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Abstract. By principal motivation from the results of the new iterative scheme that produces faster
results than K-iteration. In this article, we study generalized results by a new iteration scheme to
approximate fixed points of generalized contraction and Suzuki non-expansive mappings. We establish
strong convergence results of generalized contraction mappings of closed convex Banach space and also
deduce data dependent results. Furthermore, we prove some weak and strong convergence theorems

in the sense of generalized Suzuki non-expansive mapping by applying condition (C).

1. Introduction

Mappings play a vital role in the field of inequalities (see of example [17-20]). The mappings
which have Lipschitzis constant equal to 1 are called as non-expansive mappings. Let Z be a non
empty bounded closed convex subset of k. A Banach space Z has the fixed point property (FPP)
for non expansive mapping if for every non-empty bounded closed convex subset of Z contains a
fixed point. Meanwhile, in 1965 major struggle has been proposed to study the theory of fixed point
of non-expansive mappings in the setting of reflexive and non-reflexive Banach domain. Since then,
a number of generalizations and extensions of non-expansive mappings and their results have been
obtained by many authors. We can say that FPP provides basis of physical appearance of the Banach
space. When K is a weakly compact convex subset of Z, a non-expansive self-mapping of K requires
not have fixed point. However, if the norm of Z has suitable ordered properties (i.e., uniform convex
and some others) each non-expansive self-mapping of every weakly closed convex subset of Z has a
fixed point. In this case, K is called a weak fixed point property. All over in this article we assume that
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K is a non-empty subset of a Banach space Z and Q(T), the set of all fixed points of the mapping

T over K. A mapping T : K — K is called to be a non-expansive if ||Tx, — Tyo| < ||Xo — Yol|, of

all xo, Yo € K. This is also called quasi non-expansive if Q(T) # ¢ and ||Tx, — pl|| < ||xo — pl|, of
all x, € K and of all p € Q(T). It is known as Q(T) is non-empty while Z is uniformly convex, K
be a bounded closed convex subset of X and T be a non-expansive mapping [2]. In 2008, Japanese
mathematician Suzuki [3] presented idea of generalized non-expansive mappings which is also called
condition (C) and defined as A self-mapping T on K is said to be condition (C) that,
1
2

of such mappings, Suzuki also obtained the existence of fixed point and convergence results. In [4],

X0 = TXoll < [[X0 = Yoll == | TXo — TYoll < X0 = Yol . VX0, Y0 € K

he proved that condition(C) have faster results as compared to non-expansive mappings. For a self-

mapping T be defined over [0, 3]

By this, we claim that T satisfy the condition (C), but T is not a non-expansive mapping. In
extension, Picard’s iterative scheme is approximate the fixed point of contraction mappings in the
Banach contraction principle. Over time, many mathematicians [6—10] played a fundamental role in the
development of the current literature. Sahu V. K [5] and many other tried their best as compared to the
previous one and added outstanding work. Inspired by the above, now we generalize some results by a
new iteration scheme to approximate fixed point of generalized contraction and Suzuki's non-expansive
mappings. Also we discuss strong convergence theorems of generalized contraction mappings with
closed convex Banach space and some data dependence results are also deduce. Moreover, we prove
some weak and strong convergence results in type of generalized Suzuki non-expansive mappings by

using condition (C).

2. Preliminaries

(2.1) [12] Opial property if for each sequence {w,} in X, (where X be a Banach space) converging

weakly to x, € X take
lim sup|[w, — x|l < lim sup|lw, — yollV yo € X
n—oo n—oo

such that y, # xo.
(2.2) Let K be a non-empty bounded sequence convex subset of a Banach space Z and consider
{w,} bein Z of xg € Z, that

d(z,{wn}t = lim sup|[w, — X -
n—oo
The asymptotic radius of {w,} comparative to K is given that

d(K,{wp}) =inf{d(xo, {wn}) : xo € K}.
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The asymptotic center of {w,} relative to K is the set
B(K,wn}) = {x0 € K:d(x, {wn}) = d(K,{wn})}.

(2.3) A uniformly convex Banach space, X and {w,} be a real sequence such that 0 < s < w, <
t <1,V n>1. Consider {w,} and {w,} be two sequences of K given that /im, . sup ||w,| < d,
limp—oosup |wnll < d and  limp_eosup ||wn + (1 — @wpy)wn| = d holds of some d > 0. Then,
limp_eo ||ton — wpl|| = 0. It is called a uniformly convex Banach space, B(K, {w,}) contains exactly
one point.

(2.4) A mapping T : K — K is called demi-closed with respect to y, € K if of each sequence {w,}
in K and K be a closed, convex and non-empty subset of a Banach space K of each x, € K, {wn}
converges weakly at x, and {Tw,} converges strongly at yo = T X, = Yo.

(2.5) [16] Let{un}ey and {v,}52, are two fixed points iteration sequences that converges to the
same fixed point q. If ||u, — q|| < a, and [|v, — q|| < by, of all n >0, wherever {a,}952, and {b,}52,
be two real convergent sequences. Then we say that {u,}72, converge faster than {v,}%2, to q if
{an}52, converges faster as compare to {b,}7,.

(2.6) Let K be a non-empty subset of a Banach space Z. Consider that a mapping T
K — K is said to be generalized contraction when 3 0 < h < 1 such that ||[Ts—Tt| <
hmax[||s—t||,|ls=Ts||.|lt=Tt|l.|ls=Tt]|+|lt—Ts|]] Vs, teK.

(2.7) A Banach space K is known as uniformly convex if of each € belongs to (0, 2] thereisa ¢ > 0
such that of 5,t € K

s < 1
el < 1
ls—t|| > €
Implies that
lIs + ¢l
<.
5 <

[1] Let X be a non-empty set and ¢ is collection of X, then

(1) X belongs to T.

(2) Absolute union of number of T belongs to 7.

(3) Limited intersection of 7 belongs to T.

Than 7 be a topology over X so, (X, T) is called topological space. Topology also helpful in different

properties like convergence, existence, convex and many other.
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3. Some Basic Results

Proposition (3.1) ( [3]) Let Z be a non-empty subset K of a Banach space K and T be a self
mappings.
(a1) If T be non-expansive mapping then T satisfies condition (C).
(az) Every mapping satisfying condition (C) with a fixed point is quasi non-expansive.
(a3) If T satisfies condition (C)

IXo = TYoll £ 3| Tx0 = Yoll = [T X0 — TYoll + l|Xo = Yol VX0, yo € C.

Lemma (3.2) Let {\,}%_, and {u,}5—o be a non negative real sequences satisfying the given
inequality Amy1 < (1 —&€m)Am + iy, also €, € (0,1) YV me N, =% 4 &, = co and ‘g—: — 0 as
m — 0o, then limm_ooAm = 0.

Lemma (3.3) ( [15]) Let{A\,}32, be a non-negative real sequence for which assume that 3 ng € N
such that V n > ng, the given inequalities satisfies A\py1 < (1 — vp)Ap + Vplhp, also v, € (0,1) V
neNlN X2 qwp=o00and u, >0V, n€ N, so0 < /impoosupXy < 1iMp_soo SUP .

Lemma (3.4) [13] Let K be a uniformly convex Banach space and T be a self-mapping over a weakly
compact convex subset K. Consider that T fulfil condition (C), then T has a fixed point.

Lemma (3.5) Suppose that X be a subset K of a Banach space with the Opial’s property [12] and
T be a self mapping over X. Suppose T satisfies the criteria of condition (C). If {w,} converges
weakly to 7 and /imp— ||[mn — Twn =0||, then TT = 7. It is | — T demi-closed at 0.

Here we define our new iterative process, it has better approximations and have faster rate of con-
vergence then previous all (for further details see [11]). Now we generalized our results by this faster

iterative scheme

up € K
Zn — T[(l - 5n)Un + 6nTUn]
Yo = T[(1—an)Tun+ anTz,]

Unt1 = Tyn. (1)

4. Main Results

In this section we generalize results via new faster iterative scheme to approximate fixed point
of generalized contraction and Suzuki's non-expansive mappings. We generalize strong convergence

results in closed convex Banach space and some data dependence results are also deduce.

Theorem 4.1. Suppose K be a non-empty closed convex subset of a Banach space Z and T : K — K
be generalized contraction mapping. Assume {hp},—, be an iterative sequence which is generated by
(1), with the real sequence {m,}r—y and {kn}r—y in [0, 1] satisfying T myy, = 0 then, {hn}ry

converges strongly to a unique fixed point of T .
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Proof. The well-known Banach principle has guarantees of existence and uniqueness of fixed point g.
We prove that {h,} converges to a fixed point g, by using (1) we get
lza =gl = [ITI(L—=2)hn+v,Tha] — 4l
< h max[l(1 =v,)h+v,Thy — gl
(X =) hn+ 7T ha) = T{(L = ¥p)ha + havp}
g =Tall (T =) hn+ ¥, Thy — Tyl +

g = T((X =vn)hn +vnhn)ll]

< hmax{[[(T=p) hn + v Tha = T4l [[((1 = ¥p)hn +¥n T hn) = zall,
(=) hn + 70 Thn = gll + lg — zall]. (2)
Case#1 Let
1Zn = gll < AL = ¥4) o + YT hn = gll]. 3)
Case#2 Let
lzo =gl < (T =7n) ho+ v, T hn = znll]
= hlI(T=p) b+ 7, Thy — g+ g — zll]
< I =n) b+, Thy — gl + Iz — 9ll]
lzo =gl < L= 70) o + 30— gl )
Case#3 Let

20 =gl < AIICL=¥s) b+ 75Ty = gl + |20 — gl]
h
20 =gl < =01 =7a) ho +7aT b = g1l

Let n = max[h, 1] € (0, 1)

1za—gll < 11 —=4) ha +v¥nha — 9l
< nl(T=v9p) b= (A =7)9 +Yn T hy —¥n9l
< n (X =7, ha = gll + 7 lITha — gl .

Now
IThy—gll < hmax[||h, —gll . [ITh—gll. ITg—gll +Ilg — T hall]
= hmax(||hy — gl ITha — gl . IThy — gl + |hn — 9]
= hmax[[|h, — gl . IThy — gll + [|hn — 9ll]

< nllhy—gll.
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lzo —gll < 1 [(1—)lha—gll +vam llhn — 4l

IN

n (1=, +v,mM] Il — 9l
n [T =) =) llh, =gl (5)

IN

Similarly

th_gH = HT(]-_nn)Thn“‘nnTZn_TgH

IN

hmax[[|(1 = n,)Thn +n,Tz, — 9|,
1L =m)Thy+n,T2z0 = T((L=mp)Thy +n,T2z0)ll,
g = Tall. I((X =n,)Thy +n,T2zn) — Tgll +
g = T((1 =n,)Thy+n,T2zp)| -
Case#1
A= gl < Al = n0) T ho + 15T 20 — 9l1]- (6)
Case#2

(el

IN

h[“(l —Ny)Thy+n,Tzy — hva]
= KX =n)Tha+n,Tzo—g+9g— ]

h
A = 9| T Il = 7)Tho + 0T 25 = g]l]. (7)

IN

Case#3
11 = gl
1 = gl

Let n = max{h, {2} € (0,1)

IN

AL = n0)Tan +m, Tz — qll + ||g — hp[]

IN

h
m[”(l —Np)Tha +1,T2, — ql].

i =gl < n UL =n2)Tha+ 05T 20 = 9]
= N[ =) IThy = gl +n,IT 25 — gll]
< @ =n)IThy =gl +n1m, 120 — gll]
< n[n (1 =n,)1ha =gl + 711 = ¥(L=n)) 1hn — gll]
< P[(1=np) 1A = gll + 1M (1 = ¥n(1 = 1)) 17 — 9ll]
< [(1—n,) 1hn = gll +1mmp(L =71 = 1) [1hn — ]
< P[(L =10 + 010 — MMYa(1 = )] [1hn — g
< 7P[(1 = np(1 = 1) = mmpyn(L = 0)] 110 — gl

o =gl < 7’[(1= (@ =n)n,(L+nv,)]1hn — gl (8)
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lhnss =gl = [ TH, = 9]

ITIT(1=m,) Thy+mn,Tzn] =9l

max{| o] 14y~ Tl ~ Tl |1, — Tl + lo ~ T

IA I

IN

hmax ||T (1 —n,) Thy + T2z, — 9|,
IT((L=nn)Thy+n,T2zp) = T(T(L=m,)Thn+n,T2n))ll
ITg =gl IT(T(X=n,)Thy —n,T2n)) =9

+IT(X =n)Thy +1,T25) — 9]

= hmax[||h, — gl ||[H, = TH,||.0,||TH, — 9| + ||, — 4]

= hmax(||y = g||. [[Anrs — B[ N1 Anss — gll + ||y — g -

Case#1
hns1 — gl < h||H, — ]|
Case#2
h
[hn+1 —gll < 1°h | — gll-
Case#3
h
[Ans1 — gl < 17 A, = 9]
7n = max{h, 1fhh} €(0,1)
lhns1 — gl < n||H, — 4|
< 0P (L= 0,1 +n0v,) (1 —n) 1A, — gll]
< 921 =n,(L4+nv,) (L =) Iy — gll]. 9)

Repetition of above scheme gives the following inequalities

a1 =gl < 0°(L=ns(1+17,) (1 =) 1Ay — gl
1oy =gl < 71 =11 (L +1Y5-1) (L= 1)) o1 — g

A1 — gl < PP(1 =y ol +n7,2) (L =) |lhn—2 — 9|

I =gl < 7°(1—=no(L+nv0) (L =) lIho — gl (10)

From (10) we can easily derive

lhn+1 = all < llho = gll > IR L = me(1+7rv) (1 =) (11)
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Where 1 — 1, (1 +7mvx) (1 —1n) < 1 because n € (0,1) and n,v, € (0,1) ¥V n € N. We know that
1—-h<o "V xe(0,1) then by (11), we have
lho — ql| n3("+ D)
oML _omi(1+ 14
Taking limit of both sides in (12), we get im0 ||hn — 9] i.e hy — g of n — oo as required.

[An1 — gl < (12)

O

Theorem 4.2. Suppose that K be a non-empty closed convex subset of a Banach space Z and
T : K — K be a generalized contraction mappings. Consider {x,};—, be an iterative sequence that
is generated from (1) with real sequences {an}p—q and {B,},—, in [0, 1] satisfying the criteria of

L° yanB, = 0o. Then, iteration scheme (1) be T- stable.

Proof. Let {up}52, C Z be arbitrary sequence in K. Suppose that the sequence generated from (1)
be x,+1 = (T, x,) converging to a unique fixed point g (by theorem 4.1) and €, = ||up+1— (T, up)||
we prove that Iim, 00 € =0 <= limy_soln = q.

Assume limp o0 €, =0 we take
lnr = all < Mlupsr = (T, un)ll + I1F(T, un) — 4
= e+ IT(T((1=Bn)Tun+BnT((1—an)un+anTup))) — 4l
< a*(1—(1—a))an(l+Ba)|lun — gl + €n.

Since a € (0,1) and o, B, € [0,1] Vn € N and lim,—~ €, = 0. So, by above inequality and lemma
3.2 which leads lim— 0 ||un — q]| = 0. Hence lim,—00 up = q.
Conversely

Consider that limp_e0 Up = g We get

€ = HUn+1 —f (T, Un)”

IN

luntr = all + [1F (T, un) — qll
< lunsr = qll + (1 = (1 = a)an(l + aBy) llun — dll

<= limp—o0€n = 0. Hence, (1) is stable w.r.t T.
O

Theorem 4.3. Suppose that K be a non-empty closed convex subset of a Banach space Z and
T : K — K be a generalized contraction mapping of a fixed point p . It is given that ug = xg € C,
let {un}Sy and {x,}°2, be iterative sequences generated by (1) respectively, with real sequences
{an}sey and {B,}52, in [0, 1] satisfying

(S1) a<ap,<landB < B, <1, for some results like a,3 > 0 and ¥ n € N. Then, {x,}°,

converges to p faster as than {u,}52, does.
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Proof. By (11) we get
xte1 = Il < llxo = pll @™ I (1 = (1 — a))auw(1 + o). (13)

The following inequality is due to (9) and Lemma (3.2) which is obtained from (1), also converges to

a unique fixed point p.
luns1 = pll < lluo = pll ®HINP_o(1 = (1 = @))ork(1 + By)

Together with supposition (S1) and (13) implies that

A

Ixarr = ol < lxo = pll I [(1 = (1 — @))e(1 + aB)]
= xo—pll @™V - (1 - a))a(l +aB)]"
Similarly (15) and supposition (S1)
lunsr = pll = lluo = pll P FIME_ (1 = (1 = @))ex(1 + Bax)

= luo = pll &®™ (1 = (1 - @))a(l + Ba)] "

Define
an = lx—pll™I[(1—(1-a)a(l+ap)]"?
by = lluo—pll ™ V[(1 - (1-a))a(l + o))"
Then
dn
v, = —
n bn
_xo = pl @21 = (1 - a)a(1 + ap)] "
— luo — plle2HD[(1 = (1 — a))a(1 + af)] "
= [l
Since
s n+2
lim —L — Jim —a<l1
n—oo n n—oo O(”J"l
By applying the ratio test we get
YoV, < oo
Hence from (17), we have
im 2% — |im v, =0

n—oco b,  n—oco

Implies that {x,}%2 is faster than {u,}5,.

Now we prove following data dependence results.

(14)

(15)

(16)

(17)
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Theorem 4.4. Suppose that T bean approximate operator of a generalized contraction mapping T .
Consider that {h,}2, be an iterative sequence generated from equation (1) for T and we define an

iterative sequence {En}ﬁ;o which is given as
Eo e K
Zn = T[(l - 'Yn);;n + ’Yni:fﬁn]

Wy = THL=o0p)Thn+ onT 2]

hn+1 - %/’A{/,—, (18)

o0

With real sequences {ap}rey and {y,}req in [0, 1] which satisfying the
(N i<amy,VnenN
(1) £ pany, =00 ifTqg=qand TG =G

such that lim,_s hn = q, then we get

lg—all <

l1—«a
Where € > 0 is a fixed number.
Proof. It follows from (1) and (18)
lon=Zall = ||TCt =¥ o + T hn) = T = 40w = 70T i)
< || =)0+ 0T ho) = T =)o+ 7, T )
+ | 7@ = ¥ B+ 70 Tho) = (@ = 70 + 7, THo)

< «a H(l —Y) o+ YT hn = (1= Yp)hn — v, T hy)|[ + €

< al(T =) |hn + bl + v, | Thy — Thyl| + €

< af(1 = 9p) ||hn = Bn|| +¥n{ ‘Th,, — Thal| + HTE, —Tha||} +e¢

< af(1 = 7o) || = Pl | + ot | o = | + vl + €

< ol =7, (1= @) |[hn = B | + o] 4 (19)
Using (19), we have

‘ W = HT((l ) Thy +anTzn) — T((L = an)Tha + T2,

< T((1—an)Thy+anTzn) — T((L—an)T hy+ anT Z,)
FT((L = an)Thy+ anT2n) — T((1 = an)Thy + anT 25)

IN

a H(l —an)Thy+apTz,— (1 — an)fﬁn — a,,"f?n) + €

Tz, — %En

IN

a[(1—an)

‘Th,, —Th,

+ ap

+€
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< of(1—-ap)

(Thn —Th,

+ HTFn —Th,

Van[l|Tz0 — T2l + ) T3, -T2,

|+e€

IN

af(1 - ap)a

Xn_hn’

tanaa (1= 7,) (1= o) ||An — hal| + 7,6 + €] + €

hn — hp

+ Ol?)O‘n[]- — (1l — ) ‘

Xp — hp

IA

a?[(1—ap)

+adayy, + aanle

h, — hp

IN

a?[1 — ap + apa 4+ a (1 —a)ary,)] ‘
+ae(l+ aapy,) + €
hn — hn

IN

o1~ (1 a)ay — (1 - a)ayy,)l |
+oae(l + aapy,) +€
hn — hn

IN

o1~ (1 - @) an(l+ay,)]|

+ae(l+ aanyy,) +e€. (20)

By using (20), we have

o1 = (1 - a)an(1+ay,)] |

IN

W — || + €

hn — hy

IN

+a’e(l + aayy,)] +ea + ¢

< [1—1—a)an(l+ay,)]||hn— hn
+e(l 4+ aany,)] +e+e

< [1=(1—0)an(l+ay)] || hn—
+ounyn€ + 3€

< 1= (1—a)an(l+ay,)]|hn— B

+an'7n€ +3 (1 — 0pYn + o‘n’)’n) € (21)

By supposition (/) we have 1 — apy, < apy,

‘ hn+1 - HnJrlH < [1 - (1 - a) an(l + o‘rYn)] ‘ hn — En
+rapyn€E
= [ (1= a)an(1+ay,)] | o~ By

Te
1_

+an’Yn (1 - Oé) (22)
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Let V, = ‘ ho— Bl & = (1 — @) an(l+ay,), ¢, = €, then from lemma 3.2 together with (22)
we get
0< lim sup hn—Fn < lim sup (23)
n—o00 n—o00 —

Since by theorem 4.1 we have [im,_h, = g and from supposition / and // we get //'m,HOOFn =q

7€

T— as required. OJ

by using these together with (23) and we get ||g — ¢ <

5. Convergence Results of Suzuki Generalized Non-Expansive Mappings of Condition (C)

In this section, we prove some weak and strong convergence theorems of a sequence generated from
new iterative scheme of Suzuki generalized non-expansive mappings with condition (C) by uniformly

convex Banach spaces.

Lemma 5.1. Suppose that K be a non-empty uniformly closed convex subset of a Banach space Z.
Let T : K — K be a mapping satisfying condition (C) with Q(T) # 0. For arbitrary chosen hy € K,
Consider that a sequence {hy} is generated from (1), then limp_, ||h, — q|| exists for any g € Q(T).

Proof. Consider that g € Q(T) and z € K. So T satisfies condition (C) <0
1
sllg=Tall=0<llg -z =I[ITg-Tz| <llg -z
so by proposition (az) we get

1za—gll = T =9p)hn+YnsTn] — 9l
ITHL =y, hn +v,Th] — T4

< (X =v)hn +v0Th =9l

< A=) =gl + 92 [ITx0 = 9

< (=) lhn = gll +va lhn — 9l

< lhn =gl (24)
By using (24) we have

i =gl = T =8,)Thy+6nT2z) —gll

< (X =38n)Thy+8nTzn — 9|

< (A=0)ITxa =gl +8nlITzn — 4

< (1=6n)llhn =gl +dnllza — 4l

< (1 =20n)[lhn = gl +6nllhn — 9l

[hn = gll.- (25)
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Similarly by using (25) we have

lhns1 —gll = || TH,— 4|
< b4
< lh, =9 (26)

= ||h, — g|| be a bounded and decreasing ¥V g € Q (T) So, lim,— ||hn — g|| exist as required.
O

Theorem 5.1. Suppose that K is a non-empty and uniformly closed convex of subset of a Banach
space Z. and let T : K — K be a mapping satisfying condition (C). For arbitrary chosen hy € K,
consider that the sequence {h,} be generated from (1) ¥V n > 1, where {a,} and {B,} are two
sequences of real numbers in [u, v] for some u,v with0 < u<v < 1. So, Q(T) #6 <= {hp} is

bounded sequence and lim,_so0 | Thy — hyl| = 0.

Proof. Suppose that Q(T) # ¢ and let g € Q(T). Then, from Lemma 5.1, limp_« ||hn — g|| exists
and {hp} is bounded.

Jim [ — gl = r (27)
From (24) and (27), we have
lim sup [|zy — gl < lim sup|lh, =gl =r (28)
So by proposition 3.1 (az)
Jim sup|[Thy — gl < lim sup|lhy — gll = r (29)
Also
lhr—9gll = || Th, — 4|
S Al
= [IT((1 —an)Thy+anTzy) — gl
< (A —an)Thy+anTz,— 4l
< (A —ap)lIThy =gl +anlITz, — gl
< (I —an)llhy =gl +anllza = 4l
< llhn =gl = anllhn = gll + an [z — 4| (30)
This implies

[hnt1 = gll = 1lhn — gl
Qn

< llzo =9l = llya =4l
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lhn1 = gll = IIhn — 9|
Qn

< lzo =gl = [[hn =4l

IN

”hn+1 -9l - th -4

= |xor1 = pll < llzo = P

Therefore r < limp_,o inf ||z, — g|| from (28) and (30), we have

ro=llzo—dll
= lim [[T((L =) hn+ 7, Ta)dll
n—oo
< n“_>moo||rYn(Thn_g)+(1 —Yp)hn — 4| (31)
From (27),(29) and (31) together with Lemma 3.3 we get lim,— || T hy, — hy|| = 0.

Conversely

Suppose that {h,} is bounded and
lim || Th, — hal| =0
n—oo

Consider that g € (c, {hn}) by proposition 3.1 we get

r(Tg.{h}) = lim sup{lh, —Tgl|

lim sup3|lh, — Tgll + |lh, — 9|
n—o0

IN

IN

lim sup [[h, — gl|
n—oo

r(g,{hn}).

This implies that Tg € B(K,{h,}). Since Z is uniformly convex, B(K,{hn}) singleton and we get
Tg=g. Hence Q(T) # ¢.
We are able to prove weak convergence theorem.

O

Theorem 5.2. [et K be a non-empty closed convex subset of a uniformly convex Banach space Z,
with Opial property, and consider that T : K — K be a mapping satisfying condition (C). For arbitrary
chosen xop € C, let the sequence {x,} is generated from (1) of all n > 1, where {a,} and {B,} are
sequences of a real numbers in [I, m] for some I, m with 0 < | < m < 1 such that Q(T) # ¢. Then

{xn} converges weakly to a fixed point of T.

Proof. From Theorem 5.1 we get {x,} be bounded and limp—c0 || TXm — Xm|| = 0. Since, X be a
uniformly convex and reflexive thereof, from Eberlin's theorem 3 a subsequence {x,} of {xm} which
converges weakly to some points g1 € Z. Since, K is closed and convex from Mazur's theorem
g1 € K. From lemma 3.4, g1 € Q(T). Now, we prove that {x,,} converges weakly to g;. In fact if

this is false than there must exist a subsequence {xm,} of {xn} such that {x,,} converges weakly to
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G € K and g2 # g1. From lemma 3.5 g» € Q(T). Since, limp_00 ||Xm — pl| exists 3, p € Q(T). By
Theorem 5.1 and by Opial’s property, we get

lim inf||xm — g1l = lim inf ||xn, — 1]
m—o0 u—o0
< lim inf || Xmu — g2
u—o0
= lim inf|xm — ¢
m—o0
= lim inf ”va - Q2||
V—00
< lim inf{|xmy — q1]|
V—00
= lim inf||xn — g1
m—o0

which is contradiction so g1 = ¢». This implies {x,,} converges weakly to a fixed point of T.
Now we establish strong convergence results.
O

Theorem 5.3. Suppose that K be a non-empty compact convex subset of a uniformly convex Banach
space Z. Let T : K — K be a mapping satisfying condition (C). For arbitrary chosen Iy € K, consider
that a sequence {I,} is generated from (1) ¥, n > 1, where {a,} and {B,} are two sequences of real
numbers in [u, v] for some u,v with 0 < u < v < 1. Then {x,} converges strongly to a fixed point
for T.

Proof. By lemma 3.4, Q(T) # ¢ and by theorem 5.1 we have /imp—o0 || Tl — In|| = 0. Since K is
compact and 3 a subsequence {/,x} of {/,} such as {/,x} converges strongly to p for some p € K.

From proposition az we get
[k = TPl < 3Tl = okl + Mok — Pl

For all n > 1. Suppose that k — oo, than we get Tp = p, i.e., p € Q(T). Since, from lemma 5.1,
limp—oo ||In — pl| exists for all p € Q(T), since x, converges strongly to p. Senter and Dotson [14]
both mathematicians discovered notion of mapping which satisfying condition (/) as. A mapping
T : K — K is called to satisfy condition (/), if 3 an increasing function f : [0,00) — [0, 00) in
f(0) = 0 and f(r') > 0 for all r' > 0 such as ||/ =TI > f(d(/,Q(T))) for all I € K, and d(/,
Q(T)) =infp € QT) I/ = plI.

Il

Theorem 5.4. Suppose that K be a non-empty uniformly closed convex subset of a Banach space
Z, and consider that T : K — K be a mapping which satisfying condition (C). For arbitrary chosen
Yo € K, let the sequence {y,} be generated from (1) for alln > 1. Since {ap} and {B,} are sequences
of real numbers in [u, v] for some u,v with 0 < u < v < 1 such that Q(T) # ¢. If T fulfil condition
(1), so {yn} converges strongly to a fixed point of T.
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Proof. By Lemma 5.1, we get [imp—oo |lyn — pll exist V p € Q(T) and Iimp—00d(yn, Q(T)) exists.
Consider that /im0 ||yn — Q|| = s’ for some s’ > 0. If s’ = 0 then results follows. Suppose that

s’ > 0, from proposition (3.1) and condition (/),
F(d(yn, Q(T))) < ITyn — yall (32)
Since, Q(T) # ¢, from theorem 5.2 with (32) <= limp—oo |TYn — ¥nl| =0
Tim £(d(yn, Q(T))) = 0 (33)

Since f is an increasing function and by (33), we have lim,_ o d(yn, Q(T)) = 0. Thus we get a
subsequence {yn«} of {yn} and a sequence {y,} C Q(T) such that

1
Hynk _y/iH < ?

Y, k € N than by applying (26), we have

1
HynkJrl _Y/QH < HYnk _YI/<H < ?
1 1
< W—’—Qj
% — 0as k — o0

This shows that {y,} is a Cauchy sequence with Q(T") and so it converges to a point p. Since Q(T)
is closed, therefore p € Q(T) and then {y,x} converges strongly to p. Since limp_, ||lyn — pl| exists,
we get y, = p € Q(T). O

6. Conclusion

In this article we discussed generalized results by using new iterative scheme to approximate fixed
point of generalized contraction and Suzuki non-expansive mappings. Here we developed new strongly
convergence results of generalized contraction mappings of closed convex Banach space and also pro-
duced some new data dependence results. In addition, we proved some weak and strong convergence
results in sense of generalized Suzuki non expansive mapping by applying condition (C).

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publi-

cation of this paper.

References

[1] A. Asghar, A. Qayyum, N. Muhammad, Different Types of Topological Structures by Graphs, Eur. J. Math. Anal.
3 (2022), 3. https://doi.org/10.28924/ada/ma.3.3.

[2] F.e. Browder, Nonexpansive Nonlinear Operators in a Banach Space, Proc. Natl. Acad. Sci. U.S.A. 54 (1965),
1041-1044. https://doi.org/10.1073/pnas.54.4.1041.

[3] T. Suzuki, Fixed Point Theorems and Convergence Theorems for Some Generalized Nonexpansive Mappings, J.
Math. Anal. Appl. 340 (2008), 1088—1095. https://doi.org/10.1016/j. jmaa.2007.09.023.


https://doi.org/10.28924/ada/ma.3.3
https://doi.org/10.1073/pnas.54.4.1041
https://doi.org/10.1016/j.jmaa.2007.09.023

Int.

J. Anal. Appl. (2022), 20:65 17

4]

[5]

(6]

[7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]
(17]

(18]

(19]

(20]

J. Garcia-Falset, E. Llorens-Fuster, T. Suzuki, Fixed Point Theory for a Class of Generalized Nonexpansive Mappings,
J. Math. Anal. Appl. 375 (2011), 185-195. https://doi.org/10.1016/j.jmaa.2010.08.069.

V.K. Sahu, H.K. Pathak, R. Tiwari, Convergence Theorems for New lIteration Scheme and Comparison Results,
Aligarh Bull. Math. 35 (2016), 19-42.

W. Kassab, T. Turcanu, Numerical Reckoning Fixed Points of (gE)-Type Mappings in Modular Vector Spaces,
Mathematics, 7 (2019), 390. https://doi.org/10.3390/math7050390.

S. Dhompongsa, W. Inthakon, A. Kaewkhao, Edelstein’'s Method and Fixed Point Theorems for Some Generalized
Nonexpansive Mappings, J. Math. Anal. Appl. 350 (2009), 12-17. https://doi.org/10.1016/j.jmaa.2008.08.
045.

J. Garcia-Falset, E. Llorens-Fuster, T. Suzuki, Fixed Point Theory for a Class of Generalized Nonexpansive Mappings,
J. Math. Anal. Appl. 375 (2011), 185-195. https://doi.org/10.1016/j.jmaa.2010.08.069.

|. Uddin, M. Imdad, J. Ali, Convergence Theorems for a Hybrid Pair of Generalized Nonexpansive Mappings in Banach
Spaces, Bull. Malays. Math. Sci. Soc. 38 (2014), 695—705. https://doi.org/10.1007/s40840-014-0044-6.

M. De la Sen, M. Abbas, On Best Proximity Results for a Generalized Modified Ishikawa's Iterative Scheme Driven
by Perturbed 2-Cyclic Like-Contractive Self-Maps in Uniformly Convex Banach Spaces, J. Math. 2019 (2019),
1356918. https://doi.org/10.1155/2019/1356918.

N. Muhammad, A. Asghar, S. Irum, A. Akgiil, E.M. Khalil, M. Inc, Approximation of Fixed Point of Generalized
Non-Expansive Mapping via New Faster lterative Scheme in Metric Domain, AIMS Math. 8 (2023), 2856—2870.
https://doi.org/10.3934/math.2023149.

Z. Opial, Weak Convergence of the Sequence of Successive Approximations of Non-Expansive Mappings, Bull.
Amer. Math. Soc. 73 (1967), 595-597.

J. Schu, Weak and Strong Convergence to Fixed Points of Asymptotically Nonexpansive Mappings, Bull. Austral.
Math. Soc. 43 (1991), 153-159. https://doi.org/10.1017/s0004972700028884.

H.F. Senter, W.G. Dotson, Approximating Fixed Points of Nonexpansive Mappings, Proc. Amer. Math. Soc. 44
(1974), 375-380. https://doi.org/10.1090/s0002-9939-1974-0346608-8.

S.M. Soltuz, Data Dependence of Mann Iteration, Octogon Math. Mag. 9 (2001), 825-828. https://dl.acnm.
org/doi/10.5555/605858.605878.

V. Berinde, lterative Approximation of Fixed Points, Springer, Berlin, (2007).

A. Qayyum, A weighted Ostrowski-Griiss Type Inequality of Twice Differentiable Mappings and Applications, Int.
J. Math. Comput. 1 (2008), 63-71.

M.M. Saleem, Z. Ullah, T. Abbas, M.B. Raza, A. Qayyum, A New Ostrowski’'s Type Inequality for Quadratic Kernel,
Int. J. Anal. Appl. 20 (2022), 28. https://doi.org/10.28924/2291-8639-20-2022-28.

T. Hussain, M.A. Mustafa, A. Qayyum, A New Version of Integral Inequalities of a Linear Function of Bounded
Variation, Turk. J. Inequal. 6 (2022), 7-16.

J. Amjad, A. Qayyum, S. Fahad, M. Arslan, Some New Generalized Ostrowski Type Inequalities With New Error
Bounds, Innov. J. Math. 1 (2022), 30—43. https://doi.org/10.55059/1ijm.2022.1.2/23.


https://doi.org/10.1016/j.jmaa.2010.08.069
https://doi.org/10.3390/math7050390
https://doi.org/10.1016/j.jmaa.2008.08.045
https://doi.org/10.1016/j.jmaa.2008.08.045
https://doi.org/10.1016/j.jmaa.2010.08.069
https://doi.org/10.1007/s40840-014-0044-6
https://doi.org/10.1155/2019/1356918
https://doi.org/10.3934/math.2023149
https://doi.org/10.1017/s0004972700028884
https://doi.org/10.1090/s0002-9939-1974-0346608-8
https://dl.acm.org/doi/10.5555/605858.605878
https://dl.acm.org/doi/10.5555/605858.605878
https://doi.org/10.28924/2291-8639-20-2022-28
https://doi.org/10.55059/ijm.2022.1.2/23

	1. Introduction
	2. Preliminaries
	3. Some Basic Results
	4. Main Results
	5. Convergence Results of Suzuki Generalized Non-Expansive Mappings of Condition ( C) 
	6. Conclusion
	References

