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Abstract. In this paper analogous to [1], we introduce a new class of sets called ωθ̃-µ-open sets in

generalized topological spaces which lies strictly between the class of θ̃µ-open sets and the class of

ω-µ-open sets. We prove that the collection of ωθ̃-µ-open sets forms a generalized topology. Finally,

several characterizations and properties of this class have been given.

1. Introduction

One notion that has received much attention lately is the so-called ω-open sets in a topological

space (X, τ) was introduced by Hdeib [12], which forms a topology finer than τ . Recently, many

topological concepts and several interesting results related to this notion have obtained by many

authors such as [3], [10], [9], [2]. A collection µ of subsets of a nonempty set X is a generalized

topology (GT) if ∅ ∈ µ and µ is closed under arbitrary unions, this notion was introduced by Császár

in the sense of [5]. We call the pair (X,µ) a generalized topological space (briefly GTS) on X. The

elements of µ are called µ-open sets and their complements are called µ-closed sets, see [7], the union

of all elements of µ will be denoted byMµ and a GTS (X,µ) is said to be strong [7] if X ∈ µ. If A
is a subset of a GTS (X,µ), then the µ-closure of A, cµ(A), is the intersection of all µ-closed sets

containing A and the µ-interior of A, iµ(A), is the union of all µ-open sets contained in A (see [5,7]).

It is easy to observe that operators iµ and cµ are idempotent and monotonic A subset A of a GTS

(X,µ) is µ-open if and only if A = iµ(A), and and iµ(A) = X \ cµ(X \ A). Evidently, A is µ-closed if

and only if A = cµ(A), cµ(A) is the smallest µ-closed set containing A, iµ(A) is the largest µ-open set

contained in A. Over recent years several authors have been working in formulate many topological
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concepts to establish new concepts in the structure of GTS, see [4], [8], [6] [11], [17], [15], [13] and

others. Then motivated by the notion of ω-open set in a topological space (X, τ), Al Ghour and Wafa

Zareer (2016) [1] defined the notions of ω-µ-closed sets and ω-µ-open sets in the structure of GTS

as follows : A subset A of GTS (X,µ) is called ω-µ-closed if it contains all its condensation points.

The complement of an ω-µ-closed set is called ω-µ-open. The family of all ω-µ-open subsets of X

forms a GT on X, denoted by ωµ.

Let us now recall some notions defined in [14]. A subset A of GTS (X, τ) is said to be θ̃µ-open

if and only if for each x ∈ A, there exists U ∈ µ such that x ∈ U ⊆ cµ(U) ∩ Mµ ⊆ A and the

collection of all θ̃µ-open subsets of a GTS (X,µ) is denoted by θ̃µ. Then θ̃µ is also a GT included

in µ. Analogous to [1] and by using the notion of θ̃µ-open, we introduce the relatively new notions

of ωθ̃-µ-open as a new class of sets . We present several characterizations, properties, and examples

related to the new concepts.

In section 2, we use the the notion of θ̃µ-open to introduce ωθ̃-µ-open sets in GTS as a new class

of sets and we prove that this class lies strictly between the class of θ̃µ-open sets and the class of

ω-µ-open sets. Moreover, we give some sufficient conditions for the equivalence between the class of

ωθ̃-µ-open sets and the class of ω-µ-open sets.

In section 3, several interesting properties of ωθ̃-µ-open subsets are discussed via the operations of

ωθ̃-interior and ωθ̃-closure.

Definition 1.1. [16] A GTS (X,µ) is said to be µ-locally indiscrete if every µ-open set in (X,µ) is

µ-closed.

Definition 1.2. [1] A GTS (X,µ) is called µ-locally countable ifMµ is nonempty and for every point

x ∈Mµ, there exists a U ∈ µ such that x ∈ U and U is countable.

Definition 1.3. [14] Let (X,µ) be a GTS , A ⊆ X and γθ̃ : P (X)→ P (X) be an operation defined

as the following:

γθ̃µ(A) = {x ∈ X : cµ(U) ∩Mµ ∩ A 6= ∅ f or al l U ∈ µ, x ∈ U}.

Theorem 1.1. [1] Let (X,µ) be a GTS. ThenMµ =Mωµ .

Theorem 1.2. [1] If (X,µ) is a µ-locally countable GTS, then ωµis the discrete topology onMµ.

2. ωθ̃-µ-open sets

We begin this section by introducing the following definition.

Definition 2.1. Let (X,µ) be a GTS and A ⊆ X. Consider an operation Γωθ̃ : P (X)→ P (X) defined

as the following:

Γωθ̃(A) = {x ∈ X : U ∩ A is uncountable f or al l U ∈ θ̃µ and x ∈ U}. A point x ∈ X is called a
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θ̃µ-condensation point of A if for all U ∈ θ̃µ such that x ∈ U and U ∩A is uncountable. The set of all

θ̃µ-condensation points of A is denoted by Γωθ̃(A).

Lemma 2.1. Let (X,µ) be a GTS. The operation Γωθ̃ : P (X)→ P (X) has the following properties:

(1) if A ⊆ B ⊂ X, then Γωθ̃(A) ⊆ Γωθ̃(B) (monotonic property);

(2) Γωθ̃(Γωθ̃(A)) ⊆ Γωθ̃(A) for any A ⊆ X (restricting property);

(3) if A is any countable subset of X, then Γωθ̃(A) = ∅.

Proof. (1) Let A ⊆ B ⊂ X and x ∈ Γωθ̃(A). Then U ∩ A is uncountable for each U ∈ θ̃µ and x ∈ U.
Since A ⊆ B, then U ∩ B is uncountable. Thus x ∈ Γωθ̃(B) and hence Γωθ̃(A) ⊆ Γωθ̃(B).

(2) Let x ∈ Γωθ̃(Γωθ̃(A)). Then U ∩ Γωθ̃(A) is an uncountable for all U ∈ θ̃µ and x ∈ U. Let

y ∈ U
⋂

Γωθ̃(A). Then y ∈ U and y ∈ Γωθ̃(A) which implies that U ∩ A is an uncountable set. Hence

x ∈ Γωθ̃(A) and therefore Γωθ̃(Γωθ̃(A)) ⊆ Γωθ̃(A).

(3) The proof is obvious by Definition 2.1. �

Definition 2.2. Let (X,µ) be a GTS and A ⊆ X. Then A is said to be ωθ̃-µ-closed if Γωθ̃(A) ⊆ A.
The complement of an ωθ̃-µ-closed set is said to be ωθ̃-µ-open.

The family of all ωθ̃-µ-open subsets of (X,µ) is denoted by ωθ̃, where ωθ̃ = {W ⊆ X : Γωθ̃(X\W ) ⊆
X \W}. The following theorem and lemma give a necessary and sufficient condition for ωθ̃-µ-open

sets.

Theorem 2.1. Let (X,µ) be a GTS and W ⊆ X. Then the following statements are equivalent:

(1) W is ωθ̃-µ-open;

(2) if for every x ∈ W there exists a U ∈ θ̃µ such that x ∈ U and U \W is a countable set.

Proof. (1)⇒ (2): SupposeW is ωθ̃-µ-open. Since X\W is ωθ̃-µ-closed set, then Γωθ̃(X\W ) ⊆ X\W .

This means that for every x ∈ W , x /∈ Γωθ̃(X \W ) and hence there exists a U ∈ θ̃µ such that x ∈ U
and U ∩ (X \W ) = U \W is countable.

(2)⇒ (1): Let x ∈ W . Then by assumption there exists a U ∈ θ̃µ such that x ∈ U and U ∩ (X \W ) is

countable. Which implies that x /∈ Γωθ̃(X \W ), Γωθ̃(X \W ) ⊆ X \W and hence X \W is ωθ̃-µ-closed.

Therefore W is ωθ̃-µ-open set. �

Lemma 2.2. A subset W of a GTS (X,µ) is ωθ̃-µ-open if and only if for every x ∈ W there exists a

U ∈ θ̃µ and a countable C ⊆Mµ such that x ∈ U \ C ⊆ W .

Proof. Necessity. Let W be ωθ̃-µ-open and x ∈ W . By Theorem 2.1, there exists U ∈ θ̃µ such that

x ∈ U and U \W is countable. Let C = U \W . Then C is countable, C ⊆Mµ and x ∈ U ∩ (X \C) =

U ∩
(
X \ (U ∩X \W )

)
= U ∩W ⊆ W and hence x ∈ U \ C ⊆ W .

Sufficiency. Let x ∈ W . From assumption there exists U ∈ θ̃µ and a countable set C ⊆ Mµ such

that x ∈ U \ C ⊆ W . Therefore, U \W ⊆ C and U \W is a countable set and this completes the

proof. �
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Theorem 2.2. Let (X,µ) be a GTS and C ⊆ X. If C is ωθ̃-µ-closed, then C ⊆ F ∪ B for some

ωθ̃-µ-closed set F and a countable subset B.

Proof. Let C be any ωθ̃-µ-closed set in (X,µ). Then X \ C is ωθ̃-µ-open. By Lemma 2.2, for each

x ∈ X \ C, there exist a θ̃µ-open set U containing x and a countable subset B ⊆ Mµ such that

x ∈ U \B ⊆ X \C. Thus C ⊆ X \ (U \B) = X \ (U ∩ (X \B)) = (X \U)∪B. Let F = X \U. Then
F is ωθ̃-µ-closed such that C ⊆ F ∪ B. �

Theorem 2.3. Let (X,µ) be a GTS. Then the collection ωθ̃ forms a generalized topology on X.

Proof. It is clear that ∅ ∈ ωθ̃. Let {Wλ : λ ∈ ∆} be a collection of ωθ̃-µ-open subsets of (X,µ) and

x ∈
⋃
λ∈∆

Wλ. There exists an λ0 ∈ ∆ such that x ∈ Wλ0
. Since Wλ0

is ωθ̃-open set, then by Lemma

2.2, there exist U ∈ θ̃µ and a countable set C ⊆ Mµ such that x ∈ U \ C ⊆ Wλ0
⊆
⋃
λ∈∆

Wλ. By

Lemma 2.2, it follows that
⋃
λ∈∆

Wλ is ωθ̃-µ-open. Hence the collection ωθ̃ is generalized topology on

X. �

The next theorem obtains that the new class of ωθ̃-µ-open sets lies strictly between the class of

θ̃-µ-open sets and the class of ω-µ-open sets.

Theorem 2.4. Let (X,µ) be a GTS. Then θ̃µ ⊆ ωθ̃ ⊆ ωµ.

Proof. To show that θ̃µ ⊆ ωθ̃, let W ∈ θ̃µ and x ∈ W . Take U = W and C = ∅. Then U ∈ θ̃µ,
C ⊆Mµ such that x ∈ U \ C ⊆ W . Therefore, by Lemma 2.2, it follows that W ∈ ωθ̃.
To show that ωθ̃ ⊆ ωµ, Let W ∈ ωθ̃. By Theorem 2.1, for each x ∈ W there exists a U ∈ θ̃µ such

that x ∈ U and U \W is countable. Since θ̃µ ⊆ µ, then U ∈ µ and hence W is ω-µ-open. Therefore

W ∈ ωµ. �

The following diagram follows immediately from the definitions and Theorem 2.4.

θ̃µ − open =⇒ ωθ̃ − µ− openww� ww�
µ− open =⇒ ω − µ− open

The converse of these implications need not be true in general as shown by the following examples.

Example 2.1. Consider X = R, A = {4n : n ∈ N} and µ = {∅, [0, 2], [1, 3] ∪ A, [0, 3] ∪ A}. Then

(X,µ) is a generalized topological space and the family of all θ̃µ-open sets is θ̃µ = {∅, [0, 3] ∪ A}.
Then [1, 3] ∈ ωµ \ ωθ̃, i.e. [1, 3] is ω-µ-open but it is not ωθ̃-µ-open. Also, it is easy to check that

Γωθ̃(R \ [0, 3]) ⊆ R \ [0, 3]. Thus [0, 3] ∈ ωθ̃ \ θ̃µ, i.e. [0, 3] is ωθ̃-µ-open but it is not θ̃µ-open

Example 2.2. Let X = {a, b, c, d} with GT µ = {∅, {a, b}, {a, c}, {a, b, c}}. Then {a, c} ∈ ωθ̃ \ θ̃µ,
i.e. the set {a, c} is ωθ̃-µ-open but it is not θ̃µ-open.

Note that the previous examples show that θ̃µ 6= ωθ̃ 6= ωµ in general.
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Remark 2.1. The notions of µ-open and ωθ̃-µ-open sets are independent of each other. For more

clarity in Example 2.1, the set [0, 3] is ωθ̃-µ-open but it is not µ-open and the set [1, 3]∪A is µ-open

but it is not ωθ̃-µ-open.

Theorem 2.5. If a GTS (X,µ) is a µ-locally indiscrete, then µ ⊆ ωθ̃.

Proof. To show that µ ⊆ ωθ̃, let A ∈ µ and x ∈ A. Take U = A. Since (X,µ) is µ-locally indiscrete,

then cµ(U) = U and we have x ∈ U ⊆ cµ(U)∩Mµ ⊆ A. Thus A ∈ θ̃µ and by Theorem 2.4, θ̃µ ⊆ ωθ̃.
Therefore A ∈ ωθ̃. �

Lemma 2.3. Let (X,µ) be a GTS. ThenMµ ∈ θ̃µ.

Proof. Let A = Mµ and x ∈ A. Then there exists Ux ∈ µ such that x ∈ Ux . Since Ux ⊆
cµ(Ux)

⋂
Mµ ⊆ A, then A =Mµ ∈ θ̃µ. �

For a GT µ on a nonempty set X, let Mωθ̃
=
⋃
{U ⊆ X : U ∈ ωθ̃}. Thus we have the following

theorem.

Theorem 2.6. Let (X,µ) be a GTS. ThenMµ =Mωθ̃

Proof. By Lemma 2.3, Mµ ∈ θ̃µ and form Theorem 2.4, θ̃µ ⊆ ωθ̃ and hence Mµ ⊆ Mωθ̃
. On

the other hand, let x ∈ Mωθ̃
. Since, Mωθ̃

∈ ωθ̃, then by Lemma 2.2, there exists a U ∈ θ̃µ and a

countable set C ⊆Mµ such that x ∈ U \ C ⊆Mωθ̃
. Since U ⊆Mµ and U is µ-open, it follows that

x ∈Mµ and henceMωθ̃
⊆Mµ. ThereforeMµ =Mωθ̃

. �

By Theorem 1.1 and Theorem 2.6, we obtain the following corollary

Corollary 2.1. Let (X,µ) be a GTS. ThenMµ =Mωθ̃
=Mωµ

We will denote by (τcoc)X , the cocountable topology on a nonempty set X.

Theorem 2.7. Let (X,µ) be a GTS. Then (τcoc)U ⊆ ωθ̃ for all U ∈ θ̃µ \ {∅}.

Proof. Let U ∈ θ̃µ \ {∅}, W ∈ (τcoc)U and x ∈ W . Since W ⊆ U, we have x ∈ U and U \ W =

U \ (U ∩ V ) for some V ∈ τcoc . Now, U \W = U \ (U ∩ V ) = U \ V . Thus U \W is countable set

and by Theorem 2.1, it follows that W ∈ ωθ̃. This shows that (τcoc)U ⊆ ωθ̃. �

Theorem 2.8. For any GTS (X,µ), the following statements are equivalent.

(1) θ̃µ = ωθ̃.

(2) (τcoc)U ⊆ θ̃µ for all U ∈ θ̃µ \ {∅}.

Proof. (1) =⇒ (2): Assume that θ̃µ = ωθ̃ and U ∈ θ̃µ \ {∅}. Then by Theorem 2.7, (τcoc)U ⊆ ωθ̃ =

θ̃µ.

(2) =⇒ (1): Suppose that (τcoc)U ⊆ θ̃µ for all U ∈ θ̃µ \ {∅}. It is enough to show that ωθ̃ ⊆ θ̃µ. Let
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W ∈ ωθ̃ and x ∈ W . By Lemma 2.2, there exists Ux ∈ θ̃µ and a countable set Cx ⊆ Mµ such that

x ∈ Ux \ Cx ⊆ W . Thus Ux ∩ X \ Cx ∈ (τcoc)Ux , where X \ Cx ∈ τcoc . From assumption Ux \ Cx ∈
(τcoc)Ux ⊆ θ̃µ for all x ∈ W , and so Ux \Cx ∈ θ̃µ. It follows that W =

⋃
{Ux \Cx : x ∈ W} ∈ θ̃µ, and

hence θ̃µ = ωθ̃. �

Proposition 2.1. Let (X,µ) be a GTS. If θ̃µ is a topology on X, then ωθ̃ is a topology.

Proof. Suppose that θ̃µ is a topology. By Theorem 2.3, ωθ̃ is generalized topology. It is enough

to show that the collection ωθ̃ is closed under finite intersection. Let W , G be ωθ̃-µ-open sets

and x ∈ W ∩ G. Then by Theorem 2.1, there exist U, V ∈ θ̃µ containing x such that U \ W
and V \ G are countable sets. Since θ̃µ is a topology, we have x ∈ U ∩ V ∈ θ̃µ. Furthermore,

(U ∩V )\ (W ∩G) = (U ∩V )∩
[
X \W ∪X \G

]
= [(U ∩V )\W )]∪ [(U ∩V )\G)] ⊂ (U \W )∪ (V \G).

Therefore, (U ∩ V ) \ (W ∩ G) is a countable set and hence W ∩ G is ωθ̃-µ-open.

�

Definition 2.3. Let (X,µ) be a GTS . Then (X,µ) is said to be θ̃µ-locally countable ifMµ is nonempty

and for every point x ∈Mµ, there exists a U ∈ θ̃µ such that x ∈ U and U is countable.

The following corollary is a direct result from Definition 2.3 and Definition 1.2.

Corollary 2.2. Let (X,µ) be a GTS. If (X,µ) is θ̃µ-locally countable, then (X,µ) is µ-locally countable.

Theorem 2.9. If (X,µ) is a θ̃µ-locally countable GTS, then ωθ̃ is the discrete topology onMµ.

Proof. It is enough to show that every singleton subset ofMµ is ωθ̃-µ-open. Since (X,µ) is θ̃µ-locally

countable, then for each x ∈ Mµ, there exists a U ∈ θ̃µ such that x ∈ U and U is countable. By

Theorem 2.7, we have (τcoc)U ⊆ ωθ̃. Therefore U \ (U \ {x}) = {x} ∈ ωθ̃. �

The following corollary is a direct result of Theorem 2.9.

Corollary 2.3. Let (X,µ) be a strong GTS. If (X,µ) is a θ̃µ-locally countable, then ωθ̃ is the discrete

topology on X.

Proposition 2.2. If (X,µ) is a θ̃µ-locally countable GTS, then ωθ̃ = ωµ.

Proof. Since (X,µ) is θ̃µ-locally countable, then by Theorem 2.9, ωθ̃ is the the discrete topology on

Mµ. From Corollary 2.2 and Theorem 1.2, we get ωθ̃ = ωµ. �

Corollary 2.4. Let (X,µ) be a GTS. If Mµ is a countable nonempty set, then ωθ̃ is the discrete

topology onMµ.

Proof. Since Mµ is countable nonempty set, then for x ∈ Mµ, there exists U ∈ θ̃µ such that U is

countable set. Thus (X,µ) is θ̃µ-locally countable. From Theorem 2.9, we get ωθ̃ is the discrete

topology onMµ. �
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3. Further properties of ωθ̃-µ-open sets

Definition 3.1. Let (X,µ) be a GTS and A ⊆ X. A point x ∈ X is called an ωθ̃-closure point of A

if and only if U ∩ A 6= ∅ for all U ∈ ωθ̃ and x ∈ U. Consider the following operations are defined as

follows:

(1) γωθ̃(A) = {x ∈ X : U ∩ A 6= ∅, f or al l U ∈ ωθ̃ and x ∈ U};
(2) cωθ̃(A) = ∩{F : A ⊆ F, F is ωθ̃-µ-closed in X}.

Lemma 3.1. Let (X,µ) be a GTS. Then cωθ̃(A) = γωθ̃(A) for any A ⊆ X.

Proof. It is enough to show that γωθ̃(A) is the smallest ωθ̃-µ-closed set containing A. Clearly A ⊆
γωθ̃(A). Further γωθ̃(A) is ωθ̃-µ-closed, that is X\γωθ̃(A) is ωθ̃-µ-open because for each x ∈ X\γωθ̃(A)

there is Ux ∈ ωθ̃ such that x ∈ Ux and Ux ∩ A = ∅. Now, for any y ∈ Ux implies y ∈ X \ γωθ̃(A) so

that X \ γωθ̃(A) =
⋃

x∈X\γω
θ̃

(A)

Ux ∈ ωθ̃.

Finally if A ⊆ F and F is any ωθ̃-µ-closed, then X \ F is ωθ̃-µ-open and (X \ F ) ∩ A = ∅ so

that X \ F ⊆ X \ γωθ̃(A) and hence γωθ̃(A) ⊆ F . Therefore γωθ̃(A) is the smallest ωθ̃-µ-closed set

containing A, and by Definition 3.1(2), γωθ̃(A) = cωθ̃(A). �

The proof of the following theorem is straightforward and thus omitted.

Theorem 3.1. For subsets A,B of GTS (X,µ), the following properties hold:

(1) if A ⊆ B ⊂ X, then cωθ̃(A) ⊆ cωθ̃(B);

(2) A ⊆ cωθ̃(A) for A ⊆ X;
(3) cωθ̃(cωθ̃(A)) = cωθ̃(A) for A ⊆ X;
(4) A is ωθ̃-µ-closed if and only if cωθ̃(A) = A.

Definition 3.2. Let (X,µ) be a GTS and A ⊆ X. Then we define the following notions:

(1) cθ̃µ(A) = ∩{F : A ⊆ F, F is θ̃µ-closed in X};
(2) cωµ(A) = ∩{F : A ⊆ F, F is ω-µ-closed in X}.

The proof of the following corollary is straightforward and thus omitted.

Corollary 3.1. For a subset A of a GTS (X,µ), the following properties hold:

(1) A is θ̃µ-closed if and only if cθ̃µ(A) = A;

(2) A is ω-µ-closed if and only if cωµ(A) = A.

Lemma 3.2. Let (X,µ) be a GTS. Then γθ̃µ(A) ⊆ cθ̃µ(A) for any A ⊆ X.

Proof. Let x /∈ cθ̃µ(A). Then x ∈ X \ cθ̃µ(A) so that there is U ∈ θ̃µ satisfying x ∈ U and U ∩ A = ∅.
Since U ∈ θ̃µ, then there is V ∈ µ such that x ∈ V ⊆ cµ(V ) ∩Mµ ⊆ U and cµ(V ) ∩Mµ ∩ A = ∅,
consequently x /∈ γθ̃(A). Thus we have γθ̃(A) ⊆ cθ̃(A). �
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Theorem 3.2. Let (X,µ) be a GTS and A ⊆ X. Then the following properties hold:

(1) cωµ(A) ⊆ cωθ̃(A) ⊆ cθ̃µ(A);

(2) If A is θ̃µ-closed, then A is ωθ̃-µ-closed;

(3) If A is ωθ̃-µ-closed, then A is ω-µ-closed.

Proof. (1) To show that cωµ(A) ⊆ cωθ̃(A), let x /∈ cωθ̃(A) and so there is a U ∈ ωθ̃ containing x such

that U ∩A = ∅. From Theorem 2.4, we have ωθ̃ ⊆ ωµ, U ∈ ωµ, and hence x /∈ cωµ(A). To show that

cωθ̃(A) ⊆ cθ̃µ(A), let x /∈ cθ̃µ(A) and so there is a U ∈ θ̃µ containing x such that U ∩ A = ∅. From

Theorem 2.4, we have θ̃µ ⊆ ωθ̃, U ∈ ωθ̃, and hence x /∈ cωθ̃(A).

(2) Suppose that A is θ̃µ-closed. Then by Corollary 3.1(1), cθ̃µ(A) = A. Thus by (1), cωθ̃(A) = A

and hence A is ωθ̃-µ-closed.

(2) Suppose that A is ωθ̃-µ-closed. Then by Theorem 3.1(4), cωθ̃(A) = A . Thus by (1), cωµ(A) = A

and hence A is ω-µ-closed. �

Proposition 3.1. Let (X,µ) be a θ̃µ-locally countable GTS and A ⊆ X. Then cωµ(A) = cωθ̃(A)

Proof. By Theorem 3.2(1), cωµ(A) ⊆ cωθ̃(A). Let x ∈ cωθ̃(A). Then U ∩ A 6= ∅ for all U ∈ ωθ̃ and
x ∈ U. Since (X,µ) is a θ̃µ-locally countable, then by Theorem 2.9, ωθ̃ is the discrete topology on

Mµ and hence ωµ = ωθ̃. Which implies that x ∈ cωµ(A) and cωθ̃(A) ⊆ cωµ(A). Hence cωµ(A) =

cωθ̃(A). �

Theorem 3.3. Let (X,µ) be a µ-locally indiscrete GTS and let A ⊆ X. Then the following properties

hold.

(1) cµ(A) = cθ̃µ(A);

(2) cωθ̃(A) ⊆ cµ(A);

(3) If A is µ-closed in (X,µ), then A is θ̃µ-closed in (X,µ).

(4) If A is µ-closed in (X,µ), then A is ωθ̃-µ-closed in (X,µ).

Proof. (1) Clearly cµ(A) ⊆ cθ̃µ(A). To show that cθ̃µ(A) ⊆ cµ(A), let x /∈ cµ(A). Then there exists

U ∈ µ such that x ∈ U and U ∩ A = ∅. Since (X,µ) is a µ-locally indiscrete, cµ(U) = U. It follows

that U ⊆ cµ(U) ∩Mµ ⊆ U and hence U ∈ θ̃µ. Thus x /∈ cθ̃µ(A).

(2) Since (X,µ) is µ-locally indiscrete. then by Theorem 2.5, µ ⊆ ωθ̃ and hence cωθ̃(A) ⊆ cµ(A).

(3) Suppose that A is µ-closed in (X,µ), then cµ(A) = A. Thus by (1), A = cθ̃µ(A) and hence A is

θ̃µ-closed in (X,µ).

(4) Suppose that A is µ-closed in (X,µ), then cµ(A) = A. Thus by (2), A = cωθ̃(A) and hence A is

ωθ̃-µ-closed in (X,µ). �

Definition 3.3. A GTS (X,µ) is said to be ωθ̃-anti-locally countable if the intersection of any two

ωθ̃-µ-open sets is either empty or uncountable.

The following lemma is used to prove the theorem which is stated below.
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Lemma 3.3. Let (X,µ) be ωθ̃-anti-locally countable and A ⊆ X. If A ∈ ωθ̃, then cθ̃µ(A) = cωθ̃(A).

Proof. Suppose that ∅ 6= A ⊆ X and A ∈ ωθ̃. By Theorem 3.2(1), cωθ̃(A) ⊆ cθ̃µ(A). To Show that

cθ̃µ(A) ⊆ cωθ̃(A), let x ∈ cθ̃µ(A) and W ∈ ωθ̃ such that x ∈ W . Then by Lemma 2.2, there exists

U ∈ θ̃µ and a countable set C ⊆ Mµ such that x ∈ U \ C ⊆ W . Since x ∈ U ∩ cθ̃µ(A), U ∩ A 6= ∅.
Choose y ∈ U ∩ A. Since A ∈ ωθ̃, there exists V ∈ θ̃µ and a countable set D ⊆ Mµ such that

y ∈ V \D ⊆ A. Since y ∈ U ∩ V and (X,µ) is ωθ̃-anti-locally countable, then U ∩ V is uncountable.

Thus, (U \ C) ∩ (V \D) 6= ∅ and hence A ∩W 6= ∅. Therefore, x ∈ cωθ̃(A). �

A subset A of GTS (X,µ) is said to be θ̃µ-clopen(resp. ωθ̃-µ-clopen) if it is both θ̃µ-open and

θ̃µ-closed (resp. ωθ̃-µ-open and ωθ̃-µ-closed).

In the following, by using Lemma 3.3, we prove the main result in this section.

Theorem 3.4. Let (X,µ) be ωθ̃-anti-locally countable and A ⊆ X. Then, A is θ̃µ-clopen if and only

if A is ωθ̃-µ-clopen.

Proof. ⇒) Suppose that A is θ̃µ-clopen, then A and X \ A are θ̃µ-open. Since θ̃µ ⊆ ωθ̃, then A and

X \ A are ωθ̃-µ-open, and hence A is ωθ̃-µ-clopen.

⇐) Suppose that A is ωθ̃-µ-clopen. Since A and X \ A are ωθ̃-µ-open, the by Lemma 3.3,

cθ̃µ(A) = cωθ̃(A) and cθ̃µ(x \ A) = cωθ̃(X \ A).

Since A is ωθ̃-µ-clopen., then

cθ̃µ(A) = cωθ̃(A) = A and cωθ̃(X \ A) = X \ A.

Therefore,

cθ̃µ(A) = A and cθ̃µ(X \ A) = X \ A

and hence A and X \ A are θ̃µ-closed sets. This means that A is θ̃µ-clopen. �

Definition 3.4. Let (X,µ) be a GTS and A ⊆ X. Then, we define the following notions:

(1) iωθ̃(A) = ∪{U ⊆ X : U ⊆ A, U is ωθ̃-µ-open};
(2) iθ̃(A) = ∪{U ⊆ X : U ⊆ A, U is θ̃µ-open};
(3) iωµ(A) = ∪{U ⊆ X : U ⊆ A, U is ω-µ-open}.

Theorem 3.5. For subsets A,B of GTS (X,µ), the following properties hold:

(1) if A ⊆ B ⊂ X, then iωθ̃(A) ⊆ iωθ̃(B);

(2) for A ⊆ X, then iωθ̃(A) ⊆ A;
(3) iωθ̃(iωθ̃(A)) = iωθ̃(A) for A ⊆ X;
(4) A is ωθ̃-µ-open if and only if iωθ̃(A) = A.

Proof. The proof is obvious �
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Corollary 3.2. Let (X,µ) be a GTS and A ⊆ X. Then iθ̃µ(A) ⊆ iωθ̃(A) ⊆ iωµ(A).

Proof. To show that iθ̃µ(A) ⊆ iωθ̃(A), let x ∈ iθ̃µ(A). Then there is U ∈ θ̃µ such that x ∈ U ⊆ A. By
Theorem 2.4, U is ωθ̃-µ-open. Thus x ∈ iωθ̃(A). To show that iωθ̃(A) ⊆ iωµ(A), let x ∈ iωθ̃(A). Then

there is U ∈ ωθ̃ such that x ∈ U ⊆ A. Then by Theorem 2.4, U is ω-µ-open and hence x ∈ iωµ(A) �

Theorem 3.6. Let (X,µ) be a GTS and A ⊆ X. Then the following properties hold:

(1) cωθ̃(X \ A) = X \ iωθ̃(A);

(2) iωθ̃(X \ A) = X \ cωθ̃(A).

Proof. (1) Let x ∈ cωθ̃(X \ A) and U ∈ ωθ̃ with x ∈ U. Since x ∈ cωθ̃(X \ A), U ∩ (X \ A) 6= ∅. This
implies that x /∈ iωθ̃(A) and hence x ∈ X \ iωθ̃(A).

Conversely, for x ∈ X \ iωθ̃(A), x /∈ iωθ̃(A), and then U ∩ (X \ A) 6= ∅ for all U ∈ ωθ̃ and x ∈ U which

implies x ∈ cωθ̃(X \ A).

(2) Let x ∈ X \ cωθ̃(A) if and only if x /∈ cωθ̃(A) if and only if there is U ∈ ωθ̃ with x ∈ U such that

U ∩ A = ∅ if and only if x ∈ iωθ̃(X \ A). �

4. Conclusion

In this paper, we introduced the notion of ωθ̃-µ-open sets in the sense of generalized topology given

in [5]. We have proved that the collection of ωθ̃-µ-open sets forms a generalized topology on X that

lies between the class of θ̃µ-open sets and the class of ω-µ-open sets. The relationships of ωθ̃-µ-open

and other well-known generalized open sets are given. Several properties of ωθ̃-µ-open sets which

enable us to prove certain of our results are studied and verified. In the upcoming work, we plan to :

(1) introduce some concepts in GTS using ωθ̃-µ-open sets such as connectedness, compactness and

Lindelöfness; (2) introduce continuity and decomposition of continuity via ωθ̃-µ-open sets.
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