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Abstract. This study establishes the concept of interval valued intuitionistic fuzzy (InVInF) B-filters
on B-algebras and a few of its related properties are investigated. Some compelling results of interval
valued fuzzy B-filters have been examined. Further, the notions of products and strong B-filters are
also introduced. In addition that, the level set and homomorphism of interval valued intuitionistic fuzzy
B-filters are too discussed. Furthermore, we enacted that the intersection between two interval valued

intuitionistic fuzzy G—filters is again an interval valued intuitionistic fuzzy 3-filter.

1. Introduction

In 2002, Neggers et al. [12] proposed the idea of a (B-algebra which is an algebraic structure with
two operations. The concepts of fuzzy positive implicative and fuzzy associative filters of lattice
implication algebras have been initiated in [13,14]. Further, the authors in [13, 14] have demonstrated

that every fuzzy associative filter is a fuzzy associative filter and that every fuzzy positive implicative
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filter is a fuzzy implicative filter. The equivalent conditions for both fuzzy positive implicative filters
and fuzzy associative filters were also provided. Xu et al. [20] established the thought of intuitionistic
fuzzy implicative filters in lattice implication algebras. Jun et al. [8] proposed the concept of fuzzy BCI-
subalgebras with interval valued membership functions. In 2011, Ghorbani [4] proposed the notion of
intuitioistic fuzzy filters of residuated lattices. They have illustrated that a residual lattice’s collection
of all intuitionistic fuzzy filters is a complete lattice and identified its distributive sublattices. Zadeh [21]
developed an interval valued fuzzy set was used to extend a fuzzy set (ie. a fuzzy set with an interval
valued membership function). An i-v fuzzy set is an interval valued fuzzy set that can be used in
various algebraic structures. Biswas et al. [2] created fuzzy subgroups with interval membership values
in 1994. Hoo [9] applied the concepts of filters and ideals in BCl-algebras in 1991. In 2015, Hemavathi
et al. [5—7] discussed interval valued fuzzy B-subalgebras and also applied the concept to intuitionistic
fuzzy sets. Jun et al. [15] introduced foldness of bipolar fuzzy sets and its application in BCK/BCI-
algebras. Takallo et al. [19] discussed the concept of multipolar fuzzy p-ideals of BCl-algebras. The
concept of multipolar intuitionistic fuzzy hyper BCK-ideals in hyper BCK-algebras has been developed
by Seo et al. [16]. Borzooei et al. [3] focused on multipolar intuitionistic fuzzy B-algebras. A new
perception of cubic multi-polar structures on BCK/BCl-algebras was approached by Al-Masarwah et
al. [1]. In [10], the authors invented a mathematical model for nonlinear optimization which attempts
membership functions to address the uncertainties. Muhiuddin et al. [11] applied the theory of linear
Diophantine fuzzy set into BCK/BCl-algebras. Sujatha et al. [17, 18] introduced fuzzy filters on 3-
algebras and also developed the concept of intuitiointic fuzzy filters on (-algebras. With all of this in
mind, this paper establishes the idea of interval valued fuzzy B-filters on B-algebras and demonstrate

few of its intriguing aspects.

2. Preliminares

This section outlines some of the most important definitions and examples relevant to the study.

Definition 2.1. A (-algebra is a non-empty set [ with two binary operations + and — and a constant
0 fulfills the following axioms:

(1) 00 —0 = oo

(2) (0O—pd)+00=0

(3) (00 —yb) — 20 = 0 — (26 + y9)
for all gd,y0,2z0 € T.

Definition 2.2. Let f be a mapping from a 3- algebra [ to a 3- algebra 7", then f is referred as

homomorphism, if

(1) f(ed +y6) = f(e) + f(yd)
(2) f(ed —yd) = f(ed) — F(¥0)
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for all @b, yd € I'.

Definition 2.3. A (-subalgebra = on a (3-algebra I is referred as B-filter, if
(1) 06 A Y6 = 06 + (05 + yo) €
(2) 007 yd =06 — (00 — yd) € =
for all g9, yd € =.

Definition 2.4. A (3-subalgebra = on a (3-algebra I is referred as fuzzy B-filter, if
(1) e=(ed A yb) = min{e=(0d), e=(eé + y4)} and
e=(00 v y6) = min{e=(06), e=(ed — y0)}
(2) e=(y6) = e=(0d) if 06 < y6
for all b, yd € =.

3. Interval Valued Fuzzy B-Filters

The concept of an Interval valued fuzzy (InVF) (-filter on a (-subalgebra is introduced in this

section.

Definition 3.1. An InVF (B-subalgebra = on a (G-algebra [ is referred as an InVF fuzzy B-filter, it
satisfies
(1) €=(ed A yb) > rmin{e=(0d),€=(ed + y4)} and
€=(e0 v y6) = rmin{e=(0d) €=(0d — y0)}
(2) e=(vd) = e=(0d) if 06 < b
for all gd, yd € =.

Example 3.1. Consider a B-algebra I = {0, 1,72, v3} with two binary operations + and — and a
constant 0 defined on [ with the Cayley's table:

+ 10 (M |72|7 B e G e PR B
0/0]0]01|Q0 0/0]0]01|O0
Y| MMM Y| | MMM
Y2 010 72| Y2 Y2 [ V2| Y2 | V2
Y33 |3 | V3|3 Y33 | V3| V3|73
Then (I',+,—,0) is a B-algebra. Thus = = {~v1,73} is a B-filter on . We have = is an InVF

B-subalgebra, with interval membership function

_ 03,05]: 08 =m
e=(0d) = :
[0.4,0.6] : 00 =13

Then it is observed that, = is an InVF B-filter on [".
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Example 3.2. From the Example 3.1, = is an InVF B-subalgebra, define by the membership function
[0.2,0.6]: 00=m
€=(00) =41[0.1,04]: 06=">-
[0.3,0.5] 1 00 =13
Then it is observed that, = is not an InVF S-filter on [ because €=(y2) > €=(v1) = [0.1,0.4] #
[0.2,0.6].

Lemma 3.1. /f =1 and =» are two InVF B-filters on I, then so is =1 N =».

Proof. For gd,yd € I,
€=,n=,(00 & y6) = rmin{ez, (06 A y6), €=,(06 A yo)}
> rmin{rmin{e=,(00), €=, (00 + yd)}, rmin{e=,(00),€=,(00 + yd)}}
> rmin{rmin{€=,(00),€=,(00)}, rmin{e=, (06 + y0),€=,(00 + y0)}}
= rmin{ez,n=z,(06), €z,n=,(00 + yd)}.
Similarly, €=,n=,(00 7 y0) > rmin{é=,n=,(00), €=,n=,(00 — ¥d)}. Hence =1 N =5 is an InVF B-filter
of I =

Theorem 3.1. Every B-filter in InVF is also a B-subalgebra in InVF.

Proof. This proof is self-evident, as it follows clearly from the definition of the InVF B-filter. Every
InVF B-subalgebra, on the other hand, does not have to be an InVF G-filter. OJ

Theorem 3.2. For an InVF B-filter € of I, we have €=(pd A y§) > €=(00) and €=(pd 7 y0) > €=(00)
where g6 < y9.

Proof. Assume that €= is an InVF G-filter of [". Let gd, yd € ['. Then

€=(00 A y6) = €=(0d + (00 + y¥9))
> rmin{e=(06),€=(0d + y&)}
= rmin{e=(0d), rmin{e=(0d),e=(yd)}}
(because InVF B-filter is an InVF B-subalgebra)
= rmin{e=(00), €=(0d)}
(because 0§ < y& = e=(y8) > e=(gd))
=€=(09).
Similarly, €=(06 7 y0) > €=(e9). -
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Definition 3.2. Consider an InVF B-filter €= of a B-subalgebra /. For [s1,s:] € D[0, 1], the set
€= = {00 € [ : €=(0)0 > [s1, 2]} is referred to as a level set of an InVF B-filter €= of .

Theorem 3.3. An InVF subset = of a B-algebra " is an InVIF B-filter if and only if for any t € D[0, 1]
the t—InVF level subset =3 = {00 € I : =(0d) > t} is either a B-filter or =3 # 0.

Proof. For an InVF level subset of = in I, = # (. Then 04, y0 € = =(06) > t. Now,

=(0d A y) = =(ed + (e + y9))
> rmin{=(ed), =(ed + )}
= rmin{=(0d), rmin{=(06),=(yd)}}
= rmin{t, rmin{t, t}}
=t
This implies that pd A yé € =¢. Similarly, pd <7 y6 € =¢. Then = is a B-filter of [". Suppose that
=7 is a B-filter of [", on the other hand. For g4, yd € I, 00 A yd and 0d 7 yd € =%, this implies that

(0 Ayd) > tand =(ed7yd) > t =(00 Ayd) = =(00+ (00 +y0)) > t = rmin{=(0d), =(00 +yd)}.
Similarly, =(gd 7 yd) > t. This proved = is an InVF B-filter. O

Theorem 3.4. Consider an onto B-algebra homomorphism f from I to V. If =5 is a InVF B-filter of

Y, hence its inverse image f~1(=5) is again an InVF B—filter on I".
Proof. Let =5 be an InVF B-filter of Y. For any 06, yé € I',

f1(e=,(06 A y6)) = (e, (00 + (06 + ¥9)))
= €=,(f(ed + (08 + y9)))
— &=,(f(06)5 + f (06 + 6))
> rmin{e=, (f(ed)). €=, (f(0d + yd))}
= rmin{f~*(ez,(0d)), f " (e=,(0d + 9))}.
Similarly, £=(e=, (06 v ¥8)) > rmin{f1(e=,(d)), f~1(e=,(od — y5))}. Let 6,76 € I', so that

00 > y&. Subsequently, =5 is an InVF G-filter, e=,(f(y8)) > e=,(f(0d)) = f1(€s(0d)) such that
F1(e=,(¥0)) > F1(e=,(00)). O

3.1. Products on InVF g3-Filters on 3-Algebras. The basic concepts and examples of product on

InVF B-filters settings are covered in this section.

Theorem 3.5. An InVF B-filter is the Cartesian product of any two InVF (B-filters.
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Proof. Take b = (001, 002) & y6 = (y01,y02) € [ xY & T = (€=, x €=,). So
0=,x5,(00 A yb) =€z, ((001, 062) A (61, y62))
= (€=, x €z,){((ed1, 002) + ((0d1, 052) + (¥01,y02)))}
> rmin{e=, (061 + (001 + y61)),€=,(002 + (002 + yd2))}
= rmin{rmin{€=,(061), €=, (001 + y01)}, rmin{e=,(0d2), €=, (00> + yd2)}}
= rmin{rmin{é=,(ed1), €=,(0d2)}, rmin{e=, (ed1 + yb1), €=,(0d2 + y62)}}
= rmin{o=,x=,(001, 002), 0=, x=,((0d1, 062) + (¥01, ¥92))}
= rmin{o=,x=,(00),0=,x=,(6 + yd)}.
Similarly, o=, x=,(00 7 ¥0) > rmin{o=,x=,(00),0=,x=,(00 — ¥d)}. This proved that =; x =5 is also
an InVF G-filter. O

Theorem 3.6. Let [ and T be two (3-algebras. Let =13 and =»>s be InVF [B-filters on [ x Y.
Then(Z17 X =23) Is also a B-filter, if t >3,

Proof. Take pd = (001, 002) & y6 = (y01,y02) € [ XY & 7 = (éz, x €=,) if t > 5. Using above
theorem, o(=17 X =23)(00 A y§) >'5. Similarly, 0(=17 x =25)(0d v ¥0) > 5. O
3.2. InVF Strong B-Filters. Beginning with a description and some examples, this section introduces

the notion of an InVF strong B-filter on a 3-subalgebra.

Definition 3.3. An InVF (B-subalgebra = of a B-algebra is referred as an InVF strong B-filter, if
(1) e=(ed & yb) = e=(0d v y6)
(2) EE()\/(S) 2 Eg(gé) /f95 S )\/(5

for all gd, yd € =.

Example 3.3. For a B-algebra I = {0, n1, M2, M3} be a with two binary operations + and — constant

0 and defined on I, we have a Cayley's table

+ [0 |m|m|ns — [0 m|m | m
000|000 0j]0|0|0]O0
MM |M|M|m MM |M|M|Mm
m | 0|0 |n | ms MM |m|m|m
M3 | M3 | M3 |73 |73 M3 | M3 | M3 |73 |M3
Then (I, +,—,0) is a B-algebra. Thus = = {n1,n3} is a B-filter on . Defining the membership

function for an InVF B-subalgebra = as

[0.2,05]: 00=m
03,06]: 06=mn3

€=(00) =



Int. J. Anal. Appl. (2022), 20:50 7

Then it is observed that, = is an InVF strong B-filter on .
Theorem 3.7. Every InVF strong B-filter is also an InVF B3-subalgebra.
It is not necessary for the converse part of the theorem to be correct.

Example 3.4. For a (3-algebra I = {0, 7n1, M2, M3} with two binary operations + and — and constant

0 defined on I, we have a Cayley's table

+ 10 | m|m|n =10 |m | m|mns
0O/l0|0]0]|O0 0O|l0|j0]0]|O0
Mm{m|{m|m3| 0 M |m|m|m|m
Mm{m |0 |m|ns M |Mm|Mm|m|m
M3 | M3 | M |M3 |73 M3 | M3 | M3 | M3 |73

Then (I, 4+, —,0) is a B-algebra.
Then = = {m1,m3} is B-filter on I". = is an InVF B-subalgebra, define by the membership function
[0.4,0.6] : 06 =m3

e=(0d) =
[0.3,0.5] 1 00 =m

Then it is observed that, = is not an InVF strong B-filter on I since €=(m A m3) # €=(n1 V7 N3).

Theorem 3.8. I/f G is an InVF strong B-filter of ", then €=(d A yd) > €=(y0)
where yd < 00.

Theorem 3.9. Consider be an onto 3-algebra homomorphism f from I to V. If =5 is a InVF strong

B-filter of T, then its inverse image f~1(=5) is again an InV/F strong B-filter on I".

4. InVInF B-Filters on B-Algebras

The concept of Interval valued intuitionstic fuzzy (InVInF) B-filters on a B-subalgebra is introduced

in this section, which starts with the definition.

Definition 4.1. An InVInF B-subalgebra of a B-algebra [ is called as an InVInF B-filter on I, if
(1) €=(0d A yb) > rmin{e=(0d),€=(ed + y4)} and
¢=(00 A y8) < rmax{¢=(ed), d=(ed + y6)}
(2) €=(0d v y6) > rmin{e=(0d), €=(6 — y4)} and
$=(00 7 y6) < rmax{¢=(06), ¢=(0 — yd)}
(3) €=(¥) > €=(ed) and ¢=(y6) < ¢=(e0) if 0 < ¥4
for all gd,yd € I'.
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Example 4.1. Consider a B-algebra I = {0, p1, p2, p3} with two binary operations + and — and a

constant 0 defined on [ with the Cayley's table:

+ 10 |p1|p2]|ps — 10 |p1|p2|p3

0O/l0j0]0]|O 00| 0|]0]O

p1|p1| 0 | p3]|p1 p1|P1 | pP1L|P1L|P1

p2|p2| 0 | p2|p3 P2 | P2 | P2 | P2 | P2

P3| P3| P1 | P3| P3 P3| P3| P3| P3| P3
Now, = = {po, p3} is a B-filter on I".

Defining the membership and non membership function of an InVInF G-subalgebra = as

B (0.4,0.6] :
€=(0d) =
[0.3,0.5] :
and
_ [0.3,0.4] :
¢=(0d) =
[0.4,0.6] :

Therefore, = is an InVInF B-filter on .

Example 4.2. Consider a B-algebra " = {0, p1, p2, p3} with two binary operations + and — and a

constant 0 defined on [ with the Cayley's table:

00 =0, p3
00 = p1, P2
06 =0, p3
00 = p1, P2

+ 10 |p1|p2|p3 — [0 |p1|p2|p3
0/01010/|0 0O(0j0|0]|O
PL|P1L|PL|PL|PL P1L|pP1L|PL|PL|PL
p2| O [p1|p2]|p3 P2 | P2 | P2 | P2 | P2
P3| P3| P1|P2]|P3 P3| P3| P3| P3|P3
Now, = = {p1, 02, p3} is a B-filter on . Defining the membership and non membership function of
an InVInF B-subalgebra = as
[0.2,0.6] : 00 =0
€=(00) = [0.4,0.5]: 06 = p1, p3
[0.3,0.7]: 00 = p2
and
[0.1,0.6]: 06=0
$=(00) = ¢ [0.2,0.7] : 06 = p1
[0.4,0.5] 0 06 = p2, p3

This shows that, = is not an InVInF B-filter on I" because €=(p3) > €=(p2) = [0.4,0.5] # [0.3,0.7].
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Lemma 4.1. /f =1 and => be any two InVInF B-filters on ", then =1 N =5 is also an InVInF B-filter
of I.

Proof. For ¢, y6 € I

0=,n=,(00 & yd) = rmin{e=, (00 A y6),€=,(00 A yd)}
> rmin{rmin{€=,(00), €=, (00 + yd)}, rmin{€=,(00), €=,(0d + yd)}}
> rmin{rmin{€=,(09), €=,(00)}, rmin{e=, (00 + y0),€=,(00 + yd)}}

= rmin{églmEQ(Qé), EEIQEQ(Q(S -+ )\/6)}

Also, ¢=,n=,(08 A y§) < rmax{p=,n=,(00), d=,n=,(00 + y6)}. Hence, =3 N = is also an InVInF
B-filter of [. [l

Lemma 4.2. Every InVInF B-filter is again an InVInF B-subalgebra.
Proof. The definition of the InVInF B-filter leads to this proof. [l

In general, the converse of the preceding lemma does not seems to be true, as shown by the

following example (i.e. Every InVInF B-subalgebra need not be an InVInF B-filter).

Example 4.3. Let [ = {0, w1, w2, w3} be a B-algebra with constant 0 and the Cayley's table:

+ | 0 |wi |wr|ws — 1 0 |wi |wy | w3
0Oj]0|0]0]|0O0 001 0]0]|O0
Wi | W1 | W1 | Wy | W1 W1 | Wy | W1 | W | W1
Wy |wy |wig |we| O Wr | Wo | Wy | wo | Wy
w3 | w3 | w3 |wr | w w3 | W3 | w3 | W3 | ws
Now, = = {0, ws} is a B-filter on . Defining the membership and non membership function of an

InVInF B-subalgebra = as

[0.3,0.5] 0 00 =0,w>
[0.2,0.4] : 00 = w1, w3 .
and

G- (06) = [0.3,0.5] 1 06 =0,w> |
[0.4,0.6] 1 00 = w1, w3

However = is not an InVInF B-filter on I because €=(ws3) > €=(w1) = [0.2,0.4] # [0.3,0.5].

Theorem 4.1. If = is an InVInF B-filter of I", then €=(6 A y&) > €=(06) and ¢=(06 7 y8) < ¢=(0b)
where b < y9.
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Proof. Assume that = is an InVInF B-filter of I". Let @b, yd0 € I'. Then

€=(06 A y6) =€=(ed + (06 + ¥6))
> rmin{é=(ed), €=(ed + y6)}
= rmin{e=(0d), rmin{e=(0d), e=(yd)}}
= rmin{é=(00),€=(00)} .- 00 < yd = €=(y0) < €=(0d)

= €=(09).
Similarly,

¢=(06 v ¥6) = ¢=(06 — (06 — y9))
< rmax{$=(09), $=(ed — y6)}
= rmax{¢=(00), rmax{¢=(ed), $=()}}
= rmax{¢=(06), p=(28)} " 06 < y6 = ¢=(¥5) < ¢=(ed)
= ¢=(09).

O

Definition 4.2. Let = be an InVInF G-filter of a B-subalgebra I". For 5,t € D[0, 1], the set i =
{06 € I :€=(06) > 5 & Pp=(06) < t} is referred as a level set of InVInF B-filter = of I".

Theorem 4.2. An InVinF subset = of a B-algebra I is an InVInF B-filter if and only if for any
5,t € D[0,1] the =z s—InVInF level subset =< = {00 € " : €=(06) > 5 & ¢=(06) < t} Is either a
B-filter or =5 5 # 0.

Proof. Consider an InVInF level subset of = in [", =57 # (. For any 0d,y0 € =57 , €=(0d) >
5 & €=(p8) > 5. Now

€=(00 A y) =€=(0d + (0d + y9))
> rmin{e=(p), €=(06 + ¥0)}
= rmin{e=(ed), rmin{e=(06), e=(y6)}}
= rmin{s, rmin{s,s}}

=s.

This implies that ¢d A yd € =¢ 5. Similarly, €=(06 <7 ¥6) = rmin{e=(06),€=(0d — yd)}. Analogously,
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$=(00 A y) = ¢=(06 + (03 + ¥9))

< rmax{¢=(ed). ¢=(ed + y6)}

= rmax{¢=(09), rmax{¢=(05), p=(76)}}

= rmax{t, rmax{t, t}}

=t.
Similarly, ¢=(06<7y8). Then ¢=(06 Ayd) € =< : & ¢p=(007y) € == 7. So, (00 AYd) € =< 7 & (067
yd) € =z 7. Hence = 7 is a B-filter of I".

On the other hand, assume that = 3 is a B-filter of [". Forall g4, y6 € X, 00 Ayd and pd57yd € =< ;.

Thus €=(pd A yd) >3 and =(pd 7 yd) > 5. Take s = rmin{é=(0d),€=(0d + yd)} for any @d, yd € X.

We have €=(pd A yd) =€=(00+ (00 +yd)) > 5 = rmin{€=(0d),€=(0d + yd)}. Similarly, €=(0d 7 y9).
Analogously, for the non membership function. This proves = is an InVInF B-filter. Il

Theorem 4.3. Consider an onto (3-algebra homomorphism f from I to 7. If =5 is an InVInF B-filter

of T, then its inverse image f~1(=2) is also an InVInF B-filter on I
Proof. Suppose that =5 is an InVInF G-filter of 7". For any 00, yé € I,

fH(e=,(00 A y8)) = 1 (€=, (e + (00 + ¥9)))
= €=, (7 (0 + (00 + y98)))
= €=,(f(ed) + (06 + y90))
> rmin{e=,(f(ed)). €=, (f(eé + y4))}
= rmin{f~1(e=,(ed)), f "} (e=,(ed + y3))}.
Also, f~1(ez,(ed 7 y8)) = rmin{f~1(ez,(0d)), f*(€=,(ed — ¥6))}. Analogously,

FH(¢=,(00 & ¥8)) = 1 (¢=, (00 + (e + ¥9)))
= ¢=,(f (0 + (00 + ¥9)))
= ¢=,(f(ed) + f (06 + y9))
< rmax{¢=,(f(e0)), =,(f(ed + ¥9))}
= rmax{f = (¢=,(00)), f(¢=,(ed + y9))}.
Similarly, f~1(¢=,(00 v ¥0)) < rmax{f~*(¢=,(09)). f*(¢=,(ed — y0))}. Let 6,76 € I', so that
06 > y&. Consequently, = is an InVInF B-filter, €=, (f(78)) > €=,(f(0d)) = f(€=,(0d)) such that

f1(e=,(y8) > F1(e=,(ed)) and ¢=, (f(¥0)) < ¢=,(f(ed)) = f~1(¢=,(ed)) such that =1 (=, (yd) >
f~1(¢=,(08)). This shows that f~1 is an InVInF S-filter on I O
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5. Conclusion

In this work, we investigated interval valued filters, the product on interval valued fuzzy - filters
on (-algebras, interval valued fuzzy strong 3- filters on (G-algebras, and interval valued intuitionistic
fuzzy B-filters on B-algebras, as well as their associated outcomes. Furthermore, it can be extended

to other algebraic structures in the future research works.
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