International Journal of Analysis and Applications # Interval Valued Intuitionistic Fuzzy β -Filters on β -Algebras # Kaliyaperumal Palanivel¹, Prakasam Muralikrishna², Perumal Hemavathi³, Ronnason Chinram⁴, Pattarawan Singavananda^{5,*} ¹Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India ²PG and Research Department of Mathematics, Muthurangam Government Arts College (Autonomus), Vellore-632002, India ³Saveetha School of Engineering, SIMATS, Thandalam-602025, India ⁴Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand ⁵Program in Mathematics, Faculty of Science and Technology, Songkhla Rajabhat University, Songkhla 90000, Thailand * Corresponding author: pattarawan.pe@skru.ac.th Abstract. This study establishes the concept of interval valued intuitionistic fuzzy (InVInF) β -filters on β -algebras and a few of its related properties are investigated. Some compelling results of interval valued fuzzy β -filters have been examined. Further, the notions of products and strong β -filters are also introduced. In addition that, the level set and homomorphism of interval valued intuitionistic fuzzy β -filters are too discussed. Furthermore, we enacted that the intersection between two interval valued intuitionistic fuzzy β -filters is again an interval valued intuitionistic fuzzy β -filter. #### 1. Introduction In 2002, Neggers et al. [12] proposed the idea of a β -algebra which is an algebraic structure with two operations. The concepts of fuzzy positive implicative and fuzzy associative filters of lattice implication algebras have been initiated in [13,14]. Further, the authors in [13,14] have demonstrated that every fuzzy associative filter is a fuzzy associative filter and that every fuzzy positive implicative Received: Aug. 17, 2022. 2010 Mathematics Subject Classification. 08A72, 03E72. *Key words and phrases.* fuzzy β -filter; intuitionistic fuzzy β -filter; β -algebra; interval valued intuitionistic fuzzy set. ISSN: 2291-8639 filter is a fuzzy implicative filter. The equivalent conditions for both fuzzy positive implicative filters and fuzzy associative filters were also provided. Xu et al. [20] established the thought of intuitionistic fuzzy implicative filters in lattice implication algebras. Jun et al. [8] proposed the concept of fuzzy BCIsubalgebras with interval valued membership functions. In 2011, Ghorbani [4] proposed the notion of intuitioistic fuzzy filters of residuated lattices. They have illustrated that a residual lattice's collection of all intuitionistic fuzzy filters is a complete lattice and identified its distributive sublattices. Zadeh [21] developed an interval valued fuzzy set was used to extend a fuzzy set (ie. a fuzzy set with an interval valued membership function). An i-v fuzzy set is an interval valued fuzzy set that can be used in various algebraic structures. Biswas et al. [2] created fuzzy subgroups with interval membership values in 1994. Hoo [9] applied the concepts of filters and ideals in BCI-algebras in 1991. In 2015, Hemavathi et al. [5-7] discussed interval valued fuzzy β -subalgebras and also applied the concept to intuitionistic fuzzy sets. Jun et al. [15] introduced foldness of bipolar fuzzy sets and its application in BCK/BCIalgebras. Takallo et al. [19] discussed the concept of multipolar fuzzy p-ideals of BCI-algebras. The concept of multipolar intuitionistic fuzzy hyper BCK-ideals in hyper BCK-algebras has been developed by Seo et al. [16]. Borzooei et al. [3] focused on multipolar intuitionistic fuzzy B-algebras. A new perception of cubic multi-polar structures on BCK/BCI-algebras was approached by Al-Masarwah et al. [1]. In [10], the authors invented a mathematical model for nonlinear optimization which attempts membership functions to address the uncertainties. Muhiuddin et al. [11] applied the theory of linear Diophantine fuzzy set into BCK/BCI-algebras. Sujatha et al. [17, 18] introduced fuzzy filters on β algebras and also developed the concept of intuitiointic fuzzy filters on β -algebras. With all of this in mind, this paper establishes the idea of interval valued fuzzy β -filters on β -algebras and demonstrate few of its intriguing aspects. #### 2. Preliminares This section outlines some of the most important definitions and examples relevant to the study. **Definition 2.1.** A β -algebra is a non-empty set Γ with two binary operations + and - and a constant 0 fulfills the following axioms: - (1) $\rho\delta 0 = \rho\delta$ - (2) $(0 \varrho \delta) + \varrho \delta = 0$ - (3) $(\varrho \delta \dot{\gamma} \delta) \dot{z} \delta = \varrho \delta (\dot{z} \delta + \dot{\gamma} \delta)$ for all $\varrho \delta$, $\dot{\gamma} \delta$, $\dot{z} \delta \in \Gamma$. **Definition 2.2.** Let f be a mapping from a β - algebra Γ to a β - algebra Υ , then f is referred as homomorphism, if - (1) $f(\varrho \delta + \dot{\gamma} \delta) = f(\varrho) + f(\dot{\gamma} \delta)$ - (2) $f(\varrho\delta \dot{\varrho}\delta) = f(\varrho\delta) f(\dot{\varrho}\delta)$ for all $\rho\delta$, $\dot{\gamma}\delta \in \Gamma$. **Definition 2.3.** A β -subalgebra Ξ on a β -algebra Γ is referred as β -filter, if (1) $$\rho\delta \triangle \dot{\gamma}\delta = \rho\delta + (\rho\delta + \dot{\gamma}\delta) \in \Xi$$ (2) $$\varrho\delta \nabla \dot{y}\delta = \varrho\delta - (\varrho\delta - \dot{y}\delta) \in \Xi$$ for all $\varrho \delta$, $\dot{\gamma} \delta \in \Xi$. **Definition 2.4.** A β -subalgebra Ξ on a β -algebra Γ is referred as fuzzy β -filter, if (1) $$\epsilon_{\equiv}(\varrho\delta \bigtriangleup \dot{y}\delta) \ge min\{\epsilon_{\equiv}(\varrho\delta), \epsilon_{\equiv}(\varrho\delta + \dot{y}\delta)\}$$ and $\epsilon_{\equiv}(\varrho\delta \bigtriangledown \dot{y}\delta) \ge min\{\epsilon_{\equiv}(\varrho\delta), \epsilon_{\equiv}(\varrho\delta - \dot{y}\delta)\}$ (2) $$\epsilon = (\dot{\gamma}\delta) \ge \epsilon = (\rho\delta)$$ if $\rho\delta \le \dot{\gamma}\delta$ for all $\varrho \delta$, $\dot{\gamma} \delta \in \Xi$. ### 3. Interval Valued Fuzzy β -Filters The concept of an Interval valued fuzzy (InVF) β -filter on a β -subalgebra is introduced in this section. **Definition 3.1.** An InVF β -subalgebra Ξ on a β -algebra Γ is referred as an InVF fuzzy β -filter, it satisfies (1) $$\overline{\epsilon}_{\equiv}(\varrho\delta \bigtriangleup \dot{y}\delta) \ge rmin\{\overline{\epsilon}_{\equiv}(\varrho\delta), \overline{\epsilon}_{\equiv}(\varrho\delta + \dot{y}\delta)\}$$ and $\overline{\epsilon}_{\equiv}(\varrho\delta \bigtriangledown \dot{y}\delta) \ge rmin\{\overline{\epsilon}_{\equiv}(\varrho\delta), \overline{\epsilon}_{\equiv}(\varrho\delta - \dot{y}\delta)\}$ (2) $$\overline{\epsilon} = (\dot{\gamma}\delta) \ge \overline{\epsilon} = (\varrho\delta)$$ if $\varrho\delta \le \dot{\gamma}\delta$ for all $\varrho \delta$, $\dot{\gamma} \delta \in \Xi$. **Example 3.1.** Consider a β -algebra $\Gamma = \{0, \gamma_1, \gamma_2, \gamma_3\}$ with two binary operations + and - and a constant 0 defined on Γ with the Cayley's table: | + | 0 | γ_1 | γ_2 | γ_3 | |------------|------------|------------|------------|------------| | 0 | 0 | 0 | 0 | 0 | | γ_1 | γ_1 | γ_1 | γ_1 | γ_1 | | γ_2 | 0 | 0 | γ_2 | γ_3 | | γ_3 | γ_3 | γ_3 | γ_3 | γ_3 | | _ | 0 | γ_1 | γ_2 | γ_3 | |-----------------------|------------|------------|------------|------------| | 0 | 0 | 0 | 0 | 0 | | γ_1 | γ_1 | γ_1 | γ_1 | γ_1 | | γ_2 | γ_2 | γ_2 | γ_2 | γ_2 | | γ ₃ | γ_3 | γ_3 | γ 3 | γ_3 | Then $(\Gamma, +, -, 0)$ is a β -algebra. Thus $\Xi = \{\gamma_1, \gamma_3\}$ is a β -filter on Γ . We have Ξ is an InVF β -subalgebra, with interval membership function $$\overline{\epsilon}_{\equiv}(\varrho\delta) = \begin{cases} [0.3, 0.5] : & \varrho\delta = \gamma_1 \\ [0.4, 0.6] : & \varrho\delta = \gamma_3 \end{cases}.$$ Then it is observed that, Ξ is an InVF β -filter on Γ . **Example 3.2.** From the Example 3.1, Ξ is an InVF β -subalgebra, define by the membership function $$\overline{\epsilon}_{\Xi}(\varrho\delta) = \begin{cases} [0.2, 0.6] : & \varrho\delta = \gamma_1 \\ [0.1, 0.4] : & \varrho\delta = \gamma_2 \\ [0.3, 0.5] : & \varrho\delta = \gamma_3 \end{cases}$$ Then it is observed that, Ξ is not an InVF β -filter on Γ because $\overline{\epsilon}_{\Xi}(\gamma_2) \geq \overline{\epsilon}_{\Xi}(\gamma_1) \Rightarrow [0.1, 0.4] \ngeq [0.2, 0.6]$. **Lemma 3.1.** If Ξ_1 and Ξ_2 are two InVF β -filters on Γ , then so is $\Xi_1 \cap \Xi_2$. *Proof.* For $\varrho \delta$, $\dot{\gamma} \delta \in \Gamma$, $$\begin{split} \overline{\epsilon}_{\Xi_{1} \cap \Xi_{2}}(\varrho\delta \bigtriangleup \dot{y}\delta) &= rmin\{\overline{\epsilon}_{\Xi_{1}}(\varrho\delta \bigtriangleup \dot{y}\delta), \overline{\epsilon}_{\Xi_{2}}(\varrho\delta \bigtriangleup \dot{y}\delta)\} \\ &\geq rmin\{rmin\{\overline{\epsilon}_{\Xi_{1}}(\varrho\delta), \overline{\epsilon}_{\Xi_{1}}(\varrho\delta + \dot{y}\delta)\}, rmin\{\overline{\epsilon}_{\Xi_{2}}(\varrho\delta), \overline{\epsilon}_{\Xi_{2}}(\varrho\delta + \dot{y}\delta)\}\} \\ &\geq rmin\{rmin\{\overline{\epsilon}_{\Xi_{1}}(\varrho\delta), \overline{\epsilon}_{\Xi_{2}}(\varrho\delta)\}, rmin\{\overline{\epsilon}_{\Xi_{1}}(\varrho\delta + \dot{y}\delta), \overline{\epsilon}_{\Xi_{2}}(\varrho\delta + \dot{y}\delta)\}\} \\ &= rmin\{\overline{\epsilon}_{\Xi_{1} \cap \Xi_{2}}(\varrho\delta), \overline{\epsilon}_{\Xi_{1} \cap \Xi_{2}}(\varrho\delta + \dot{y}\delta)\}. \end{split}$$ Similarly, $\overline{\epsilon}_{\equiv_1 \cap \equiv_2}(\varrho \delta \bigtriangledown \dot{y} \delta) \ge rmin\{\overline{\epsilon}_{\equiv_1 \cap \equiv_2}(\varrho \delta), \overline{\epsilon}_{\equiv_1 \cap \equiv_2}(\varrho \delta - \dot{y} \delta)\}$. Hence $\Xi_1 \cap \Xi_2$ is an InVF β -filter of Γ . **Theorem 3.1.** Every β -filter in InVF is also a β -subalgebra in InVF. *Proof.* This proof is self-evident, as it follows clearly from the definition of the InVF β -filter. Every InVF β -subalgebra, on the other hand, does not have to be an InVF β -filter. **Theorem 3.2.** For an InVF β -filter $\overline{\epsilon}$ of Γ , we have $\overline{\epsilon}_{\equiv}(\varrho\delta \bigtriangleup \dot{\gamma}\delta) \geq \overline{\epsilon}_{\equiv}(\varrho\delta)$ and $\overline{\epsilon}_{\equiv}(\varrho\delta \bigtriangledown \dot{\gamma}\delta) \geq \overline{\epsilon}_{\equiv}(\varrho\delta)$ where $\varrho\delta \leq \dot{\gamma}\delta$. *Proof.* Assume that $\overline{\epsilon}_{=}$ is an InVF β -filter of Γ . Let $\varrho\delta$, $\dot{\gamma}\delta\in\Gamma$. Then $$\begin{split} \overline{\epsilon}_{\equiv}(\varrho\delta \bigtriangleup \dot{y}\delta) &= \overline{\epsilon}_{\equiv}(\varrho\delta + (\varrho\delta + \dot{y}\delta)) \\ &\geq rmin\{\overline{\epsilon}_{\equiv}(\varrho\delta), \overline{\epsilon}_{\equiv}(\varrho\delta + \dot{y}\delta)\} \\ &= rmin\{\overline{\epsilon}_{\equiv}(\varrho\delta), rmin\{\overline{\epsilon}_{\equiv}(\varrho\delta), \overline{\epsilon}_{\equiv}(\dot{y}\delta)\}\} \\ &\text{(because InVF β-filter is an InVF β-subalgebra)} \\ &= rmin\{\overline{\epsilon}_{\equiv}(\varrho\delta), \overline{\epsilon}_{\equiv}(\varrho\delta)\} \\ &\text{(because $\varrho\delta \leq \dot{y}\delta \Rightarrow \overline{\epsilon}_{\equiv}(\dot{y}\delta) \geq \overline{\epsilon}_{\equiv}(\varrho\delta))} \\ &= \overline{\epsilon}_{\equiv}(\varrho\delta). \end{split}$$ Similarly, $\overline{\epsilon}_{\equiv}(\varrho\delta \bigtriangledown \dot{\gamma}\delta) \geq \overline{\epsilon}_{\equiv}(\varrho\delta)$. **Definition 3.2.** Consider an InVF β -filter $\overline{\epsilon}_{\equiv}$ of a β -subalgebra Γ . For $[s_1, s_2] \in D[0, 1]$, the set $\overline{\epsilon}_{\equiv} = \{ \varrho \delta \in \Gamma : \overline{\epsilon}_{\equiv}(\varrho) \delta \geq [s_1, s_2] \}$ is referred to as a level set of an InVF β -filter $\overline{\epsilon}_{\equiv}$ of Γ . **Theorem 3.3.** An InVF subset Ξ of a β -algebra Γ is an InVF β -filter if and only if for any $\overline{t} \in D[0,1]$ the \overline{t} -InVF level subset $\Xi_{\overline{t}} = \{\varrho \delta \in \Gamma : \Xi(\varrho \delta) \geq \overline{t}\}$ is either a β -filter or $\Xi_{\overline{t}} \neq \emptyset$. *Proof.* For an InVF level subset of Ξ in Γ , $\Xi_{\overline{t}} \neq \emptyset$. Then $\varrho \delta$, $\dot{\gamma} \delta \in \Xi_{\overline{t}}$, $\Xi(\varrho \delta) \geq \overline{t}$. Now, $$\begin{split} &\Xi(\varrho\delta \bigtriangleup \grave{y}) = \Xi(\varrho\delta + (\varrho\delta + \grave{y}\delta)) \\ &\geq rmin\{\Xi(\varrho\delta), \Xi(\varrho\delta + \grave{y}\delta)\} \\ &= rmin\{\Xi(\varrho\delta), rmin\{\Xi(\varrho\delta), \Xi(\grave{y}\delta)\}\} \\ &= rmin\{\overline{t}, rmin\{\overline{t}, \overline{t}\}\} \\ &= \overline{t}. \end{split}$$ This implies that $\varrho\delta \bigtriangleup \dot{y}\delta \in \Xi_{\overline{t}}$. Similarly, $\varrho\delta \bigtriangledown \dot{y}\delta \in \Xi_{\overline{t}}$. Then $\Xi_{\overline{t}}$ is a β -filter of Γ . Suppose that $\Xi_{\overline{t}}$ is a β -filter of Γ , on the other hand. For $\varrho\delta$, $\dot{y}\delta \in \Gamma$, $\varrho\delta \bigtriangleup \dot{y}\delta$ and $\varrho\delta \bigtriangledown \dot{y}\delta \in \Xi_{\overline{t}}$, this implies that $\Xi(\varrho\delta \bigtriangleup \dot{y}\delta) \geq \overline{t}$ and $\Xi(\varrho\delta \bigtriangledown \dot{y}\delta) \geq \overline{t} \equiv (\varrho\delta \bigtriangleup \dot{y}\delta) = \Xi(\varrho\delta + (\varrho\delta + \dot{y}\delta)) \geq \overline{t} = rmin\{\Xi(\varrho\delta), \Xi(\varrho\delta + \dot{y}\delta)\}$. Similarly, $\Xi(\varrho\delta \bigtriangledown \dot{y}\delta) \geq \overline{t}$. This proved Ξ is an InVF β -filter. **Theorem 3.4.** Consider an onto β -algebra homomorphism f from Γ to Υ . If Ξ_2 is a InVF β -filter of Y, hence its inverse image $f^{-1}(\Xi_2)$ is again an InVF β -filter on Γ . *Proof.* Let Ξ_2 be an InVF β -filter of Y. For any $\varrho \delta$, $\dot{\gamma} \delta \in \Gamma$, $$f^{-1}(\overline{\epsilon}_{\Xi_{2}}(\varrho\delta \bigtriangleup \dot{y}\delta)) = f^{-1}(\overline{\epsilon}_{\Xi_{2}}(\varrho\delta + (\varrho\delta + \dot{y}\delta)))$$ $$= \overline{\epsilon}_{\Xi_{2}}(f(\varrho\delta + (\varrho\delta + \dot{y}\delta)))$$ $$= \overline{\epsilon}_{\Xi_{2}}(f(\varrho\delta)\delta + f(\varrho\delta + \dot{y}\delta))$$ $$\geq rmin\{\overline{\epsilon}_{\Xi_{2}}(f(\varrho\delta)), \overline{\epsilon}_{\Xi_{2}}(f(\varrho\delta + \dot{y}\delta))\}$$ $$= rmin\{f^{-1}(\overline{\epsilon}_{\Xi_{2}}(\varrho\delta)), f^{-1}(\overline{\epsilon}_{\Xi_{2}}(\varrho\delta + \dot{y}\delta))\}.$$ Similarly, $f^{-1}(\overline{\epsilon}_{\Xi_2}(\varrho\delta \bigtriangledown \dot{\gamma}\delta)) \geq rmin\{f^{-1}(\overline{\epsilon}_{\Xi_2}(\varrho\delta)), f^{-1}(\overline{\epsilon}_{\Xi_2}(\varrho\delta - \dot{\gamma}\delta))\}$. Let $\varrho\delta, \dot{\gamma}\delta \in \Gamma$, so that $\varrho\delta \geq \dot{\gamma}\delta$. Subsequently, Ξ_2 is an InVF β -filter, $\overline{\epsilon}_{\Xi_2}(f(\dot{\gamma}\delta)) \geq \overline{\epsilon}_{\Xi_2}(f(\varrho\delta)) = f^{-1}(\overline{\epsilon}_{B}(\varrho\delta))$ such that $f^{-1}(\overline{\epsilon}_{\Xi_2}(\dot{\gamma}\delta)) \geq f^{-1}(\overline{\epsilon}_{\Xi_2}(\varrho\delta))$. 3.1. **Products on InVF** β -**Filters on** β -**Algebras.** The basic concepts and examples of product on InVF β -filters settings are covered in this section. **Theorem 3.5.** An InVF β -filter is the Cartesian product of any two InVF β -filters. *Proof.* Take $$\varrho\delta = (\varrho\delta_1, \varrho\delta_2)$$ & $\dot{y}\delta = (\dot{y}\delta_1, \dot{y}\delta_2) \in \Gamma \times Y$ & $\overline{\sigma} = (\overline{\epsilon}_{\Xi_1} \times \overline{\epsilon}_{\Xi_2})$. So $$\begin{split} \overline{\sigma}_{\Xi_{1}\times\Xi_{2}}(\varrho\delta\bigtriangleup\dot{\gamma}\delta) &= \overline{\epsilon}_{\Xi_{1}}((\varrho\delta_{1},\varrho\delta_{2})\bigtriangleup(\dot{\gamma}\delta_{1},\dot{\gamma}\delta_{2})) \\ &= (\overline{\epsilon}_{\Xi_{1}}\times\overline{\epsilon}_{\Xi_{2}})\{((\varrho\delta_{1},\varrho\delta_{2})+((\varrho\delta_{1},\varrho\delta_{2})+(\dot{\gamma}\delta_{1},\dot{\gamma}\delta_{2})))\} \\ &\geq rmin\{\overline{\epsilon}_{\Xi_{1}}(\varrho\delta_{1}+(\varrho\delta_{1}+\dot{\gamma}\delta_{1})),\overline{\epsilon}_{\Xi_{2}}(\varrho\delta_{2}+(\varrho\delta_{2}+\dot{\gamma}\delta_{2}))\} \\ &= rmin\{rmin\{\overline{\epsilon}_{\Xi_{1}}(\varrho\delta_{1}),\overline{\epsilon}_{\Xi_{1}}(\varrho\delta_{1}+\dot{\gamma}\delta_{1})\},rmin\{\overline{\epsilon}_{\Xi_{2}}(\varrho\delta_{2}+\dot{\gamma}\delta_{2})\}\} \\ &= rmin\{rmin\{\overline{\epsilon}_{\Xi_{1}}(\varrho\delta_{1}),\overline{\epsilon}_{\Xi_{2}}(\varrho\delta_{2})\},rmin\{\overline{\epsilon}_{\Xi_{1}}(\varrho\delta_{1}+\dot{\gamma}\delta_{1}),\overline{\epsilon}_{\Xi_{2}}(\varrho\delta_{2}+\dot{\gamma}\delta_{2})\}\} \\ &= rmin\{\overline{\sigma}_{\Xi_{1}\times\Xi_{2}}(\varrho\delta_{1},\varrho\delta_{2}),\overline{\sigma}_{\Xi_{1}\times\Xi_{2}}((\varrho\delta_{1},\varrho\delta_{2})+(\dot{\gamma}\delta_{1},\dot{\gamma}\delta_{2}))\} \\ &= rmin\{\overline{\sigma}_{\Xi_{1}\times\Xi_{2}}(\varrho\delta),\overline{\sigma}_{\Xi_{1}\times\Xi_{2}}(\varrho\delta+\dot{\gamma}\delta)\}. \end{split}$$ Similarly, $\overline{\sigma}_{\Xi_1 \times \Xi_2}(\varrho \delta \bigtriangledown \dot{y} \delta) \ge rmin\{\overline{\sigma}_{\Xi_1 \times \Xi_2}(\varrho \delta), \overline{\sigma}_{\Xi_1 \times \Xi_2}(\varrho \delta - \dot{y} \delta)\}$. This proved that $\Xi_1 \times \Xi_2$ is also an InVF β -filter. **Theorem 3.6.** Let Γ and Υ be two β -algebras. Let $\Xi_{1\overline{t}}$ and $\Xi_{2\overline{s}}$ be InVF β -filters on $\Gamma \times Y$. Then $(\Xi_{1\overline{t}} \times \Xi_{2\overline{s}})$ is also a β -filter, if $\overline{t} \geq \overline{s}$. Proof. Take $$\varrho\delta=(\varrho\delta_1,\varrho\delta_2)$$ & $\dot{y}\delta=(\dot{y}\delta_1,\dot{y}\delta_2)\in \Gamma\times Y$ & $\overline{\sigma}=(\overline{\epsilon}_{\Xi_1}\times\overline{\epsilon}_{\Xi_2})$ if $\overline{t}\geq \overline{s}$. Using above theorem, $\overline{\sigma}(\Xi_{1\overline{t}}\times\Xi_{2\overline{s}})(\varrho\delta\bigtriangleup\dot{y}\delta)\geq \overline{s}$. Similarly, $\overline{\sigma}(\Xi_{1\overline{t}}\times\Xi_{2\overline{s}})(\varrho\delta\bigtriangledown\dot{y}\delta)\geq \overline{s}$. 3.2. **InVF Strong** β **-Filters.** Beginning with a description and some examples, this section introduces the notion of an InVF strong β -filter on a β -subalgebra. **Definition 3.3.** An InVF β -subalgebra Ξ of a β -algebra is referred as an InVF strong β -filter, if - (1) $\overline{\epsilon} = (\rho \delta \triangle \dot{\gamma} \delta) = \overline{\epsilon} = (\rho \delta \bigtriangledown \dot{\gamma} \delta)$ - (2) $\overline{\epsilon}_{\equiv}(\dot{\gamma}\delta) \geq \overline{\epsilon}_{\equiv}(\varrho\delta)$ if $\varrho\delta \leq \dot{\gamma}\delta$ for all $\varrho \delta$, $\dot{\gamma} \delta \in \Xi$. **Example 3.3.** For a β -algebra $\Gamma = \{0, \eta_1, \eta_2, \eta_3\}$ be a with two binary operations + and - constant 0 and defined on Γ , we have a Cayley's table | + | 0 | η_1 | η_1 | η_3 | |----------|----------|----------|----------|----------| | 0 | 0 | 0 | 0 | 0 | | η_1 | η_1 | η_1 | η_1 | η_1 | | η_1 | 0 | 0 | η_1 | η_3 | | η_3 | η_3 | η_3 | η_3 | η_3 | | _ | 0 | η_1 | η_1 | η_3 | |----------|----------|----------|----------|----------| | 0 | 0 | 0 | 0 | 0 | | η_1 | η_1 | η_1 | η_1 | η_1 | | η_1 | η_1 | η_1 | η_1 | η_1 | | η_3 | η_3 | η_3 | η_3 | η_3 | Then $(\Gamma, +, -, 0)$ is a β -algebra. Thus $\Xi = \{\eta_1, \eta_3\}$ is a β -filter on Γ . Defining the membership function for an InVF β -subalgebra Ξ as $$\overline{\epsilon}_{\Xi}(\varrho\delta) = \begin{cases} [0.2, 0.5] : & \varrho\delta = \eta_1 \\ [0.3, 0.6] : & \varrho\delta = \eta_3 \end{cases}.$$ Then it is observed that, Ξ is an InVF strong β -filter on Γ . **Theorem 3.7.** Every InVF strong β -filter is also an InVF β -subalgebra. It is not necessary for the converse part of the theorem to be correct. **Example 3.4.** For a β -algebra $\Gamma = \{0, \eta_1, \eta_2, \eta_3\}$ with two binary operations + and - and constant 0 defined on Γ , we have a Cayley's table | + | 0 | η_1 | η_1 | η_3 | |----------|----------|----------|----------|----------| | 0 | 0 | 0 | 0 | 0 | | η_1 | η_1 | η_1 | η_3 | 0 | | η_1 | η_1 | 0 | η_1 | η_3 | | η_3 | η_3 | η_1 | η_3 | η_3 | | _ | 0 | η_1 | η_1 | η_3 | |----------|----------|----------|----------|----------| | 0 | 0 | 0 | 0 | 0 | | η_1 | η_1 | η_1 | η_1 | η_1 | | η_1 | η_1 | η_1 | η_1 | η_1 | | η_3 | η_3 | η_3 | η_3 | η_3 | Then $(\Gamma, +, -, 0)$ is a β -algebra. Then $\Xi = \{\eta_1, \eta_3\}$ is β -filter on Γ . Ξ is an InVF β -subalgebra, define by the membership function $$\overline{\epsilon}_{\equiv}(\varrho\delta) = \begin{cases} [0.4, 0.6] : & \varrho\delta = \eta_3 \\ [0.3, 0.5] : & \varrho\delta = \eta_1 \end{cases}.$$ Then it is observed that, Ξ is not an InVF strong β -filter on Γ since $\overline{\epsilon}_{\Xi}(\eta_1 \triangle \eta_3) \neq \overline{\epsilon}_{\Xi}(\eta_1 \bigtriangledown \eta_3)$. **Theorem 3.8.** If $\overline{\sigma}$ is an InVF strong β -filter of Γ , then $\overline{\epsilon}_{\equiv}(\varrho\delta \bigtriangleup \dot{\gamma}\delta) \geq \overline{\epsilon}_{\equiv}(\dot{\gamma}\delta)$ where $\dot{\gamma}\delta \leq \varrho\delta$. **Theorem 3.9.** Consider be an onto β -algebra homomorphism f from Γ to Υ . If Ξ_2 is a InVF strong β -filter of Υ , then its inverse image $f^{-1}(\Xi_2)$ is again an InVF strong β -filter on Γ . ## 4. InVInF β -Filters on β -Algebras The concept of Interval valued intuitionstic fuzzy (InVInF) β -filters on a β -subalgebra is introduced in this section, which starts with the definition. **Definition 4.1.** An InVInF β -subalgebra of a β -algebra Γ is called as an InVInF β -filter on Γ , if - (1) $\overline{\epsilon}_{\equiv}(\varrho\delta \bigtriangleup \dot{y}\delta) \ge rmin\{\overline{\epsilon}_{\equiv}(\varrho\delta), \overline{\epsilon}_{\equiv}(\varrho\delta + \dot{y}\delta)\}$ and $\overline{\phi}_{\equiv}(\varrho\delta \bigtriangleup \dot{y}\delta) \le rmax\{\overline{\phi}_{\equiv}(\varrho\delta), \overline{\phi}_{\equiv}(\varrho\delta + \dot{y}\delta)\}$ - (2) $\overline{\epsilon}_{\equiv}(\varrho\delta \bigtriangledown \dot{y}\delta) \ge rmin\{\overline{\epsilon}_{\equiv}(\varrho\delta), \overline{\epsilon}_{\equiv}(\varrho\delta \dot{y}\delta)\}$ and $\overline{\phi}_{\equiv}(\varrho\delta \bigtriangledown \dot{y}\delta) \le rmax\{\overline{\phi}_{\equiv}(\varrho\delta), \overline{\phi}_{\equiv}(\varrho\delta \dot{y}\delta)\}$ - (3) $\overline{\epsilon}_{\equiv}(\dot{y}) \geq \overline{\epsilon}_{\equiv}(\varrho\delta)$ and $\overline{\phi}_{\equiv}(\dot{y}\delta) \leq \overline{\phi}_{\equiv}(\varrho\delta)$ if $\varrho\delta \leq \dot{y}\delta$ for all $\varrho \delta$, $\dot{\gamma} \delta \in \Gamma$. **Example 4.1.** Consider a β -algebra $\Gamma = \{0, \rho_1, \rho_2, \rho_3\}$ with two binary operations + and - and a constant 0 defined on Γ with the Cayley's table: | + | 0 | $ ho_1$ | ρ_2 | ρ_3 | |----------|----------|---------|----------|----------| | 0 | 0 | 0 | 0 | 0 | | $ ho_1$ | $ ho_1$ | 0 | ρ_3 | $ ho_1$ | | ρ_2 | ρ_2 | 0 | ρ_2 | ρ_3 | | ρ_3 | ρ_3 | $ ho_1$ | ρ_3 | ρ_3 | | _ | 0 | $ ho_1$ | ρ_2 | ρ_3 | |----------|----------|----------|----------|----------| | 0 | 0 | 0 | 0 | 0 | | $ ho_1$ | | ρ_2 | ρ_2 | ρ_2 | ρ_2 | ρ_2 | | ρ_3 | ρ_3 | ρ_3 | ρ_3 | ρ_3 | Now, $\Xi = \{\rho_2, \rho_3\}$ is a β -filter on Γ . Defining the membership and non membership function of an InVInF β -subalgebra Ξ as $$\overline{\epsilon}_{\equiv}(\varrho\delta) = \begin{cases} [0.4, 0.6] : & \varrho\delta = 0, \rho_3 \\ [0.3, 0.5] : & \varrho\delta = \rho_1, \rho_2 \end{cases}.$$ and $$\overline{\phi}_{\Xi}(\varrho\delta) = \begin{cases} [0.3, 0.4] : & \varrho\delta = 0, \rho_3 \\ [0.4, 0.6] : & \varrho\delta = \rho_1, \rho_2 \end{cases}.$$ Therefore, Ξ is an InVInF β -filter on Γ . **Example 4.2.** Consider a β -algebra $\Gamma = \{0, \rho_1, \rho_2, \rho_3\}$ with two binary operations + and - and a constant 0 defined on Γ with the Cayley's table: | + | 0 | $ ho_1$ | ρ_2 | ρ_3 | |----------|----------|---------|----------|----------| | 0 | 0 | 0 | 0 | 0 | | $ ho_1$ | | ρ_2 | 0 | $ ho_1$ | ρ_2 | ρ_3 | | ρ_3 | ρ_3 | $ ho_1$ | ρ_2 | $ ho_3$ | | _ | 0 | $ ho_1$ | ρ_2 | ρ_3 | |----------|----------|----------|----------|----------| | 0 | 0 | 0 | 0 | 0 | | $ ho_1$ | | ρ_2 | ρ_2 | ρ_2 | ρ_2 | ρ_2 | | ρ_3 | ρ_3 | ρ_3 | ρ_3 | ρ_3 | Now, $\Xi = \{\rho_1, \rho_2, \rho_3\}$ is a β -filter on Γ . Defining the membership and non membership function of an InVInF β -subalgebra Ξ as $$\overline{\epsilon}_{\Xi}(\varrho\delta) = \begin{cases} [0.2, 0.6] : & \varrho\delta = 0 \\ [0.4, 0.5] : & \varrho\delta = \rho_1, \rho_3 \\ [0.3, 0.7] : & \varrho\delta = \rho_2 \end{cases}$$ and $$\overline{\phi}_{\Xi}(\varrho\delta) = \begin{cases} [0.1, 0.6] : & \varrho\delta = 0 \\ [0.2, 0.7] : & \varrho\delta = \rho_1 \\ [0.4, 0.5] : & \varrho\delta = \rho_2, \rho_3 \end{cases}$$ This shows that, Ξ is not an InVInF β -filter on Γ because $\overline{\epsilon}_{\Xi}(\rho_3) \geq \overline{\epsilon}_{\Xi}(\rho_2) \Rightarrow [0.4, 0.5] \ngeq [0.3, 0.7]$. **Lemma 4.1.** If Ξ_1 and Ξ_2 be any two InVInF β -filters on Γ , then $\Xi_1 \cap \Xi_2$ is also an InVInF β -filter of Γ . *Proof.* For $\varrho\delta$, $\dot{\gamma}\delta\in\Gamma$ $$\begin{split} \overline{\sigma}_{\Xi_{1}\cap\Xi_{2}}(\varrho\delta\bigtriangleup\dot{y}\delta) &= rmin\{\overline{\epsilon}_{\Xi_{1}}(\varrho\delta\bigtriangleup\dot{y}\delta), \overline{\epsilon}_{\Xi_{2}}(\varrho\delta\bigtriangleup\dot{y}\delta)\} \\ &\geq rmin\{rmin\{\overline{\epsilon}_{\Xi_{1}}(\varrho\delta), \overline{\epsilon}_{\Xi_{1}}(\varrho\delta+\dot{y}\delta)\}, rmin\{\overline{\epsilon}_{\Xi_{2}}(\varrho\delta), \overline{\epsilon}_{\Xi_{2}}(\varrho\delta+\dot{y}\delta)\}\} \\ &\geq rmin\{rmin\{\overline{\epsilon}_{\Xi_{1}}(\varrho\delta), \overline{\epsilon}_{\Xi_{2}}(\varrho\delta)\}, rmin\{\overline{\epsilon}_{\Xi_{1}}(\varrho\delta+\dot{y}\delta), \overline{\epsilon}_{\Xi_{2}}(\varrho\delta+\dot{y}\delta)\}\} \\ &= rmin\{\overline{\epsilon}_{\Xi_{1}\cap\Xi_{2}}(\varrho\delta), \overline{\epsilon}_{\Xi_{1}\cap\Xi_{2}}(\varrho\delta+\dot{y}\delta)\}. \end{split}$$ Also, $\overline{\phi}_{\Xi_1 \cap \Xi_2}(\varrho \delta \bigtriangleup \dot{\gamma} \delta) \le r \max\{\overline{\phi}_{\Xi_1 \cap \Xi_2}(\varrho \delta), \overline{\phi}_{\Xi_1 \cap \Xi_2}(\varrho \delta + \dot{\gamma} \delta)\}$. Hence, $\Xi_1 \cap \Xi_2$ is also an InVInF β -filter of Γ . **Lemma 4.2.** Every $InVInF \beta$ -filter is again an $InVInF \beta$ -subalgebra. *Proof.* The definition of the InVInF β -filter leads to this proof. In general, the converse of the preceding lemma does not seems to be true, as shown by the following example (i.e. Every InVInF β -subalgebra need not be an InVInF β -filter). **Example 4.3.** Let $\Gamma = \{0, \omega_1, \omega_2, \omega_3\}$ be a β -algebra with constant 0 and the Cayley's table: | + | 0 | ω_1 | ω_2 | ω_3 | |------------|------------|------------|------------|------------| | 0 | 0 | 0 | 0 | 0 | | ω_1 | ω_1 | ω_1 | ω_1 | ω_1 | | ω_2 | ω_1 | ω_1 | ω_2 | 0 | | ω_3 | ω_3 | ω_3 | ω_1 | ω_1 | | _ | 0 | ω_1 | ω_2 | ω_3 | |------------|------------|------------|------------|------------| | 0 | 0 | 0 | 0 | 0 | | ω_1 | ω_1 | ω_1 | ω_1 | ω_1 | | ω_2 | ω_2 | ω_2 | ω_2 | ω_2 | | ω_3 | ω_3 | ω_3 | ω_3 | ω_3 | Now, $\Xi = \{0, \omega_3\}$ is a β -filter on Γ . Defining the membership and non membership function of an InVInF β -subalgebra Ξ as $$\overline{\epsilon}_{\Xi}(\varrho\delta) = \begin{cases} [0.3, 0.5] : & \varrho\delta = 0, \omega_2 \\ [0.2, 0.4] : & \varrho\delta = \omega_1, \omega_3 \end{cases}.$$ and $$\overline{\phi}_{\equiv}(\varrho\delta) = \begin{cases} [0.3, 0.5] : & \varrho\delta = 0, \omega_2 \\ [0.4, 0.6] : & \varrho\delta = \omega_1, \omega_3 \end{cases}.$$ However Ξ is not an InVInF β -filter on Γ because $\overline{\epsilon}_{\Xi}(\omega_3) \geq \overline{\epsilon}_{\Xi}(\omega_1) \Rightarrow [0.2, 0.4] \ngeq [0.3, 0.5]$. **Theorem 4.1.** If \equiv is an InVInF β -filter of Γ , then $\overline{\epsilon}_{\equiv}(\varrho\delta \bigtriangleup \dot{\gamma}\delta) \geq \overline{\epsilon}_{\equiv}(\varrho\delta)$ and $\overline{\phi}_{\equiv}(\varrho\delta \bigtriangledown \dot{\gamma}\delta) \leq \overline{\phi}_{\equiv}(\varrho\delta)$ where $\varrho\delta \leq \dot{\gamma}\delta$. *Proof.* Assume that Ξ is an InVInF β -filter of Γ . Let $\varrho\delta$, $\dot{\gamma}\delta\in\Gamma$. Then $$\begin{split} \overline{\epsilon}_{\Xi}(\varrho\delta \bigtriangleup \dot{y}\delta) &= \overline{\epsilon}_{\Xi}(\varrho\delta + (\varrho\delta + \dot{y}\delta)) \\ &\geq rmin\{\overline{\epsilon}_{\Xi}(\varrho\delta), \overline{\epsilon}_{\Xi}(\varrho\delta + \dot{y}\delta)\} \\ &= rmin\{\overline{\epsilon}_{\Xi}(\varrho\delta), rmin\{\overline{\epsilon}_{\Xi}(\varrho\delta), \overline{\epsilon}_{\Xi}(\dot{y}\delta)\}\} \\ &= rmin\{\overline{\epsilon}_{\Xi}(\varrho\delta), \overline{\epsilon}_{\Xi}(\varrho\delta)\} \because \varrho\delta \leq \dot{y}\delta \Rightarrow \overline{\epsilon}_{\Xi}(\dot{y}\delta) \leq \overline{\epsilon}_{\Xi}(\varrho\delta) \\ &= \overline{\epsilon}_{\Xi}(\varrho\delta). \end{split}$$ Similarly, $$\begin{split} \overline{\phi}_{\equiv}(\varrho\delta\bigtriangledown\dot{\gamma}\delta) &= \overline{\phi}_{\equiv}(\varrho\delta - (\varrho\delta - \dot{\gamma}\delta)) \\ &\leq rmax\{\overline{\phi}_{\equiv}(\varrho\delta), \overline{\phi}_{\equiv}(\varrho\delta - \dot{\gamma}\delta)\} \\ &= rmax\{\overline{\phi}_{\equiv}(\varrho\delta), rmax\{\overline{\phi}_{\equiv}(\varrho\delta), \overline{\phi}_{\equiv}(\dot{\gamma}\delta)\}\} \\ &= rmax\{\overline{\phi}_{\equiv}(\varrho\delta), \overline{\phi}_{\equiv}(\varrho\delta)\} :: \varrho\delta \leq \dot{\gamma}\delta \Rightarrow \overline{\phi}_{\equiv}(\dot{\gamma}\delta) \leq \overline{\phi}_{\equiv}(\varrho\delta) \\ &= \overline{\phi}_{\equiv}(\varrho\delta). \end{split}$$ **Definition 4.2.** Let Ξ be an InVInF β -filter of a β -subalgebra Γ . For \overline{s} , $\overline{t} \in D[0,1]$, the set $\Xi_{\overline{s},\overline{t}} = \{\varrho\delta \in \Gamma : \overline{\epsilon}_{\Xi}(\varrho\delta) \geq \overline{s} \& \overline{\phi}_{\Xi}(\varrho\delta) \leq \overline{t}\}$ is referred as a level set of InVInF β -filter Ξ of Γ . **Theorem 4.2.** An InVInF subset Ξ of a β -algebra Γ is an InVInF β -filter if and only if for any $\overline{s}, \overline{t} \in D[0,1]$ the $\Xi_{\overline{s}}$ \overline{t} -InVInF level subset $\Xi_{\overline{s}}$ $\overline{t} = \{\varrho\delta \in \Gamma : \overline{\epsilon}_{\Xi}(\varrho\delta) \geq \overline{s} \& \overline{\phi}_{\Xi}(\varrho\delta) \leq \overline{t}\}$ is either a β -filter or $\Xi_{\overline{s},\overline{t}} \neq \emptyset$. *Proof.* Consider an InVInF level subset of Ξ in Γ , $\Xi_{\overline{s},\overline{t}} \neq \emptyset$. For any $\varrho \delta$, $\dot{\gamma} \delta \in \Xi_{\overline{s},\overline{t}}$, $\overline{\epsilon}_{\Xi}(\varrho \delta) \geq \overline{s}$ & $\overline{\epsilon}_{\Xi}(\varrho \delta) \geq \overline{s}$. Now $$\begin{split} \overline{\epsilon}_{\Xi}(\varrho\delta \bigtriangleup \dot{y}) &= \overline{\epsilon}_{\Xi}(\varrho\delta + (\varrho\delta + \dot{y}\delta)) \\ &\geq rmin\{\overline{\epsilon}_{\Xi}(\varrho), \overline{\epsilon}_{\Xi}(\varrho\delta + \dot{y}\delta)\} \\ &= rmin\{\overline{\epsilon}_{\Xi}(\varrho\delta), rmin\{\overline{\epsilon}_{\Xi}(\varrho\delta), \overline{\epsilon}_{\Xi}(\dot{y}\delta)\}\} \\ &= rmin\{\overline{s}, rmin\{\overline{s}, \overline{s}\}\} \\ &= \overline{s}. \end{split}$$ This implies that $\varrho\delta \bigtriangleup \dot{y}\delta \in \Xi_{\overline{s}}$. Similarly, $\overline{\epsilon}_{\Xi}(\varrho\delta \bigtriangledown \dot{y}\delta) = rmin\{\overline{\epsilon}_{\Xi}(\varrho\delta), \overline{\epsilon}_{\Xi}(\varrho\delta - \dot{y}\delta)\}$. Analogously, $$\overline{\phi}_{\equiv}(\varrho\delta \bigtriangleup \dot{y}) = \overline{\phi}_{\equiv}(\varrho\delta + (\varrho\delta + \dot{y}\delta))$$ $$\leq r \max\{\overline{\phi}_{\equiv}(\varrho\delta), \overline{\phi}_{\equiv}(\varrho\delta + \dot{y}\delta)\}$$ $$= r \max\{\overline{\phi}_{\equiv}(\varrho\delta), r \max\{\overline{\phi}_{\equiv}(\varrho\delta), \overline{\phi}_{\equiv}(\dot{y}\delta)\}\}$$ $$= r \max\{\overline{t}, r \max\{\overline{t}, \overline{t}\}\}$$ $$= \overline{t}.$$ Similarly, $\overline{\phi}_{\Xi}(\varrho\delta\bigtriangledown\dot{\gamma}\delta)$. Then $\overline{\phi}_{\Xi}(\varrho\delta\triangle\dot{\gamma}\delta)\in\Xi_{\overline{s}\ \overline{t}}\ \&\ \overline{\phi}_{\Xi}(\varrho\delta\bigtriangledown\dot{\gamma})\in\Xi_{\overline{s}\ \overline{t}}$. So, $(\varrho\delta\triangle\dot{\gamma}\delta)\in\Xi_{\overline{s}\ \overline{t}}\ \&\ (\varrho\delta\bigtriangledown\dot{\gamma})\in\Xi_{\overline{s}\ \overline{t}}$. Hence $\Xi_{\overline{s}\ \overline{t}}$ is a β -filter of Γ . On the other hand, assume that $\Xi_{\overline{s}}$ \overline{t} is a β -filter of Γ . For all $\varrho\delta$, $\dot{y}\delta\in X$, $\varrho\delta\triangle\dot{y}\delta$ and $\varrho\delta\bigtriangledown\dot{y}\delta\in\Xi_{\overline{s}}$ \overline{t} . Thus $\overline{\epsilon}_{\Xi}(\varrho\delta\triangle\dot{y}\delta)\geq\overline{s}$ and $\Xi(\varrho\delta\bigtriangledown\dot{y}\delta)\geq\overline{s}$. Take $\overline{s}=rmin\{\overline{\epsilon}_{\Xi}(\varrho\delta),\overline{\epsilon}_{\Xi}(\varrho\delta+\dot{y}\delta)\}$ for any $\varrho\delta$, $\dot{y}\delta\in X$. We have $\overline{\epsilon}_{\Xi}(\varrho\delta\triangle\dot{y}\delta)=\overline{\epsilon}_{\Xi}(\varrho\delta+(\varrho\delta+\dot{y}\delta))\geq\overline{s}=rmin\{\overline{\epsilon}_{\Xi}(\varrho\delta),\overline{\epsilon}_{\Xi}(\varrho\delta+\dot{y}\delta)\}$. Similarly, $\overline{\epsilon}_{\Xi}(\varrho\delta\bigtriangledown\dot{y}\delta)$. Analogously, for the non membership function. This proves Ξ is an InVInF β -filter. **Theorem 4.3.** Consider an onto β -algebra homomorphism f from Γ to Υ . If Ξ_2 is an InVInF β -filter of Υ , then its inverse image $f^{-1}(\Xi_2)$ is also an InVInF β -filter on Γ . *Proof.* Suppose that Ξ_2 is an InVInF β -filter of Υ . For any $\varrho\delta$, $\dot{\gamma}\delta\in\Gamma$, $$f^{-1}(\overline{\epsilon}_{\Xi_{2}}(\varrho\delta \bigtriangleup \dot{y}\delta)) = f^{-1}(\overline{\epsilon}_{\Xi_{2}}(\varrho\delta + (\varrho\delta + \dot{y}\delta)))$$ $$= \overline{\epsilon}_{\Xi_{2}}(f(\varrho\delta + (\varrho\delta + \dot{y}\delta)))$$ $$= \overline{\epsilon}_{\Xi_{2}}(f(\varrho\delta) + f(\varrho\delta + \dot{y}\delta))$$ $$\geq rmin\{\overline{\epsilon}_{\Xi_{2}}(f(\varrho\delta)), \overline{\epsilon}_{\Xi_{2}}(f(\varrho\delta + \dot{y}\delta))\}$$ $$= rmin\{f^{-1}(\overline{\epsilon}_{\Xi_{2}}(\varrho\delta)), f^{-1}(\overline{\epsilon}_{\Xi_{2}}(\varrho\delta + \dot{y}\delta))\}.$$ Also, $f^{-1}(\overline{\epsilon}_{\Xi_2}(\varrho\delta\bigtriangledown\dot{y}\delta))\geq rmin\{f^{-1}(\overline{\epsilon}_{\Xi_2}(\varrho\delta)), f^{-1}(\overline{\epsilon}_{\Xi_2}(\varrho\delta-\dot{y}\delta))\}$. Analogously, $$\begin{split} f^{-1}(\overline{\phi}_{\Xi_{2}}(\varrho\delta \bigtriangleup \dot{y}\delta)) &= f^{-1}(\overline{\phi}_{\Xi_{2}}(\varrho\delta + (\varrho\delta + \dot{y}\delta))) \\ &= \overline{\phi}_{\Xi_{2}}(f(\varrho\delta + (\varrho\delta + \dot{y}\delta))) \\ &= \overline{\phi}_{\Xi_{2}}(f(\varrho\delta) + f(\varrho\delta + \dot{y}\delta)) \\ &\leq rmax\{\overline{\phi}_{\Xi_{2}}(f(\varrho\delta)), \overline{\phi}_{\Xi_{2}}(f(\varrho\delta + \dot{y}\delta))\} \\ &= rmax\{f^{-1}(\overline{\phi}_{\Xi_{2}}(\varrho\delta)), f^{-1}(\overline{\phi}_{\Xi_{2}}(\varrho\delta + \dot{y}\delta))\}. \end{split}$$ Similarly, $f^{-1}(\overline{\phi}_{\equiv_2}(\varrho\delta\bigtriangledown\dot{\gamma}\delta)) \leq rmax\{f^{-1}(\overline{\phi}_{\equiv_2}(\varrho\delta)), f^{-1}(\overline{\phi}_{\equiv_2}(\varrho\delta-\dot{\gamma}\delta))\}$. Let $\varrho\delta, \dot{\gamma}\delta \in \Gamma$, so that $\varrho\delta \geq \dot{\gamma}\delta$. Consequently, Ξ_2 is an InVInF β -filter, $\overline{\epsilon}_{\equiv_2}(f(\dot{\gamma}\delta)) \geq \overline{\epsilon}_{\equiv_2}(f(\varrho\delta)) = f^{-1}(\overline{\epsilon}_{\equiv_2}(\varrho\delta))$ such that $f^{-1}(\overline{\epsilon}_{\equiv_2}(\dot{\gamma}\delta)) \leq f^{-1}(\overline{\epsilon}_{\equiv_2}(\varrho\delta))$ and $\overline{\phi}_{\equiv_2}(f(\dot{\gamma}\delta)) \leq \overline{\phi}_{\equiv_2}(f(\varrho\delta)) = f^{-1}(\overline{\phi}_{\equiv_2}(\varrho\delta))$ such that $f^{-1}(\overline{\phi}_{\equiv_2}(\dot{\gamma}\delta)) \leq f^{-1}(\overline{\phi}_{\equiv_2}(\varrho\delta))$. This shows that f^{-1} is an InVInF β -filter on Γ . #### 5. Conclusion In this work, we investigated interval valued filters, the product on interval valued fuzzy β - filters on β -algebras, interval valued fuzzy strong β - filters on β -algebras, and interval valued intuitionistic fuzzy β -filters on β -algebras, as well as their associated outcomes. Furthermore, it can be extended to other algebraic structures in the future research works. **Conflicts of Interest:** The author(s) declare that there are no conflicts of interest regarding the publication of this paper. #### References - [1] A. Al-Masarwah, H. Alshehri, Algebraic Perspective of Cubic Multi-Polar Structures on BCK/BCI-Algebras, Mathematics. 10 (2022), 1475. https://doi.org/10.3390/math10091475. - [2] R. Biswas, Rosenfeld's Fuzzy Subgroups with Interval Valued Membership Functions, Fuzzy Sets Syst. 63 (1994), 87-90. https://doi.org/10.1016/0165-0114(94)90148-1. - [3] R.A. Borzooei, H.S. Kim, Y.B. Jun, S.S. Ahn, On Multipolar Intuitionistic Fuzzy B-Algebras, Mathematics. 8 (2020), 907. https://doi.org/10.3390/math8060907. - [4] S. Ghorbani, Intuitionistic Fuzzy Filters of Residuated Lattices, New Math. Nat. Comput. 7 (2011), 499-513. https://doi.org/10.1142/S1793005711002049. - [5] P. Hemavathi, P. Muralikrishna, K. Palanivel, A Note on Interval Valued Fuzzy β -Subalgebras, Glob. J. Pure Appl. Math. 11 (2015), 2553-2560. - [6] P. Hemavathi, P. Muralikrishna, K. Palanivel, On Interval Valued Intuitionistic Fuzzy β-Subalgebras, Afrika Math. 29 (2018), 249-262. https://doi.org/10.1007/s13370-017-0539-z. - [7] P. Hemavathi, P. Muralikrishna, K. Palanivel, R. Chinram, Conceptual Interpretation of Interval Valued T-Normed Fuzzy β-Subalgebra, Songklanakarin J. Sci. Technol. 44 (2022), 339-347. https://doi.org/10.14456/sjst-psu. 2022.48. - [8] S.M. Hong, Y.B. Jun, S.J. Kim, G.I. Kim, Fuzzy BCI-subalgebras With Interval Valued Membership Functions, Int. J. Math. Sci. 25 (2001), 135-143. https://doi.org/10.1155/S0161171201005087. - [9] C.S. Hoo, Filters and Ideals in BCI-Algebras, Math. Japan. 36 (1991), 987-997. https://cir.nii.ac.jp/crid/ 1570009749732647040. - [10] P. Kaliyaperumal, A. Das, A Mathematical Model for Nonlinear Optimization Which Attempts Membership Functions to Address the Uncertainties, Mathematics 10 (2022), Article number 1743 (20 pages). https://doi.org/10.3390/math10101743. - [11] G. Muhiuddin, M. Al-Tahan, A. Mahboob, S. Hoskova-Mayerova, S. Al-Kaseasbeh, Linear Diophantine Fuzzy Set Theory Applied to BCK/BCl-Algebras, Mathematics 10 (2022), Article number 2138 (11 pages). https://doi.org/10.3390/math10122138. - [12] J. Neggers, K. H. Sik, On β -Algebras, Math. Solvaca. 52 (2002), 517-530. http://dml.cz/dmlcz/131570. - [13] Y.B. Jun, S.Z. Song, On Fuzzy Implicative Filters of Lattice Implication Algebras, J. Fuzzy Math. 10 (2002), 893-900. - [14] Y. B. Jun, Fuzzy Positive Implicative and Fuzzy Associative Filters of Lattice Implication Algebras, Fuzzy Sets Syst. 121 (2001), 353-357. https://doi.org/10.1016/S0165-0114(00)00030-0. - [15] Y.B. Jun, S.Z. Song, Foldness of Bipolar Fuzzy Sets and Its Application in BCK/BCI-Algebras, Mathematics. 7 (2019), 1036. https://doi.org/10.3390/math7111036. - [16] Y.J. Seo, H.S. Kim, Y.B. Jun, S.S. Ahn, Multipolar Intuitionistic Fuzzy Hyper BCK-Ideals in Hyper BCK-Algebras, Mathematics. 8 (2020), 1373. https://doi.org/10.3390/math8081373. - [17] K. Sujatha, M. Chandramouleeswaran, P. Muralikrishna, Fuzzy Filters on β -Algebras, Int. J. Math. Arch. 6 (2015), 162-167. - [18] K. Sujatha, M. Chandramouleeswaran, P. Muralikrishna, Intuitionstic Fuzzy Filters on β -Algebras, Int. J. Math. Sci. Eng. Appl. 9 (2015), 117-123. - [19] M.M. Takallo, S.S. Ahn, R.A. Borzooei, Y.B. Jun, Multipolar Fuzzy p-Ideals of BCI-Algebras, Mathematics. 7 (2019), 1094. https://doi.org/10.3390/math7111094. - [20] W.T. Xu, Y. Xu, X.D. Pan, Intuitionistic Fuzzy Implicative Filter in Lattice Implication Algebras, J. Jiangnan Univ. (Nat. Sci. Ed.) 6 (2009), 736-739. - [21] L.A. Zadeh, The Concept of a Linguistic Variable and Its Application to Approximate Reasoning I, Inform. Sci. 8 (1975), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5.