1×S2×S3.
We get (a ∗ x, b ∗ y , c ∗ z) ∈ S1 × S2 × S3. Since a ∗ x, a ∈ S1, we have x ∈ S1. Moreover, we can

obtain that y ∈ S2 and z ∈ S3. This implies that (x, y , z) ∈ S1 × S2 × S3. Hence, S1 × S2 × S3 is
an ideal of X3. �
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