International Journal of Analysis and Applications

On $\omega_{\tilde{\theta}}$ - μ -Open Sets in Generalized Topological Spaces

Fatimah Al Mahri*, Abdo Qahis

Department of Mathematics, College of Science and Arts, Najran university, Saudi Arabia

* Corresponding author: cahis82@gmail.com

Abstract. In this paper analogous to [1], we introduce a new class of sets called $\omega_{\bar{\theta}}$ - μ -open sets in generalized topological spaces which lies strictly between the class of $\tilde{\theta}_{\mu}$ -open sets and the class of ω - μ -open sets. We prove that the collection of $\omega_{\bar{\theta}}$ - μ -open sets forms a generalized topology. Finally, several characterizations and properties of this class have been given.

1. Introduction

One notion that has received much attention lately is the so-called ω -open sets in a topological space (X, τ) was introduced by Hdeib [12], which forms a topology finer than τ . Recently, many topological concepts and several interesting results related to this notion have obtained by many authors such as [3], [10], [9], [2]. A collection μ of subsets of a nonempty set X is a generalized topology (GT) if $\emptyset \in \mu$ and μ is closed under arbitrary unions, this notion was introduced by Császár in the sense of [5]. We call the pair (X, μ) a generalized topological space (briefly GTS) on X. The elements of μ are called μ -open sets and their complements are called μ -closed sets, see [7], the union of all elements of μ will be denoted by \mathcal{M}_{μ} and a GTS (X, μ) is said to be strong [7] if $X \in \mu$. If A is a subset of a GTS (X, μ) , then the μ -closure of A, $c_{\mu}(A)$, is the intersection of all μ -closed sets containing A and the μ -interior of A, $i_{\mu}(A)$, is the union of all μ -open sets contained in A (see [5,7]). It is easy to observe that operators i_{μ} and c_{μ} are idempotent and monotonic A subset A of a GTS (X, μ) is the smallest μ -closed set containing A, $i_{\mu}(A)$ is the smallest μ -closed set containing A, $i_{\mu}(A)$ is the smallest μ -closed set containing A is a propen if and only if $A = i_{\mu}(A)$, and and $i_{\mu}(A) = X \setminus c_{\mu}(X \setminus A)$. Evidently, A is μ -closed if and only if $A = c_{\mu}(A)$, $c_{\mu}(A)$ is the smallest μ -closed set containing A, $i_{\mu}(A)$ is the largest μ -open set contained in A. Over recent years several authors have been working in formulate many topological

Received: Nov. 21, 2022.

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54C08.

Key words and phrases. generalized topology; $\tilde{\theta_{\mu}}$ -open sets; ω - μ -open sets; $\omega_{\tilde{\theta}}$ - μ -open sets; $\tilde{\theta}_{\mu}$ -locally countable; $\omega_{\tilde{\theta}}$ -anti-locally countable.

concepts to establish new concepts in the structure of GTS, see [4], [8], [6] [11], [17], [15], [13] and others. Then motivated by the notion of ω -open set in a topological space (X, τ) , Al Ghour and Wafa Zareer (2016) [1] defined the notions of ω - μ -closed sets and ω - μ -open sets in the structure of GTS as follows : A subset A of GTS (X, μ) is called ω - μ -closed if it contains all its condensation points. The complement of an ω - μ -closed set is called ω - μ -open. The family of all ω - μ -open subsets of X forms a GT on X, denoted by ω_{μ} .

Let us now recall some notions defined in [14]. A subset A of GTS (X, τ) is said to be $\tilde{\theta}_{\mu}$ -open if and only if for each $x \in A$, there exists $U \in \mu$ such that $x \in U \subseteq c_{\mu}(U) \cap \mathcal{M}_{\mu} \subseteq A$ and the collection of all $\tilde{\theta}_{\mu}$ -open subsets of a GTS (X, μ) is denoted by $\tilde{\theta}_{\mu}$. Then $\tilde{\theta}_{\mu}$ is also a GT included in μ . Analogous to [1] and by using the notion of $\tilde{\theta}_{\mu}$ -open, we introduce the relatively new notions of $\omega_{\tilde{\theta}}$ - μ -open as a new class of sets . We present several characterizations, properties, and examples related to the new concepts.

In section 2, we use the notion of $\tilde{\theta_{\mu}}$ -open to introduce $\omega_{\tilde{\theta}}$ - μ -open sets in GTS as a new class of sets and we prove that this class lies strictly between the class of $\tilde{\theta_{\mu}}$ -open sets and the class of ω - μ -open sets. Moreover, we give some sufficient conditions for the equivalence between the class of $\omega_{\tilde{\theta}}$ - μ -open sets and the class of ω - μ -open sets.

In section 3, several interesting properties of $\omega_{\tilde{\theta}}$ - μ -open subsets are discussed via the operations of $\omega_{\tilde{\theta}}$ -interior and $\omega_{\tilde{\theta}}$ -closure.

Definition 1.1. [16] A GTS (X, μ) is said to be μ -locally indiscrete if every μ -open set in (X, μ) is μ -closed.

Definition 1.2. [1] A GTS (X, μ) is called μ -locally countable if \mathcal{M}_{μ} is nonempty and for every point $x \in \mathcal{M}_{\mu}$, there exists a $U \in \mu$ such that $x \in U$ and U is countable.

Definition 1.3. [14] Let (X, μ) be a GTS, $A \subseteq X$ and $\gamma_{\tilde{\theta}} : P(X) \to P(X)$ be an operation defined as the following:

$$\gamma_{\tilde{\theta}_{\mu}}(A) = \{ x \in X : c_{\mu}(U) \cap \mathcal{M}_{\mu} \cap A \neq \emptyset \text{ for all } U \in \mu, x \in U \}.$$

Theorem 1.1. [1] Let (X, μ) be a GTS. Then $\mathcal{M}_{\mu} = \mathcal{M}_{\omega_{\mu}}$.

Theorem 1.2. [1] If (X, μ) is a μ -locally countable GTS, then ω_{μ} is the discrete topology on \mathcal{M}_{μ} .

2.
$$\omega_{\tilde{A}}$$
- μ -open sets

We begin this section by introducing the following definition.

Definition 2.1. Let (X, μ) be a GTS and $A \subseteq X$. Consider an operation $\Gamma_{\omega_{\tilde{\theta}}} : P(X) \to P(X)$ defined as the following:

 $\Gamma_{\omega_{\tilde{a}}}(A) = \{x \in X : U \cap A \text{ is uncountable for all } U \in \tilde{\theta}_{\mu} \text{ and } x \in U\}. \text{ A point } x \in X \text{ is called a } X \in U\}.$

 $\tilde{\theta}_{\mu}$ -condensation point of A if for all $U \in \tilde{\theta}_{\mu}$ such that $x \in U$ and $U \cap A$ is uncountable. The set of all $\tilde{\theta}_{\mu}$ -condensation points of A is denoted by $\Gamma_{\omega_{\bar{a}}}(A)$.

Lemma 2.1. Let (X, μ) be a GTS. The operation $\Gamma_{\omega_{\tilde{\theta}}} : P(X) \to P(X)$ has the following properties: (1) if $A \subseteq B \subset X$, then $\Gamma_{\omega_{\tilde{\theta}}}(A) \subseteq \Gamma_{\omega_{\tilde{\theta}}}(B)$ (monotonic property);

(2) $\Gamma_{\omega_{\tilde{a}}}(\Gamma_{\omega_{\tilde{a}}}(A)) \subseteq \Gamma_{\omega_{\tilde{a}}}(A)$ for any $A \subseteq X$ (restricting property);

(3) if A is any countable subset of X, then $\Gamma_{\omega_{\tilde{a}}}(A) = \emptyset$.

Proof. (1) Let $A \subseteq B \subset X$ and $x \in \Gamma_{\omega_{\tilde{\theta}}}(A)$. Then $U \cap A$ is uncountable for each $U \in \tilde{\theta}_{\mu}$ and $x \in U$. Since $A \subseteq B$, then $U \cap B$ is uncountable. Thus $x \in \Gamma_{\omega_{\tilde{\theta}}}(B)$ and hence $\Gamma_{\omega_{\tilde{\theta}}}(A) \subseteq \Gamma_{\omega_{\tilde{\theta}}}(B)$.

(2) Let $x \in \Gamma_{\omega_{\tilde{\theta}}}(\Gamma_{\omega_{\tilde{\theta}}}(A))$. Then $U \cap \Gamma_{\omega_{\tilde{\theta}}}(A)$ is an uncountable for all $U \in \tilde{\theta}_{\mu}$ and $x \in U$. Let $y \in U \bigcap \Gamma_{\omega_{\tilde{\theta}}}(A)$. Then $y \in U$ and $y \in \Gamma_{\omega_{\tilde{\theta}}}(A)$ which implies that $U \cap A$ is an uncountable set. Hence $x \in \Gamma_{\omega_{\tilde{\theta}}}(A)$ and therefore $\Gamma_{\omega_{\tilde{\theta}}}(\Gamma_{\omega_{\tilde{\theta}}}(A)) \subseteq \Gamma_{\omega_{\tilde{\theta}}}(A)$.

(3) The proof is obvious by Definition 2.1.

Definition 2.2. Let (X, μ) be a GTS and $A \subseteq X$. Then A is said to be $\omega_{\tilde{\theta}}$ - μ -closed if $\Gamma_{\omega_{\tilde{\theta}}}(A) \subseteq A$. The complement of an $\omega_{\tilde{\theta}}$ - μ -closed set is said to be $\omega_{\tilde{\theta}}$ - μ -open.

The family of all $\omega_{\tilde{\theta}}$ - μ -open subsets of (X, μ) is denoted by $\omega_{\tilde{\theta}}$, where $\omega_{\tilde{\theta}} = \{W \subseteq X : \Gamma_{\omega_{\tilde{\theta}}}(X \setminus W) \subseteq X \setminus W\}$. The following theorem and lemma give a necessary and sufficient condition for $\omega_{\tilde{\theta}}$ - μ -open sets.

Theorem 2.1. Let (X, μ) be a GTS and $W \subseteq X$. Then the following statements are equivalent:

(1) W is $\omega_{\tilde{\theta}}$ - μ -open;

(2) if for every $x \in W$ there exists a $U \in \tilde{\theta}_{\mu}$ such that $x \in U$ and $U \setminus W$ is a countable set.

Proof. (1) \Rightarrow (2): Suppose W is $\omega_{\tilde{\theta}}$ - μ -open. Since $X \setminus W$ is $\omega_{\tilde{\theta}}$ - μ -closed set, then $\Gamma_{\omega_{\tilde{\theta}}}(X \setminus W) \subseteq X \setminus W$. This means that for every $x \in W$, $x \notin \Gamma_{\omega_{\tilde{\theta}}}(X \setminus W)$ and hence there exists a $U \in \tilde{\theta}_{\mu}$ such that $x \in U$ and $U \cap (X \setminus W) = U \setminus W$ is countable.

(2) \Rightarrow (1): Let $x \in W$. Then by assumption there exists a $U \in \tilde{\theta}_{\mu}$ such that $x \in U$ and $U \cap (X \setminus W)$ is countable. Which implies that $x \notin \Gamma_{\omega_{\tilde{\theta}}}(X \setminus W)$, $\Gamma_{\omega_{\tilde{\theta}}}(X \setminus W) \subseteq X \setminus W$ and hence $X \setminus W$ is $\omega_{\tilde{\theta}}$ - μ -closed. Therefore W is $\omega_{\tilde{\theta}}$ - μ -open set.

Lemma 2.2. A subset W of a GTS (X, μ) is $\omega_{\tilde{\theta}}$ - μ -open if and only if for every $x \in W$ there exists a $U \in \tilde{\theta}_{\mu}$ and a countable $C \subseteq \mathcal{M}_{\mu}$ such that $x \in U \setminus C \subseteq W$.

Proof. Necessity. Let W be $\omega_{\tilde{\theta}}$ - μ -open and $x \in W$. By Theorem 2.1, there exists $U \in \tilde{\theta}_{\mu}$ such that $x \in U$ and $U \setminus W$ is countable. Let $C = U \setminus W$. Then C is countable, $C \subseteq \mathcal{M}_{\mu}$ and $x \in U \cap (X \setminus C) = U \cap (X \setminus (U \cap X \setminus W)) = U \cap W \subseteq W$ and hence $x \in U \setminus C \subseteq W$.

Sufficiency. Let $x \in W$. From assumption there exists $U \in \tilde{\theta}_{\mu}$ and a countable set $C \subseteq \mathcal{M}_{\mu}$ such that $x \in U \setminus C \subseteq W$. Therefore, $U \setminus W \subseteq C$ and $U \setminus W$ is a countable set and this completes the proof.

Theorem 2.2. Let (X, μ) be a GTS and $C \subseteq X$. If C is $\omega_{\tilde{\theta}}$ - μ -closed, then $C \subseteq F \cup B$ for some $\omega_{\tilde{\theta}}$ - μ -closed set F and a countable subset B.

Proof. Let *C* be any $\omega_{\tilde{\theta}}$ - μ -closed set in (X, μ) . Then $X \setminus C$ is $\omega_{\tilde{\theta}}$ - μ -open. By Lemma 2.2, for each $x \in X \setminus C$, there exist a $\tilde{\theta_{\mu}}$ -open set *U* containing *x* and a countable subset $B \subseteq \mathcal{M}_{\mu}$ such that $x \in U \setminus B \subseteq X \setminus C$. Thus $C \subseteq X \setminus (U \setminus B) = X \setminus (U \cap (X \setminus B)) = (X \setminus U) \cup B$. Let $F = X \setminus U$. Then *F* is $\omega_{\tilde{\theta}}$ - μ -closed such that $C \subseteq F \cup B$.

Theorem 2.3. Let (X, μ) be a GTS. Then the collection $\omega_{\tilde{\theta}}$ forms a generalized topology on X.

Proof. It is clear that $\emptyset \in \omega_{\tilde{\theta}}$. Let $\{W_{\lambda} : \lambda \in \Delta\}$ be a collection of $\omega_{\tilde{\theta}}$ - μ -open subsets of (X, μ) and $x \in \bigcup_{\lambda \in \Delta} W_{\lambda}$. There exists an $\lambda_0 \in \Delta$ such that $x \in W_{\lambda_0}$. Since W_{λ_0} is $\omega_{\tilde{\theta}}$ -open set, then by Lemma 2.2, there exist $U \in \tilde{\theta}_{\mu}$ and a countable set $C \subseteq M_{\mu}$ such that $x \in U \setminus C \subseteq W_{\lambda_0} \subseteq \bigcup_{\lambda \in \Delta} W_{\lambda}$. By Lemma 2.2, it follows that $\bigcup_{\lambda \in \Delta} W_{\lambda}$ is $\omega_{\tilde{\theta}}$ - μ -open. Hence the collection $\omega_{\tilde{\theta}}$ is generalized topology on X.

The next theorem obtains that the new class of $\omega_{\tilde{\theta}}$ - μ -open sets lies strictly between the class of $\tilde{\theta}$ - μ -open sets and the class of ω - μ -open sets.

Theorem 2.4. Let (X, μ) be a GTS. Then $\tilde{\theta}_{\mu} \subseteq \omega_{\tilde{\theta}} \subseteq \omega_{\mu}$.

Proof. To show that $\tilde{\theta}_{\mu} \subseteq \omega_{\tilde{\theta}}$, let $W \in \tilde{\theta}_{\mu}$ and $x \in W$. Take U = W and $C = \emptyset$. Then $U \in \tilde{\theta}_{\mu}$, $C \subseteq \mathcal{M}_{\mu}$ such that $x \in U \setminus C \subseteq W$. Therefore, by Lemma 2.2, it follows that $W \in \omega_{\tilde{\theta}}$.

To show that $\omega_{\tilde{\theta}} \subseteq \omega_{\mu}$, Let $W \in \omega_{\tilde{\theta}}$. By Theorem 2.1, for each $x \in W$ there exists a $U \in \tilde{\theta}_{\mu}$ such that $x \in U$ and $U \setminus W$ is countable. Since $\tilde{\theta}_{\mu} \subseteq \mu$, then $U \in \mu$ and hence W is ω - μ -open. Therefore $W \in \omega_{\mu}$.

The following diagram follows immediately from the definitions and Theorem 2.4.

The converse of these implications need not be true in general as shown by the following examples.

Example 2.1. Consider $X = \mathbb{R}$, $A = \{4n : n \in \mathbb{N}\}$ and $\mu = \{\emptyset, [0, 2], [1, 3] \cup A, [0, 3] \cup A\}$. Then (X, μ) is a generalized topological space and the family of all $\tilde{\theta}_{\mu}$ -open sets is $\tilde{\theta}_{\mu} = \{\emptyset, [0, 3] \cup A\}$. Then $[1, 3] \in \omega_{\mu} \setminus \omega_{\tilde{\theta}}$, i.e. [1, 3] is ω - μ -open but it is not $\omega_{\tilde{\theta}}$ - μ -open. Also, it is easy to check that $\Gamma_{\omega_{\tilde{\theta}}}(\mathbb{R} \setminus [0, 3]) \subseteq \mathbb{R} \setminus [0, 3]$. Thus $[0, 3] \in \omega_{\tilde{\theta}} \setminus \tilde{\theta}_{\mu}$, i.e. [0, 3] is $\omega_{\tilde{\theta}}$ - μ -open but it is not $\tilde{\theta}_{\mu}$ -open

Example 2.2. Let $X = \{a, b, c, d\}$ with $GT \mu = \{\emptyset, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Then $\{a, c\} \in \omega_{\tilde{\theta}} \setminus \tilde{\theta}_{\mu}$, *i.e.* the set $\{a, c\}$ is $\omega_{\tilde{\theta}}$ - μ -open but it is not $\tilde{\theta}_{\mu}$ -open.

Note that the previous examples show that $\tilde{\theta}_{\mu} \neq \omega_{\tilde{\theta}} \neq \omega_{\mu}$ in general.

Remark 2.1. The notions of μ -open and $\omega_{\tilde{\theta}}$ - μ -open sets are independent of each other. For more clarity in Example 2.1, the set [0,3] is $\omega_{\tilde{\theta}}$ - μ -open but it is not μ -open and the set $[1,3] \cup A$ is μ -open but it is not $\omega_{\tilde{\theta}}$ - μ -open.

Theorem 2.5. If a GTS (X, μ) is a μ -locally indiscrete, then $\mu \subseteq \omega_{\tilde{\theta}}$.

Proof. To show that $\mu \subseteq \omega_{\tilde{\theta}}$, let $A \in \mu$ and $x \in A$. Take U = A. Since (X, μ) is μ -locally indiscrete, then $c_{\mu}(U) = U$ and we have $x \in U \subseteq c_{\mu}(U) \cap \mathcal{M}_{\mu} \subseteq A$. Thus $A \in \tilde{\theta}_{\mu}$ and by Theorem 2.4, $\tilde{\theta}_{\mu} \subseteq \omega_{\tilde{\theta}}$. Therefore $A \in \omega_{\tilde{\theta}}$.

Lemma 2.3. Let (X, μ) be a GTS. Then $\mathcal{M}_{\mu} \in \tilde{\theta}_{\mu}$.

Proof. Let $A = \mathcal{M}_{\mu}$ and $x \in A$. Then there exists $U_x \in \mu$ such that $x \in U_x$. Since $U_x \subseteq c_{\mu}(U_x) \bigcap \mathcal{M}_{\mu} \subseteq A$, then $A = \mathcal{M}_{\mu} \in \tilde{\theta}_{\mu}$.

For a GT μ on a nonempty set X, let $\mathcal{M}_{\omega_{\tilde{\theta}}} = \bigcup \{ U \subseteq X : U \in \omega_{\tilde{\theta}} \}$. Thus we have the following theorem.

Theorem 2.6. Let (X, μ) be a GTS. Then $\mathcal{M}_{\mu} = \mathcal{M}_{\omega_{\vec{a}}}$

Proof. By Lemma 2.3, $\mathcal{M}_{\mu} \in \tilde{\theta}_{\mu}$ and form Theorem 2.4, $\tilde{\theta}_{\mu} \subseteq \omega_{\tilde{\theta}}$ and hence $\mathcal{M}_{\mu} \subseteq \mathcal{M}_{\omega_{\tilde{\theta}}}$. On the other hand, let $x \in \mathcal{M}_{\omega_{\tilde{\theta}}}$. Since, $\mathcal{M}_{\omega_{\tilde{\theta}}} \in \omega_{\tilde{\theta}}$, then by Lemma 2.2, there exists a $U \in \tilde{\theta}_{\mu}$ and a countable set $C \subseteq \mathcal{M}_{\mu}$ such that $x \in U \setminus C \subseteq \mathcal{M}_{\omega_{\tilde{\theta}}}$. Since $U \subseteq \mathcal{M}_{\mu}$ and U is μ -open, it follows that $x \in \mathcal{M}_{\mu}$ and hence $\mathcal{M}_{\omega_{\tilde{\theta}}} \subseteq \mathcal{M}_{\mu}$. Therefore $\mathcal{M}_{\mu} = \mathcal{M}_{\omega_{\tilde{\theta}}}$.

By Theorem 1.1 and Theorem 2.6, we obtain the following corollary

Corollary 2.1. Let (X, μ) be a GTS. Then $\mathcal{M}_{\mu} = \mathcal{M}_{\omega_{\tilde{a}}} = \mathcal{M}_{\omega_{\mu}}$

We will denote by $(\tau_{coc})_X$, the cocountable topology on a nonempty set X.

Theorem 2.7. Let (X, μ) be a GTS. Then $(\tau_{coc})_U \subseteq \omega_{\tilde{\theta}}$ for all $U \in \tilde{\theta}_{\mu} \setminus \{\emptyset\}$.

Proof. Let $U \in \tilde{\theta}_{\mu} \setminus \{\emptyset\}$, $W \in (\tau_{coc})_U$ and $x \in W$. Since $W \subseteq U$, we have $x \in U$ and $U \setminus W = U \setminus (U \cap V)$ for some $V \in \tau_{coc}$. Now, $U \setminus W = U \setminus (U \cap V) = U \setminus V$. Thus $U \setminus W$ is countable set and by Theorem 2.1, it follows that $W \in \omega_{\tilde{\theta}}$. This shows that $(\tau_{coc})_U \subseteq \omega_{\tilde{\theta}}$.

Theorem 2.8. For any GTS (X, μ) , the following statements are equivalent.

(1) $\tilde{\theta}_{\mu} = \omega_{\tilde{\theta}}$. (2) $(\tau_{coc})_U \subseteq \tilde{\theta}_{\mu}$ for all $U \in \tilde{\theta}_{\mu} \setminus \{\emptyset\}$.

Proof. (1) \Longrightarrow (2): Assume that $\tilde{\theta}_{\mu} = \omega_{\tilde{\theta}}$ and $U \in \tilde{\theta}_{\mu} \setminus \{\emptyset\}$. Then by Theorem 2.7, $(\tau_{coc})_U \subseteq \omega_{\tilde{\theta}} = \tilde{\theta}_{\mu}$.

(2) \Longrightarrow (1): Suppose that $(\tau_{coc})_U \subseteq \tilde{\theta}_{\mu}$ for all $U \in \tilde{\theta}_{\mu} \setminus \{\emptyset\}$. It is enough to show that $\omega_{\tilde{\theta}} \subseteq \tilde{\theta}_{\mu}$. Let

 $W \in \omega_{\tilde{\theta}}$ and $x \in W$. By Lemma 2.2, there exists $U_x \in \tilde{\theta}_{\mu}$ and a countable set $C_x \subseteq \mathcal{M}_{\mu}$ such that $x \in U_x \setminus C_x \subseteq W$. Thus $U_x \cap X \setminus C_x \in (\tau_{coc})_{U_x}$, where $X \setminus C_x \in \tau_{coc}$. From assumption $U_x \setminus C_x \in (\tau_{coc})_{U_x} \subseteq \tilde{\theta}_{\mu}$ for all $x \in W$, and so $U_x \setminus C_x \in \tilde{\theta}_{\mu}$. It follows that $W = \bigcup \{U_x \setminus C_x : x \in W\} \in \tilde{\theta}_{\mu}$, and hence $\tilde{\theta}_{\mu} = \omega_{\tilde{\theta}}$.

Proposition 2.1. Let (X, μ) be a GTS. If $\tilde{\theta}_{\mu}$ is a topology on X, then $\omega_{\tilde{\theta}}$ is a topology.

Proof. Suppose that $\tilde{\theta}_{\mu}$ is a topology. By Theorem 2.3, $\omega_{\tilde{\theta}}$ is generalized topology. It is enough to show that the collection $\omega_{\tilde{\theta}}$ is closed under finite intersection. Let W, G be $\omega_{\tilde{\theta}}$ - μ -open sets and $x \in W \cap G$. Then by Theorem 2.1, there exist $U, V \in \tilde{\theta}_{\mu}$ containing x such that $U \setminus W$ and $V \setminus G$ are countable sets. Since $\tilde{\theta}_{\mu}$ is a topology, we have $x \in U \cap V \in \tilde{\theta}_{\mu}$. Furthermore, $(U \cap V) \setminus (W \cap G) = (U \cap V) \cap [X \setminus W \cup X \setminus G] = [(U \cap V) \setminus W)] \cup [(U \cap V) \setminus G] \subset (U \setminus W) \cup (V \setminus G)$. Therefore, $(U \cap V) \setminus (W \cap G)$ is a countable set and hence $W \cap G$ is $\omega_{\tilde{\theta}}$ - μ -open.

Definition 2.3. Let (X, μ) be a GTS. Then (X, μ) is said to be $\tilde{\theta}_{\mu}$ -locally countable if \mathcal{M}_{μ} is nonempty and for every point $x \in \mathcal{M}_{\mu}$, there exists a $U \in \tilde{\theta}_{\mu}$ such that $x \in U$ and U is countable.

The following corollary is a direct result from Definition 2.3 and Definition 1.2.

Corollary 2.2. Let (X, μ) be a GTS. If (X, μ) is $\tilde{\theta}_{\mu}$ -locally countable, then (X, μ) is μ -locally countable.

Theorem 2.9. If (X, μ) is a $\tilde{\theta}_{\mu}$ -locally countable GTS, then $\omega_{\tilde{A}}$ is the discrete topology on \mathcal{M}_{μ} .

Proof. It is enough to show that every singleton subset of \mathcal{M}_{μ} is $\omega_{\tilde{\theta}}$ - μ -open. Since (X, μ) is $\tilde{\theta}_{\mu}$ -locally countable, then for each $x \in \mathcal{M}_{\mu}$, there exists a $U \in \tilde{\theta}_{\mu}$ such that $x \in U$ and U is countable. By Theorem 2.7, we have $(\tau_{coc})_U \subseteq \omega_{\tilde{\theta}}$. Therefore $U \setminus (U \setminus \{x\}) = \{x\} \in \omega_{\tilde{\theta}}$.

The following corollary is a direct result of Theorem 2.9.

Corollary 2.3. Let (X, μ) be a strong GTS. If (X, μ) is a $\tilde{\theta}_{\mu}$ -locally countable, then $\omega_{\tilde{\theta}}$ is the discrete topology on X.

Proposition 2.2. If (X, μ) is a $\tilde{\theta}_{\mu}$ -locally countable GTS, then $\omega_{\tilde{\theta}} = \omega_{\mu}$.

Proof. Since (X, μ) is $\tilde{\theta}_{\mu}$ -locally countable, then by Theorem 2.9, $\omega_{\tilde{\theta}}$ is the the discrete topology on \mathcal{M}_{μ} . From Corollary 2.2 and Theorem 1.2, we get $\omega_{\tilde{\theta}} = \omega_{\mu}$.

Corollary 2.4. Let (X, μ) be a GTS. If \mathcal{M}_{μ} is a countable nonempty set, then $\omega_{\tilde{\theta}}$ is the discrete topology on \mathcal{M}_{μ} .

Proof. Since \mathcal{M}_{μ} is countable nonempty set, then for $x \in \mathcal{M}_{\mu}$, there exists $U \in \tilde{\theta}_{\mu}$ such that U is countable set. Thus (X, μ) is $\tilde{\theta}_{\mu}$ -locally countable. From Theorem 2.9, we get $\omega_{\tilde{\theta}}$ is the discrete topology on \mathcal{M}_{μ} .

3. Further properties of $\omega_{\tilde{\theta}}$ - μ -open sets

Definition 3.1. Let (X, μ) be a GTS and $A \subseteq X$. A point $x \in X$ is called an $\omega_{\tilde{\theta}}$ -closure point of A if and only if $U \cap A \neq \emptyset$ for all $U \in \omega_{\tilde{\theta}}$ and $x \in U$. Consider the following operations are defined as follows:

(1) $\gamma_{\omega_{\tilde{\theta}}}(A) = \{x \in X : U \cap A \neq \emptyset, \text{ for all } U \in \omega_{\tilde{\theta}} \text{ and } x \in U\};$ (2) $c_{\omega_{\tilde{\theta}}}(A) = \cap\{F : A \subseteq F, F \text{ is } \omega_{\tilde{\theta}} \text{-}\mu\text{-closed in } X\}.$

Lemma 3.1. Let (X, μ) be a GTS. Then $c_{\omega_{\tilde{a}}}(A) = \gamma_{\omega_{\tilde{a}}}(A)$ for any $A \subseteq X$.

Proof. It is enough to show that $\gamma_{\omega_{\tilde{\theta}}}(A)$ is the smallest $\omega_{\tilde{\theta}}$ - μ -closed set containing A. Clearly $A \subseteq \gamma_{\omega_{\tilde{\theta}}}(A)$. Further $\gamma_{\omega_{\tilde{\theta}}}(A)$ is $\omega_{\tilde{\theta}}$ - μ -closed, that is $X \setminus \gamma_{\omega_{\tilde{\theta}}}(A)$ is $\omega_{\tilde{\theta}}$ - μ -open because for each $x \in X \setminus \gamma_{\omega_{\tilde{\theta}}}(A)$ there is $U_x \in \omega_{\tilde{\theta}}$ such that $x \in U_x$ and $U_x \cap A = \emptyset$. Now, for any $y \in U_x$ implies $y \in X \setminus \gamma_{\omega_{\tilde{\theta}}}(A)$ so that $X \setminus \gamma_{\omega_{\tilde{\theta}}}(A) = \bigcup_{x \in X \setminus \gamma_{\omega_{\tilde{\theta}}}(A)} U_x \in \omega_{\tilde{\theta}}$.

Finally if $A \subseteq F$ and F is any $\omega_{\tilde{\theta}}$ - μ -closed, then $X \setminus F$ is $\omega_{\tilde{\theta}}$ - μ -open and $(X \setminus F) \cap A = \emptyset$ so that $X \setminus F \subseteq X \setminus \gamma_{\omega_{\tilde{\theta}}}(A)$ and hence $\gamma_{\omega_{\tilde{\theta}}}(A) \subseteq F$. Therefore $\gamma_{\omega_{\tilde{\theta}}}(A)$ is the smallest $\omega_{\tilde{\theta}}$ - μ -closed set containing A, and by Definition 3.1(2), $\gamma_{\omega\tilde{\theta}}(A) = c_{\omega\tilde{\theta}}(A)$.

The proof of the following theorem is straightforward and thus omitted.

Theorem 3.1. For subsets A, B of $GTS(X, \mu)$, the following properties hold: (1) if $A \subseteq B \subset X$, then $c_{\omega_{\tilde{\theta}}}(A) \subseteq c_{\omega_{\tilde{\theta}}}(B)$; (2) $A \subseteq c_{\omega_{\tilde{\theta}}}(A)$ for $A \subseteq X$; (3) $c_{\omega_{\tilde{a}}}(c_{\omega_{\tilde{a}}}(A)) = c_{\omega_{\tilde{a}}}(A)$ for $A \subseteq X$;

(4) A is $\omega_{\tilde{\theta}}$ - μ -closed if and only if $c_{\omega_{\tilde{\theta}}}(A) = A$.

Definition 3.2. Let (X, μ) be a GTS and $A \subseteq X$. Then we define the following notions: (1) $c_{\tilde{\theta}_{\mu}}(A) = \cap \{F : A \subseteq F, F \text{ is } \tilde{\theta_{\mu}}\text{-closed in } X\};$ (2) $c_{\omega_{\mu}}(A) = \cap \{F : A \subseteq F, F \text{ is } \omega\text{-}\mu\text{-closed in } X\}.$

The proof of the following corollary is straightforward and thus omitted.

Corollary 3.1. For a subset A of a GTS (X, μ) , the following properties hold: (1) A is $\tilde{\theta_{\mu}}$ -closed if and only if $c_{\tilde{\theta}_{\mu}}(A) = A$; (2) A is ω - μ -closed if and only if $c_{\omega_{\mu}}(A) = A$.

Lemma 3.2. Let (X, μ) be a GTS. Then $\gamma_{\tilde{\theta}_{\mu}}(A) \subseteq c_{\tilde{\theta}_{\mu}}(A)$ for any $A \subseteq X$.

Proof. Let $x \notin c_{\tilde{\theta}_{\mu}}(A)$. Then $x \in X \setminus c_{\tilde{\theta}_{\mu}}(A)$ so that there is $U \in \tilde{\theta}_{\mu}$ satisfying $x \in U$ and $U \cap A = \emptyset$. Since $U \in \tilde{\theta}_{\mu}$, then there is $V \in \mu$ such that $x \in V \subseteq c_{\mu}(V) \cap \mathcal{M}_{\mu} \subseteq U$ and $c_{\mu}(V) \cap \mathcal{M}_{\mu} \cap A = \emptyset$, consequently $x \notin \gamma_{\tilde{\theta}}(A)$. Thus we have $\gamma_{\tilde{\theta}}(A) \subseteq c_{\tilde{\theta}}(A)$.

- (1) $c_{\omega_{\mu}}(A) \subseteq c_{\omega_{\tilde{\theta}}}(A) \subseteq c_{\tilde{\theta}_{\mu}}(A);$
- (2) If A is $\tilde{\theta_{\mu}}$ -closed, then A is $\omega_{\tilde{\theta}}$ - μ -closed;
- (3) If A is $\omega_{\tilde{\theta}}$ - μ -closed, then A is ω - μ -closed.

Proof. (1) To show that $c_{\omega_{\mu}}(A) \subseteq c_{\omega_{\tilde{\theta}}}(A)$, let $x \notin c_{\omega_{\tilde{\theta}}}(A)$ and so there is a $U \in \omega_{\tilde{\theta}}$ containing x such that $U \cap A = \emptyset$. From Theorem 2.4, we have $\omega_{\tilde{\theta}} \subseteq \omega_{\mu}$, $U \in \omega_{\mu}$, and hence $x \notin c_{\omega_{\mu}}(A)$. To show that $c_{\omega_{\tilde{\theta}}}(A) \subseteq c_{\tilde{\theta}_{\mu}}(A)$, let $x \notin c_{\tilde{\theta}_{\mu}}(A)$ and so there is a $U \in \tilde{\theta}_{\mu}$ containing x such that $U \cap A = \emptyset$. From Theorem 2.4, we have $\tilde{\theta}_{\mu} \subseteq \omega_{\tilde{\theta}}$, $U \in \omega_{\tilde{\theta}}$, and hence $x \notin c_{\omega_{\tilde{\theta}}}(A)$.

(2) Suppose that A is $\tilde{\theta_{\mu}}$ -closed. Then by Corollary 3.1(1), $c_{\tilde{\theta}_{\mu}}(A) = A$. Thus by (1), $c_{\omega_{\tilde{\theta}}}(A) = A$ and hence A is $\omega_{\tilde{\theta}}$ - μ -closed.

(2) Suppose that A is $\omega_{\tilde{\theta}}$ - μ -closed. Then by Theorem 3.1(4), $c_{\omega_{\tilde{\theta}}}(A) = A$. Thus by (1), $c_{\omega_{\mu}}(A) = A$ and hence A is ω - μ -closed.

Proposition 3.1. Let (X, μ) be a $\tilde{\theta}_{\mu}$ -locally countable GTS and $A \subseteq X$. Then $c_{\omega_{\mu}}(A) = c_{\omega_{\tilde{a}}}(A)$

Proof. By Theorem 3.2(1), $c_{\omega_{\mu}}(A) \subseteq c_{\omega_{\tilde{\theta}}}(A)$. Let $x \in c_{\omega_{\tilde{\theta}}}(A)$. Then $U \cap A \neq \emptyset$ for all $U \in \omega_{\tilde{\theta}}$ and $x \in U$. Since (X, μ) is a $\tilde{\theta}_{\mu}$ -locally countable, then by Theorem 2.9, $\omega_{\tilde{\theta}}$ is the discrete topology on \mathcal{M}_{μ} and hence $\omega_{\mu} = \omega_{\tilde{\theta}}$. Which implies that $x \in c_{\omega_{\mu}}(A)$ and $c_{\omega_{\tilde{\theta}}}(A) \subseteq c_{\omega_{\mu}}(A)$. Hence $c_{\omega_{\mu}}(A) = c_{\omega_{\tilde{\theta}}}(A)$.

Theorem 3.3. Let (X, μ) be a μ -locally indiscrete GTS and let $A \subseteq X$. Then the following properties hold.

- (1) $c_{\mu}(A) = c_{\tilde{\theta}_{\mu}}(A);$
- (2) $c_{\omega_{\widetilde{A}}}(A) \subseteq c_{\mu}(A);$
- (3) If A is μ -closed in (X, μ) , then A is $\tilde{\theta_{\mu}}$ -closed in (X, μ) .
- (4) If A is μ -closed in (X, μ) , then A is $\omega_{\tilde{\theta}}$ - μ -closed in (X, μ) .

Proof. (1) Clearly $c_{\mu}(A) \subseteq c_{\tilde{\theta}_{\mu}}(A)$. To show that $c_{\tilde{\theta}_{\mu}}(A) \subseteq c_{\mu}(A)$, let $x \notin c_{\mu}(A)$. Then there exists $U \in \mu$ such that $x \in U$ and $U \cap A = \emptyset$. Since (X, μ) is a μ -locally indiscrete, $c_{\mu}(U) = U$. It follows that $U \subseteq c_{\mu}(U) \cap \mathcal{M}_{\mu} \subseteq U$ and hence $U \in \tilde{\theta}_{\mu}$. Thus $x \notin c_{\tilde{\theta}_{\mu}}(A)$.

(2) Since (X, μ) is μ -locally indiscrete. then by Theorem 2.5, $\mu \subseteq \omega_{\tilde{\theta}}$ and hence $c_{\omega_{\tilde{\theta}}}(A) \subseteq c_{\mu}(A)$.

(3) Suppose that A is μ -closed in (X, μ) , then $c_{\mu}(A) = A$. Thus by (1), $A = c_{\tilde{\theta}_{\mu}}(A)$ and hence A is $\tilde{\theta}_{\mu}$ -closed in (X, μ) .

(4) Suppose that A is μ -closed in (X, μ) , then $c_{\mu}(A) = A$. Thus by (2), $A = c_{\omega_{\tilde{\theta}}}(A)$ and hence A is $\omega_{\tilde{\theta}}$ - μ -closed in (X, μ) .

Definition 3.3. A GTS (X, μ) is said to be $\omega_{\tilde{\theta}}$ -anti-locally countable if the intersection of any two $\omega_{\tilde{\theta}}$ - μ -open sets is either empty or uncountable.

The following lemma is used to prove the theorem which is stated below.

Lemma 3.3. Let (X, μ) be $\omega_{\tilde{\theta}}$ -anti-locally countable and $A \subseteq X$. If $A \in \omega_{\tilde{\theta}}$, then $c_{\tilde{\theta}_{\mu}}(A) = c_{\omega_{\tilde{\theta}}}(A)$.

Proof. Suppose that $\emptyset \neq A \subseteq X$ and $A \in \omega_{\tilde{\theta}}$. By Theorem 3.2(1), $c_{\omega_{\tilde{\theta}}}(A) \subseteq c_{\tilde{\theta}_{\mu}}(A)$. To Show that $c_{\tilde{\theta}_{\mu}}(A) \subseteq c_{\omega_{\tilde{\theta}}}(A)$, let $x \in c_{\tilde{\theta}_{\mu}}(A)$ and $W \in \omega_{\tilde{\theta}}$ such that $x \in W$. Then by Lemma 2.2, there exists $U \in \tilde{\theta}_{\mu}$ and a countable set $C \subseteq \mathcal{M}_{\mu}$ such that $x \in U \setminus C \subseteq W$. Since $x \in U \cap c_{\tilde{\theta}_{\mu}}(A)$, $U \cap A \neq \emptyset$. Choose $y \in U \cap A$. Since $A \in \omega_{\tilde{\theta}}$, there exists $V \in \tilde{\theta}_{\mu}$ and a countable set $D \subseteq \mathcal{M}_{\mu}$ such that $y \in V \setminus D \subseteq A$. Since $y \in U \cap V$ and (X, μ) is $\omega_{\tilde{\theta}}$ -anti-locally countable, then $U \cap V$ is uncountable. Thus, $(U \setminus C) \cap (V \setminus D) \neq \emptyset$ and hence $A \cap W \neq \emptyset$. Therefore, $x \in c_{\omega_{\tilde{a}}}(A)$.

A subset A of GTS (X, μ) is said to be $\tilde{\theta_{\mu}}$ -clopen(resp. $\omega_{\tilde{\theta}}$ - μ -clopen) if it is both $\tilde{\theta_{\mu}}$ -open and $\tilde{\theta_{\mu}}$ -closed (resp. $\omega_{\tilde{\theta}}$ - μ -open and $\omega_{\tilde{\theta}}$ - μ -closed).

In the following, by using Lemma 3.3, we prove the main result in this section.

Theorem 3.4. Let (X, μ) be $\omega_{\tilde{\theta}}$ -anti-locally countable and $A \subseteq X$. Then, A is $\tilde{\theta}_{\mu}$ -clopen if and only if A is $\omega_{\tilde{\theta}}$ - μ -clopen.

Proof. \Rightarrow) Suppose that A is $\tilde{\theta_{\mu}}$ -clopen, then A and $X \setminus A$ are $\tilde{\theta_{\mu}}$ -open. Since $\tilde{\theta}_{\mu} \subseteq \omega_{\tilde{\theta}}$, then A and $X \setminus A$ are $\omega_{\tilde{\theta}}$ - μ -open, and hence A is $\omega_{\tilde{\theta}}$ - μ -clopen.

 \Leftarrow) Suppose that A is $\omega_{\tilde{\theta}}$ - μ -clopen. Since A and X \ A are $\omega_{\tilde{\theta}}$ - μ -open, the by Lemma 3.3,

$$c_{\widetilde{ heta}_{\mu}}(A) = c_{\omega_{\widetilde{ heta}}}(A) ext{ and } c_{\widetilde{ heta}_{\mu}}(x \setminus A) = c_{\omega_{\widetilde{ heta}}}(X \setminus A).$$

Since A is $\omega_{\tilde{\theta}}$ - μ -clopen., then

$$c_{\tilde{\theta}_{\mu}}(A) = c_{\omega_{\tilde{\theta}}}(A) = A \text{ and } c_{\omega_{\tilde{\theta}}}(X \setminus A) = X \setminus A.$$

Therefore,

$$c_{\tilde{ heta}_{\mu}}(A) = A ext{ and } c_{\tilde{ heta}_{\mu}}(X \setminus A) = X \setminus A$$

and hence A and $X \setminus A$ are $\tilde{\theta_{\mu}}$ -closed sets. This means that A is $\tilde{\theta_{\mu}}$ -clopen.

Definition 3.4. Let (X, μ) be a GTS and $A \subseteq X$. Then, we define the following notions:

(1) $i_{\omega_{\tilde{\theta}}}(A) = \bigcup \{ U \subseteq X : U \subseteq A, U \text{ is } \omega_{\tilde{\theta}} - \mu - open \};$ (2) $i_{\tilde{\theta}}(A) = \bigcup \{ U \subseteq X : U \subseteq A, U \text{ is } \tilde{\theta_{\mu}} - open \};$ (3) $i_{\omega_{\mu}}(A) = \bigcup \{ U \subseteq X : U \subseteq A, U \text{ is } \omega - \mu - open \}.$

Theorem 3.5. For subsets A, B of GTS (X, μ) , the following properties hold:

- (1) if $A \subseteq B \subset X$, then $i_{\omega_{\tilde{a}}}(A) \subseteq i_{\omega_{\tilde{a}}}(B)$;
- (2) for $A \subseteq X$, then $i_{\omega_{\tilde{a}}}(A) \subseteq A$;
- (3) $i_{\omega_{\tilde{\theta}}}(i_{\omega_{\tilde{\theta}}}(A)) = i_{\omega_{\tilde{\theta}}}(A)$ for $A \subseteq X$;
- (4) A is $\omega_{\tilde{\theta}}$ - μ -open if and only if $i_{\omega_{\tilde{\theta}}}(A) = A$.

Proof. The proof is obvious

Corollary 3.2. Let (X, μ) be a GTS and $A \subseteq X$. Then $i_{\tilde{\theta}_{\mu}}(A) \subseteq i_{\omega_{\tilde{\theta}}}(A) \subseteq i_{\omega_{\mu}}(A)$.

Proof. To show that $i_{\tilde{\theta}_{\mu}}(A) \subseteq i_{\omega_{\tilde{\theta}}}(A)$, let $x \in i_{\tilde{\theta}_{\mu}}(A)$. Then there is $U \in \tilde{\theta}_{\mu}$ such that $x \in U \subseteq A$. By Theorem 2.4, U is $\omega_{\tilde{\theta}}$ - μ -open. Thus $x \in i_{\omega_{\tilde{\theta}}}(A)$. To show that $i_{\omega_{\tilde{\theta}}}(A) \subseteq i_{\omega_{\mu}}(A)$, let $x \in i_{\omega_{\tilde{\theta}}}(A)$. Then there is $U \in \omega_{\tilde{\theta}}$ such that $x \in U \subseteq A$. Then by Theorem 2.4, U is ω - μ -open and hence $x \in i_{\omega_{\mu}}(A)$ \Box

Theorem 3.6. Let (X, μ) be a GTS and $A \subseteq X$. Then the following properties hold: (1) $c_{\omega_{\tilde{\theta}}}(X \setminus A) = X \setminus i_{\omega_{\tilde{\theta}}}(A)$;

(2)
$$i_{\omega_{\widetilde{\theta}}}(X \setminus A) = X \setminus c_{\omega_{\widetilde{\theta}}}(A)$$

Proof. (1) Let $x \in c_{\omega_{\tilde{\theta}}}(X \setminus A)$ and $U \in \omega_{\tilde{\theta}}$ with $x \in U$. Since $x \in c_{\omega_{\tilde{\theta}}}(X \setminus A)$, $U \cap (X \setminus A) \neq \emptyset$. This implies that $x \notin i_{\omega_{\tilde{\theta}}}(A)$ and hence $x \in X \setminus i_{\omega_{\tilde{\theta}}}(A)$.

Conversely, for $x \in X \setminus i_{\omega_{\tilde{\theta}}}(A)$, $x \notin i_{\omega_{\tilde{\theta}}}(A)$, and then $U \cap (X \setminus A) \neq \emptyset$ for all $U \in \omega_{\tilde{\theta}}$ and $x \in U$ which implies $x \in c_{\omega_{\tilde{\theta}}}(X \setminus A)$.

(2) Let $x \in X \setminus c_{\omega_{\tilde{\theta}}}(A)$ if and only if $x \notin c_{\omega_{\tilde{\theta}}}(A)$ if and only if there is $U \in \omega_{\tilde{\theta}}$ with $x \in U$ such that $U \cap A = \emptyset$ if and only if $x \in i_{\omega_{\tilde{\theta}}}(X \setminus A)$.

4. Conclusion

In this paper, we introduced the notion of $\omega_{\tilde{\theta}}^{-}\mu$ -open sets in the sense of generalized topology given in [5]. We have proved that the collection of $\omega_{\tilde{\theta}}^{-}\mu$ -open sets forms a generalized topology on X that lies between the class of $\tilde{\theta}_{\mu}^{-}$ -open sets and the class of ω - μ -open sets. The relationships of $\omega_{\tilde{\theta}}^{-}\mu$ -open and other well-known generalized open sets are given. Several properties of $\omega_{\tilde{\theta}}^{-}\mu$ -open sets which enable us to prove certain of our results are studied and verified. In the upcoming work, we plan to : (1) introduce some concepts in GTS using $\omega_{\tilde{\theta}}^{-}\mu$ -open sets such as connectedness, compactness and Lindelöfness; (2) introduce continuity and decomposition of continuity via $\omega_{\tilde{\theta}}^{-}\mu$ -open sets.

Acknowledgements: The authors are grateful to the referees for useful comments and suggestions. **Conflicts of Interest:** The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- S.A. Ghour, W. Zareer, Omega Open Sets in Generalized Topological Spaces, J. Nonlinear Sci. Appl. 9 (2016), 3010–3017. https://doi.org/10.22436/jnsa.009.05.93.
- [2] K. Al-Zoubi, B. Al-Nashef, The Topology of ω -Open Subsets, Al-Manarah J. 9 (2003), 169-179.
- [3] A. Al-Omari, M.S. Md Noorani, Regular Generalized ω-Closed Sets, Int. J. Math. Math. Sci. 2007 (2007), 16292.
 https://doi.org/10.1155/2007/16292.
- [4] A. Al-Omari, T. Noiri, A Unified Theory of Contra-(μ, λ)-Continuous Functions in Generalized Topological Spaces, Acta Math. Hung. 135 (2012), 31–41. https://doi.org/10.1007/s10474-011-0143-x.
- [5] Á. Császár, Generalized Topology, Generalized Continuity, Acta Math. Hung. 96 (2002), 351- 357. https://doi.org/10.1023/a:1019713018007.
- [6] Á. Császár, Extremally Disconnected Generalized Topologies, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 47 (2004), 91-96.

- [7] Á. Császár, Generalized Open Sets in Generalized Topologies, Acta Math. Hung. 106 (2005), 53-66. https: //doi.org/10.1007/s10474-005-0005-5.
- [8] Á. Császár, Product of Generalized Topologies, Acta Math. Hung. 123 (2009), 127-132. https://doi.org/10. 1007/s10474-008-8074-x.
- [9] C. Carpintero, E. Rosas, M. Salas, J. Sanabria, L. Vasquez, Generalization of ω-Closed Sets via Operators and Ideals, Sarajevo J. Math. 9 (2013), 293-301. https://doi.org/10.5644/sjm.09.2.13.
- [10] C. Carpintero, N. Rajesh, E. Rosas, S. Saranyasri, On Slightly ω-Continuous Multifunctions, Punjab Univ. J. Math. (Lahore), 46 (2014), 51-57.
- [11] E. Korczak-Kubiak, A. Loranty, R.J. Pawlak, Baire Generalized Topological Spaces, Generalized Metric Spaces and Infinite Games, Acta Math Hung. 140 (2013), 203–231. https://doi.org/10.1007/s10474-013-0304-1.
- [12] H.Z. Hdeib, ω-Closed Mappings, Rev. Colomb. Mat. 16 (1982), 65-78.
- W.K. Min, Some Results on Generalized Topological Spaces and Generalized Systems, Acta Math Hung. 108 (2005), 171–181. https://doi.org/10.1007/s10474-005-0218-7.
- [14] W.K. Min, Remarks on $\hat{\theta}$ -Open Sets in Generalized Topological Spaces, Appl. Math. Lett. 24 (2011) 165–168. https://doi.org/10.1016/j.aml.2010.08.038.
- [15] V. Renukadevi, P. Vimaladevi, Note on Generalized Topological Spaces With Hereditary Classes, Bol. Soc. Paran. Mat. 32 (2014), 89-97. https://doi.org/10.5269/bspm.v32i1.19401.
- [16] R. Sen, B. Roy, I_{μ^*} -Open Sets in Generalized Topological Spaces, Gen. Math. 27 (2019), 35-42.
- [17] Z. Zhu, W. Li, Contra Continuity on Generalized Topological Spaces, Acta Math. Hung. 138 (2013), 34-43. https://doi.org/10.1007/s10474-012-0215-6.