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Abstract. In the present paper we study the existence or non-existence of warped product semi-slant
submanifolds in quasi-para-Sasakian manifolds and prove that there are no proper warped product semi-
slant submanifolds in a quasi-para-Sasakian manifold such that totally geodesic and totally umbilical

submanifolds of warped product are proper semi-slant and invariant (or anti-invariant), respectively.

1. Introduction

The concept of warped product manifolds was introduced by Bishop and O'Neill for constructing
manifolds of non-positive curvature, as one of the most effective generalization of Riemannian product
manifold [15]. About two decades ago, Chen extended the work of Bishop and O’'Neill and studied
the warped product CR-submanifold of Kaehler manifolds [3,4], this study was also extended by many
geometers in different settings [2,13,14]. The existence or non-existence of warped product manifolds
plays an important role in differential geometry as well as in physics. In [6], Blair introduced the
notion of quasi-Sasakian manifolds that unifies Sasakian and cosymplectic manifolds. Tanno [19] also
contributed some remarkable results on quasi-Sasakian structure. Recently, quasi-Sasakian structure
have been studied in [1,17,18]). The geometry of almost paracontact manifold was studied by
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Kaneyuki and Williams in [16] as a natural generalization of natural odd-dimensional analogue to
almost para-Hermitian structures. The study of almost paracontact metric manifolds was carried out
in one of Zamkovoy's papers [20]. In [21], Olszak studied normal almost contact metric manifolds
of dimension 3. In 2009, Welyczko [10] investigated curvature and torsion of Frenet-Legendre curves
in 3-dimensional normal almost paracontact metric manifolds. Recently, 3-dimensional normal almost

paracontact metric manifolds were studied in [5,7, 8].

2. Preliminaries

Let M be a (2n+ 1)-dimensional almost paracontact manifold with structure tensor (f, £, v, <, >),
where f, € and v be a tensor field of type (1,1), a vector field, and a 1-form, respectively on M
satisfying

f¢E=0, fP=l-v®Ef wvof=0, (2.1)

v(€)=1 v(X)=<X, &>,
<f f->=—-<,>4+URw, (2.2)

where [ is the identity on the tangent bundle TM of M. We say that M is a paracontact metric

manifold if there exists a one-form v such that
< X,FY 5= du(X, V) = L (Yu() - V() ~ v([X. D))
for all X,V € X(M), where X(M) denotes the Lie algebra of vector fields on M, and
<fX,Y>4+<X,fYy>=0 (2.3)

for all vector fields X and ) on M.

Further, an almost paracontact metric manifold is called a quasi-para-Sasakian manifold if
(Vaf)Y =v()FX—- < FX,Y > ¢, (2.4)

and
Val=—fFX, FFX=FFX, <FXY>=-<X FY>, (2.5)

where V denotes the Levi-Civita connection with respect to the metric tensor <, > and F is a tensor
field of type (1,1).
By applying f to (2.5) and using (2.1), we obtain

FX = v(FX)E - (V). (2.6)
Also by replacing X by £ in (2.5) it follows that
Ve = 0. (2.7)

Using (2.4), (2.6) and (2.7) we infer
FE = v(FE, (2:8)
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and
(Vef)X =0 (2.9)

for any X € [(TM).
If M is a contact CR-submanifold of M and the projections on D and D+ are denoted by P and Q,

respectively; then for all vector field X tangent to M, we infer
X =PX+ QX +v(X)E. (2.10)
Now we put
BAX+CX="1A, (2.11)

where BX and CX are tangential and normal part of fA on M.
Next we define the tensor field of type (1,1) on M by

FX = FPX, (2.12)
and the (T M1)-valued 2-form w by
WX = FQX. (2.13)

Since D is invariant by f, then it follows from (2.11) and (2.12) that B is I'(D+)-valued and t is
[(D)-valued, respectively.
By using (2.1), (2.10), (2.12) and (2.13), we obtain

wX +tX = fX, (2.14)
and
t24+t=0,C3+C=0. (2.15)

Then by (2.15) we conclude that t and C are f-structure in sense of Yano [11] on T M and TM*,
respectively.

Now suppose <, > be the induced metric and ¢ be tangent to M. Further, we suppose V and V- be
the induced connections on the tangent bundle T M and the normal bundle T+M of M, respectively.

Then the Gauss and Weingarten formulas are given respectively by
VaY =0(X,Y)+Vx), (2.16)
Vil = —MX + Vi (2.17)

for all vector fields X', ) tangent to M and any vector field A normal to M, where o and A are
the second fundamental form and the shape operator for the immersion of M into M. The second

fundamental form o and shape operator Ay are related by
<o(X, V), A>=< X, )Y > (2.18)

for all vector fields X', Y tangent to M and vector field A normal to M.
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Furthermore, for any Z € I'(T M), we put
FZ=aZ+pZ, (2.19)

where aZ and BZ are the tangent part and the normal part of FZ, respectively.
From (2.3) we have
<tX, Y >+ <X tY>=0. (2.20)

In account of (2.6), (2.11), (2.12) and (2.16) we obtain
aX = v(X)u(FX)E - t(Vyé) — Bo(X,§), (2.21)

and
BX = —w(Vxg) — Co(X,§). (2.22)

Proposition 2.1. /f M is a contact CR-submanifold of a quasi-para-Sasakian manifold M, then

[(TM) is invariant with respect to the action of f if and only if we have
w(Vx€) =0, (2.23)

and
Co(X,€) =0. (2.24)

Proof. From (2.22) it follows that F is a tensor field of type (1,1) on M if and only if
w(Vx€) + Co(X,€) =0. (2.25)

Then (2.23) and (2.24) follows from (2.25) (since < wY, CA >=0 for any Y € [(TM)).

Corollary 2.1. /f M is a contact CR-submanifold of a quasi-para-Sasakian manifold M such that
[(TM) is invariant with respect to the action of F, then both the distributions D and D+ are

invariant with respect to the action of F.

Proof. Let X € (D), then by using the third relation of (2.5) and (2.8) we obtain
FX, E>=—< X, FE>=v(FE) < X, £ >=0.

On the other hand, by using (2.2), the second relation of (2.5) and the invariace of D with respect

to the action of f we infer
<FX, Z>=<FfX Z>=—-< FX' fZ>=0,

where X’ € (D) and Z € I'(D1). Hence D is invariant by F. In a similar way it follows that D+ is
invariant by the action of F.

The Riemannian connections V and V- allow us to define the usual covariant derivatives as

(Vat)Y = Vaty — tVal, (2.26)
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and
(Vaw)Y = Viw) — wVa). (2.27)

Now, the canonical structures t and w on a submanifold M are said to be parallel if Vt =0 and
Vw = 0, respectively. On a CR-submanifold of a quasi-para-Sasakian manifold, it follows from (2.5)
and (2.16) that

Vxl=—-fFX, (2.28)

and
o(X,€)=0 (2.29)
for each X € TM . Furthermore, from (2.29) we obtain
A€ =0; v(Ay)X =0. (2.30)
Lemma 2.1. For a contact CR-submanifold M of a quasi-para-Sasakian manifold M, we infer

(Vat)Y =NpyX + Bo(X,Y) +v(Y)aX— < FX,Y > ¢, (2.31)

(Vaw)y = Co(X,Y) —o(X, 1Y) + v(Y)BX. (2.32)
Proof. By using (2.4), (2.16)-(2.19), (2.26) and (2.27), we obtain
(@X +BX)WW(YV)— < FX,YV>¢ = (Vat)V+ (Vaw)Y — Ay
—Bo(X,Y) — Co(X,Y)+0(X,tY)

for any X, € ['(TM). By equating the tangential and the normal parts in above relation, (2.31)
and (2.32), respectively follows.

The covariant derivatives of B and C are given respectively by
(VaB)XA = VyBX — B(Vx)), (2.33)

and
(VHO)X = VECX — C(VFA) (2.34)
for any X € I(TM) and > € [(TM?1).

Lemma 2.2. For a contact CR-submanifold M of a quasi-para-Sasakian manifold M, we infer
(VaBA=NcaX —t(AM\X)— < FX, A>E, (2.35)

and
(VEOA = —a(X, B\) — w(MX) (2.36)
for any X € T(TM) and X\ € T(TM™).
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Lemma 2.3. For a contact CR-submanifold M of a quasi-para-Sasakian manifold M, we infer
NexY = Ny X, (2.37)
and
<oU, V), fZ>=<VyZ, V> (2.38)
foralld € T(TM),V € (D) and X, Y, Z € [(D).

Proof. By using (2.2), (2.4) and (2.16)-(2.18), we have
<Arxd U >=< (Y U), fX >=< V), fX >—- < Vy), X >

=<V, X >=— < f(Vyd), X >= — < —(Vyf)Y + Vufy, x >
+ <V FU- < FU,Y > E X > — < Vyfy X >
— < AU VEFY, X >=< Apylh, X >=< NeyX U > .
Since v(Y) = v(X) = 0, therefore we find (2.37).
Next, by using (2.2), (2.4) and (2.16), we obtain
<oUV),fFZ>=<VyV,fZ>— <V, VyfZ >

— <V, (VufZ+f(VyZ) > - <V, u(2)FU— < FU,Z > £ >
— <V, f(Vy2) >=< fV,VyZ >=< fV,Vy Z >
which leads to (2.38).

A submanifold M of an almost para contact metric manifold M is said to be invariant if F is
identically zero, that is, fX € T.M and anti-invariant if t is identically zero, that is, fX € T+ M, for
any X € TM.

For each non-zero vector X tangent to M at any point x such that X is not proportional to £, we
denote by 6(X), the angle between fX and T, M for all x € M.

Definition 2.1. A submanifold N is said to be slant if the angle 6(X) is constant for all X € TyN—{{}
and x € N. The angle 6 is called a slant angle or Wirtinger angle. Obviously, if 8 = 0, then N is
invariant; and if 6 = /2, then M is an anti-invariant submanifold. If the slant angle of N is different

from O and /2 then it is called proper slant.

A characterization of slant submanifolds is given by the following theorem:

Theorem 2.1. [9] Let N be slant submanifold of a quasi-para-Sasakian manifold M such that & is
tangent to N. Then N is slant submanifold if and only if there exists a constant X € [0, 1] such that

22X = u(X —v(X))E. (2.39)

Furthermore, if 6 is the slant angle of N, then u = cos? 6.
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Corollary 2.2. Let N be a slant submanifold with slant angle 6 of a quasi-para-Sasakian manifold M

such that € is tangent to N. Then we have
<tZ W >=cos0{— < Z, W > +u(Z)v(W)}, (2.40)
<WZ, WwW >=sin?0{— < Z, W > +u(Z)v(W)} (2.41)
for any Z, W tangent to N.

3. Warped product semi-slant submanifolds a quasi-para-Sasakian manifold

For two Riemannian manifolds (Ny, <,>1) and (N, <,>5) and a positive differentiable function
0 on Ny, the warped product of Ny and N is the Riemannian manifold NixsNo = (N1 xNa, <, >),
where

<, >=< > 402 <, >0 (3.1)

More explicitly, if the vector fields X and Y are tangent to Ny xgN, at (x,y), then
< XY >=<,> (7['1 * X, My *y) +52(X) <,>2 (7['2 * X, o *y), (32)

where 7;(i = 1, 2) are the canonical projections of N1 xgN> onto Ni and N, respectively, and * stands
for derivative map.

If M = NixsNo is a warped product manifold, this means that Ny and N, are totally geodesic and
totally umbilical submanifolds of /W respectively.

For warped product manifolds, we have the following proposition [12, 15]:

Proposition 3.1. On a warped product manifold M= NixsN>, we have

(1) VaY € T(TNy) is the lift of VxY on Ny,

(2) VuX =Vl = X(Ind)U,

(3) VuV =V, V- <U,V > Vins
for any X,Y € T(TNy) and U,V € T(TNy), where V and V' denote the Levi-Civita connections on
M and N», respectively.

Let us suppose that M be a quasi-para-Sasakian manifold and NjxsN> be a warped product semi-
slant submanifold of a quasi-para-Sasakian manifold M. Such submanifolds are always tangent to the
structure vector field £. If the manifolds Ny and Nt (resp., NL) are slant and invariant (resp., anti-
invariant) submanifolds of a quasi-para-Sasakian manifold M, then their warped product semi-slant
submanifolds may be given by one of the following forms:

(1) NgxsN7, (i) NgxgNy, (iii) NpxsNg, (iv) NpxsNg.

Here, we are concerned with cases (i) and (i/).

Theorem 3.1. /f M is a quasi-para-Sasakian manifold, then there do not exist proper warped product
semi-slant submanifolds NgxsNt such that Ny is a proper slant submanifold, Nt is an invariant

submanifold of M and € is tangent to N .
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Proof. Let NgxsN7 be a proper warped product semi-slant submanifold of a quasi-para-Sasakian
manifold M. For any X,V € (T Ng) and U,V € I'(T Nt), we have

(Vaf)U =VxfU — F(Vald). (3.3)
Thus, from (2.4), (2.11), (2.14) and (2.16) we obtain
VU)FX— < FXU>E=0(X, tU) — Ba(X,U) — Co(X,U).

This means that
Bo(X,U) =0, (3.4)
and
Co(X,U)—o(X, tU) =0, (3.5)

On the other hand, by interchanging roles of & and X in (3.3), we conclude

tXlog(0)U = NyxUU + Xlog(d)tU + Bo(U, X), (3.6)
and
ViwX +oU, tX) — CoU, X) = 0. (3.7)
From (3.6), we arrive at
tXlog(d) <U U > = <NyxUU U >+ < BoU,X),U> (3.8)

= <oU,U),wX >+ < Bo(U,X), U >
= <oU,U),wX >—<o(X,U),fU>
= <ol U),wX >.
On the other hand, since the ambient space M is a quasi-para-Sasakian manifold, then by using (3.5)
and (3.7) we get
Ch(Z,¢) =0 (3.9)

forany Z € I(TN).
By using (3.5) and (3.7), we get wX = Co(X,£) = 0. Thus we have tX/og(d) < U,U >= 0, this
implies that tX/og(d) = 0, that is, the warping function ¢ is constant on Nj. O

Theorem 3.2. /f M is a quasi-para-Sasakian manifold, then there do not exist proper warped product
semi-slant submanifolds NgxgsN | such that Ng is a proper slant submanifold, N is an invariant
submanifold of M and € is tangent to N .

Proof. Let NgxsN, be a proper warped product semi-slant submanifold of a quasi-para-Sasakian
manifold M such that ¢ is tangent to N. For any X, € (T Ng) and U,V € [(TN_), we have

(VU =V — F(Vald).
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Using (2.4), (2.14), (2.16), (2.17) and Proposition 3.1, the above equation takes the form

VU)FX — g(FX U)E = Ny X + Vrwld — X (logd)wld (3.10)
—fo (X, U).
This means that
AtX + Bo(X,U) =0, (3.11)
and
Vywld — X(logd)wld — Co(X,U) = 0. (3.12)

By interchanging roles of X and U in (3.10), we arrive at
VU)FX—-<FX U>E = tXlogO)U+oU, tX) — Npxld (3.13)
+VEwX — Xlog(8)wl — Ba(U, X)
—Co(U, X).

Equating the tangential and normal components in (3.13), we find

tXlog(0)U = Nyaxld + Bo(U, X), (3.14)
and
oU, tX) + ViwX — Xlog(§)wld — CaU, X) =0, (3.15)
respectively.
From (3.14), we find
<N, tY >+ < Bo(U, X), tY >=0. (3.16)

Since the ambient space M is a quasi-para-Sasakian manifold, ¢ is tangent to N and using (2.2), we

obtain

<Bo(X,U)tY> = <fo(X,U),fY>
= —<oXxU),y>+vQ)v(c(Xx,U))

= 0.
This implies that
< Bo(X,U), tY >=<o(lU,tY), wX >=0. (3.17)
Thus we have
<oU,tYy), fX >=0 (3.18)

forany X, € I'(T Ng).
Moreover, making use of (3.11) and (3.18), we get

<o(X,tY), fu >=0. (3.19)
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By using the Gauss-Weingarten formulas and considering that Ny is totally geodesic in N, we arrive at

<o(X, tV), fU> = < VX, fU)=—< (V&)U > (3.20)
= — < VpfX — (Vo)X U >
= —<VptX U>— < VpwX U >
+ <Uu(X)FtY.U> - < FtY, X >< U >
= <ApxtY U >-vU) < FtY, X >
= <o(tY,U),wX > —-vlU) < FtY, X >
= vU) < tY, FX > .

Thus from (3.19) and (3.20), we conclude

v(U) < tY, FX >=< o(X, t), fuU >= 0. (3.21)

Here, if v(U) = 0, then by using (2.32) and (3.12), we leads to

Xlog(0)wd =v(Vrld) = — < —fFX,U >=0.

This is impossible. Because U is a non-zero vector field and N| # 0. Thus < tX, t) >= cos?0{— <
X, Y > 4vu(X)vu(Y)} = 0, this implies that the slant angle 6 is either identically 7/2 or the warping

function ¢ is constant on Ny . This completes the proof. [l
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