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Abstract. In this paper, we introduce the notion of generalized (a, ¢, 1¥)- Geraghty contractive type
mappings in the setup of S,-metric spaces and a-orbital admissible mappings with respect to ¢.
Furthermore, the fixed-point theorems for such mappings in complete S,-metric spaces are proven
without assuming the subadditivity of 9. Some examples are provided for supporting of our main

results. Also, we gave an application to integral equations as well as Homotopy.

1. Introduction

The Banach contraction principle [1] is one of the most significant findings in fixed point theory
since it has applications in many areas of mathematics and mathematical sciences. By combining the
ideas of S and b-metric spaces, Sedghi et al. [2] created Sp-metric spaces and established common
fixed point outcomes in Sp- metric spaces. In order to improve, numerous authors developed numerous
findings in Sp-metric spaces (see e.g. [3], [4], [5], [6]. [7]. [8]).

One of the more intriguing findings is Geraghty's [9] generalisation of the Banach contraction
theorem. Multiple researchers have since studied this type of research in different metric spaces (see
e.g [10], [11], [12], [13], [14], [15], [16], [17], [18]).
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Triangular a-admissible mappings are a novel idea that Karapinar et al. [15] introduced to study
fixed points for such mappings in metric spaces. Three new concepts triangular a-orbital admissible,
a -orbital admissible and a-orbital attractive mappings were developed by Popescu [17] in 2014. The
idea of triangular a-orbital admissible mappings with respect to m was first suggested in 2016 by
Chuadchawna et al. [19]. The concept of generalised a — 1 — ¥-Geraghty contractive type mappings
and a-orbital attractive mappings with regard to is introduced by Farajzadeh et al. in 2018 [20] in the
framework of partial b-metric spaces, which will be effectively applied for establishing our key findings.

In the context of Sp-metric spaces and a-orbital admissible mappings with regard to ¢, this paper
aims to demonstrate unique fixed point theorems for generalised (a, ¢, ¥)-Geraghty contractive type
mapping. Additionally, we may provide relevant applications for homotopy, integral equations, and
appropriate examples.

We first review some fundamental findings.

2. Preliminaries

Definition 2.1. ( [2]) Let P be a non-empty set and b > 1 be given real number. Suppose that a
mapping Sy : P2 — [0, 00) be a function satisfying the following properties :

(Spl) 0 < Sp(o,s,T) forall o,5, T € P witho #¢ # T # 0,

(Sp2) Sp(o,5,T)=0=0=c=T,

(5p3) Sp(o,s,7) < b(Sp(o,0,a)+ Sp(s,s,a) + Sp(T,7,a)) for all 0,5, T,a € P.
The function Sy, is then referred to as a Sp-metric on B3, and the pair (B, Sp) is referred to as a

Sp-metric space.

Remark 2.1. ( [2]) It should be noted that the Sp-metric space class is effectively larger than the

S-metric space class. Each S-metric space is, in fact, a Sb-metric space with b = 1.

Example 2.1. ( [2]) Let (B, S) be S-metric space and S,(o,s,T) = S(0,5,T)P, where p > 1 is a real
number. Then obviously, S, is a Sp-metric with b = 22(P=1) pyt (%8, S,) is not necessarily a S-metric

space.

Definition 2.2. ( [2]) Let (B, Sp) be a Sp-metric space. Then, for o € B, X > 0 we defined the open

ball Bs,(co, \) and closed ball Bs,[o, \] with center o and radius X as follows respectively:
Bs,(0,X) ={s € P :Sp(s,5,0) <A} and Bs,[o,\] = {s € P : Sp(s,5,0) < AL
Lemma 2.1. ( [2]) In the Sp-metric space, we have
So(W V) < 2bSp(p, . €) + b>Sp(€,€,v).

Definition 2.3. ( [2]) Let {0} be a sequence in Sp-metric space (B, Sp) is said to be:

(1) Sp-Cauchy sequence if, for each € > 0, there exists ng € N such that Sp(cp, 0n, 0m) < € for

each m,n > ng.
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(2) Sp-convergent to a point o € B if, for each € > 0, there exists a positive integer ny such that
Sp(on, 0n,0) <€ orSp(o,,0,0,) <€ foralln> ng and we denote by lim o, =o0.
n—oo

(3) (B, Sp) is Sp-complete if every S,-Cauchy sequence is Sp-convergent in B.

Lemma 2.2. ( [2]) If (B, Sp) be a Sp-metric space with b > 1 and suppose that {c,} is a

Sp-convergent to o, then we have

L1 . )
(i) 57 S5(s:5.0) < lim_inf Sp(s.,5,0) < lim_sup Sp(s. 5. 0n) < 2bSp(s, 5, 0)

1
(i) = Sp(0,0,¢) < lim inf Sp(op 0 s) < lim sup Sp(0n, 0n, <) < b2Sp(0,0,5)
b2 n— 00 n—o0

for all ¢ € B. In particular, if o =g, then we have lim Sp(op, 0n,5) = 0.
n—oo
We should always consider the following factors in order to obtain our results.

3. Main Results
We say § be the class of all functions 3 : [0, 00) — [0, 1) satisfying the following condition:

lim B(t,) =1 implies lim t, =0
n—oo n—oo

Definition 3.1. Let G : P — P be a self mapping defined on non-empty set 3 and
o, ¢ P x P x P — R be two functions. We say that G is an a- admissible mapping with respect
to ¢,
ifa(o,0,¢) > ¢(0,0,¢) implies a(Go, Go, Gs) > ¢(Ga, Go, Gs) for all o,s € *B.
We say that G is an a- admissible mapping if for all 0,5 € °33,
a(o,0,¢) > 1 implies a(Go, Go, Gs) > 1.

Definition 3.2. Let 3 be a non-empty set. G : B — P be a self mapping and o : P x P x P — RT.
We say that G is a triangular a- admissible mapping, if
(a) G is an a- admissible mapping;

(b) a(o,0,5) > 1 and afs,s, 7) > 1 implies a(o, o, 7) > 1 for all 0,5, T € B.

Definition 3.3. Let 3 be a non-empty set. G : P — B be a self mapping and a, ¢ - P x P x P — RT

be two functions. We say that G is an a- orbital admissible mapping with respect to ¢,
ifa(o,0,Go) > ¢(o,0,Go) implies a(Ga, Go, G?0) > $(Go, Go, G?o) for all o € P.

Definition 3.4. Let G : 3 — P be a self mapping defined on nonempty set 3 and
a, ¢ P xP xP — RT. We say that G is a triangular a-orbital admissible mapping with respect to
o, if
(a) G is an a-orbital admissible mapping with respect to ¢,
(b) a(o,0,¢) = ¢(0,0.¢) and a(s,s,G<) = ¢(s. 5, Gs) imply
a(o,0,Gs) > ¢(o,0,Gs) for all o, € B.
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Definition 3.5. Let Q = {['/T : [0,00) — [0, 00)} be a family of functions that satisfy the following
properties;
(i) T is a continuously nondecreasing map;,
(i) T(t) =0 ifand only if t = 0;
(iir) T(t) is subadditive, T(p+ q) < T(p) +T(q).

Definition 3.6. Let (B, Sp) be an Sp-metric space, a mapping G : B — B is said to be a generalized
(o, @, T)-Geraghty contractive type mapping if there exist I € Q, a, ¢ : P x P x P — [0, 00) and
B € § such that

1+ b3
2

a(o,0,6) > ¢(o,0,5) implies T (( )Sh(Go, Go, gg)) <B(M(M{(0,0,5)))T(M(,0,5))

(3.1)

Sp(0.0.5),5p(0.0,G0),

O O T } roeey

where Mg(a, 0,Q) = max{
4p3

Lemma 3.1. Let G : P — B be a triangular a-orbital admissible mapping with respect to ¢. Assume
that there exists o1 € P such that a(o1,Go1) > ¢(01,Go1). Define a sequence {on} by opi1 = Gop.

Then we have a(op, om) > ¢(0pn, om) for all m,ne N with n < m.

Proof. Since a(o1,01,Go1) > ¢(01,01,Go1) and G is a-orbital admissible with respect to ¢, we

obtain that

a(02,02,03) = a(Gor1, Go1,G(Go1)) > ¢(Go1, Go1,G(Go1)) = ¢(02, 02, 03).
By continuing the process as above, we have a(cy, 0p, 0nt1) = [(0n, 0p, 0nt1) forall n € N. Suppose
that
a(0n, Tn, Tm) > (04, 0, Tm) (3.2)
and we will prove that a(op, 0p, Omr1) = ¢(0n, On, Oms1), Where m > n.

Since a(0m, Om, Om+1) = &(Tm, Om, Om+1), We obtain that

(0m, 0m, Gom) = a(0m, Om, Om+1) = ¢(Om, Om, Omi1) = $(Om, Om, Gom). (3.3)
By (3.2), (3.3) and triangular a-orbital admissibility of G, we have
a(op, 0n,Gom) > ¢(on, 0n, Gom). This implies that a(o,, 0n, Omt+1) = &(0n, On, Oms1).

Hence, a(on, om) > ¢(0n, om) for all m,n € N with n < m. O

Theorem 3.1. Let (B, Sp) be a complete Sp-metric space with coefficient b > 1. Let G : P — P
be an be a generalized (o, ¢, I')-Geraghty contractive type mapping. Assume the following conditions
are hold:

(i) G is a triangular cc-orbital admissible mapping w.r.t ¢;

(i) there exists 01 € P such that a(o1,01,Go1) > ¢(01,01,G01);
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(iii) if{on} is a Sp-convergent sequence to v in P and
a(on, 0n,0ns1) = ¢(0n, 0n, 0ng1) for each n € N then a(v,v,v) > ¢(v,v,v);

(iv) G is continuous.

Then G has a fixed point.

Proof. Let 01 € B such that a(o1,01,G01) > ¢(01,01,G0o1). Define the sequence {o,} in B by
Ont1 = Top forall n€ N. By Lemma(2.1), we get that

a(on, on,0ny1) = d(on, 0p, 0ny1) forall ne N. (3.4)

If op = opy1 for some n € N, then o, is a fixed point of G. Assume that o, # op41 for all n € N.
The sequence {Sp(0n, 0n, 0nt1)} is first shown to be non-increasing and to trend to 0 as n — oo.

By using (3.4), for each n € N, we have

1+ 53 1+ b3
r (( 5 )Sb(ont1, Un+1,0n+2)> =T (( )Sb(Gon, Gop, gUn+1)>

2
< ﬁ(r(Mg(Uanann+l))) r(Mg(Uannv0n+l))
< r(Mbg(O'nxanyo'n—&-l)) (3-5)

where,

S O, ) ,On, ,
MI(Gn. 0 Omit) — b (On, On, Ont1), Sp(0n, 05, Gop) }

Sp(on,on,Go, +Sp(0nt1,0n+1.G0
Sp(Cni1, Oni1, Gonit), 5(Tn.0n n+1)4b3b( n+1,00+1,99n)

Sb(UnyUn,O'n+2)+5b3(Un+lvo'n+1:0'n+1)
4b

max
= max
Sp(Ont1, 0nt1, Ony2),

max

Sh (O-nvanyo'n—l-l)vsb (O'ann,O'n-i-l)y }

2
Sb (Un—l—ly On+1, Un+2) ) 2b5b(0'n,Un.Un+1)+fb3Sb(Un+1,0'n+1.0'n+2)

{ Sp(0n 0n 0nt1), Sp(On, On, Optt), }

=maxy Sp(0n,0n 0n+1),Sp (Ont1, Ont1, Oni2)

If max { Sp (Un- On, O'n-i-l) . Sp (0n+1. On+1, 0'n+2) } =5p (O'n+1v On+1, o'nJr2) then

3 . .
r ((LEb )Sb(0n+1,0n+110n+2)) < T(Sp(0nt1,0n11,0nt2)) implies that
(1%1’3)51)(0,7+1, Ont+1,0nt+2) < Sp(On+1, Ont1, Ont2) Which is contradiction.
Hance, max{ Sp(0n, 00, 0nt1) Sh(Tnt1, Ont1, Ont2) } =Sp(0n, 0n, Ont1).
It follows that 0 < Sp(0pt1, Ont1, Ont2) < Sp(0n, 0n, 0nt1). Hence the sequence {Sp(on, 0n, O0nt1)}
is nonnegative non-increasing and bounded below. Thus there exist some ¢ > 0 such that

nIi_)m Sp(on, 0n, 0nt1) = €. Suppose that £ > 0.
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By using (3.5), we have

[ (Sp(Ont1,0nt1, Ont2)) r <(1+Tb3)5b(0n+1. On+1, 0n+2)>
r(Sb(a”'U”’U”+1)) N F(Sb(an,an,an+1))
< 5(F(Mg(0n.0n,0’n+1))) <1

for all n € N. On letting n — oo in above inequality, we have
nImeB (MM (0n, 0n 0nt1))) = 1.

Since B € §, we have lim I'(/\//g(an,a,,, on+1)) = 0 and so
n—oo
&= lim Sp(on,0n 0n+1) = 0. We now demonstrate that the (3, Sp) Cauchy sequence is {,}. On
n—oo
the other hand, we assume that {o,} is not Cauchy. In this case, a monotonically rising sequence of

the natural numbers {my} and {n} exists, where n, > my.
Sb (O-mkr O-mkr Unk) Z € (36)

and
Sb (Omy, Omys On—1) < €. (3.7)

From (3.6) and (3.7), we have

€< Sy (O'mky O my» Unk) < 2bS, (O'mky O mye» Umk+1) + bZSb (Umk+1v Omy+1, Unk) .

3 3 3
So that (15°)e < (242)Sp, (om,. Oy Omt1) + (2525)Sh (Omt1, Omy+1, Oy ) -

We obtain that by applying I on both sides and letting kK — co.

1+ b3 _ 1+ b3
I'((Tﬂ)e) < |'moo r <( )Sb (Tmy+1, Tmy+1, O-”k)>
. 1+ b3
< Im T <( )Sp (Qamk, Gom,, gank1)> -
k—o00 2
(3.8)
By applying the triangular inequality, we get that
Sb (O-mk+1r O'karly Unk) S 2b5b (Umk+1v Ukarlv Umk) + b25b (O-mkv O-mkv Unk) .
S 2b5b (Umk+lv Umk+11 Umk) + 2b35b (O'mk: O'mk: Unk—l)
+b35b (O'nk, Oy O'nkfl)
< 2bSp (Omye41, Omet1, Omy) +2b%€ + b3Sy (0, Oy O—1) -
In the above inequality, we get that by taking the limit as kK — oo.
im Sp (Omy+1, Ome+1,0n,) < 2b%. (3.9)

k—o0
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We obtain (3.5) because G is a triangular a-orbital admissible mapping with respect to ¢. and
o(Omy Omy On—1) > POy Om,, On—1). By using (3.1), we have

14 b
(IS0 Omr10)) < B (MmO ) F(ME (O T 7, 1)

(3.10)
where,
Mg(amk' Omy ank_l)
ma Sb (Umk. Umk. o'nkfl) 1 Sb (Umkr O'mk, gamk) ’
= X
S , , — S ~1.0n, —1,
Sb (Unk_l, Unk_l, go_nk_l) , b(Umk Omy ggnk 1)Ib3b(0'nk 1,.0n, -1 gUmk)
< Sb (Umkr Umkx Unk—l) ' Sb (O'mk: O'mk: O'mk—i—l) ' Sb (O-ﬂk—].r aﬂk—lr Unk) )
=~ max 2b5b(0'mkyo'mkyo'nkfl)+b2sb(‘7nk71v0;nk71xo'nk)+Sb(ank71vank71vamk+l)
4b
Sb (Umkr O'mk, O'nkfl) ' Sb (amkv o'mk: Umk+1) ’ Sb (O-nkf].v o'nkfl. Unk) '
S max QbSb(o'mk,O'mkva'nkfl)‘;[fsb(o'nk—l,Unkflvo'nk)
2bsb(0'nk—1:0'nk—lv0'nk)+b5b(o'mk+lvo'mk+1v0'nk)
+ 4p3
Using (3.7) and (3.9) and treating the limit of the inequality above as k — oo, this results.
; g
kl|_>moo My (Ome. Omyr One—1)
Sb (Umkv Umkv Unk—l) ' Sb (Umkr Umkr Umk+1) ' Sb (O-nk—lr Unk—lv Unk) '
S lim max 2b5b(0'mk-Umk:Jnk—1)+225b(0nk—l:Unk—lvo'nk)
k—o00 4b
2b5b(0'nk—1yo'nkflxo'nk)+bsb(amk+lv0mk+1,0nk)
+ 4p3
1+ b°
1453 —
< max{ €,0,0,e(5p } =¢( T )
(3.11)

By taking the limit in (3.10) as k — oo and using (3.8) and (3.11), we have

1+ b3

1+b° .
r<k||_>moo( > )Sh (Umk+1,0mk+1,0nk)>-

r((TbQ)E)

IN

IN

B (r(k'L”;o Mg (0, T %1))) F(im Mg (om,, Om,. 0n,1))

. 1+ b3
B (F(im ME(@m, 0,9 -0) ) TeC557))

IN

L M8 .
This implies that r((ﬁi&)e) <g (F (kll_>mOO /\/lg(o*mk, Omy» ank_1)>> .

2b2

Since B € §, we have nImeﬁ (F(kli_>mOO I\/lg(amk, Tmyr onk_l))) =1.
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It follows that I'(kliﬁmoo /\//g(Umk,Umk,Unr1)) = 0 By wusing (3.10) we obtain
nli_)mooSb(amkH,amkH,ank) = 0. which contradicts to(3.9).In the Sp-metric space (B, Sp), the
sequence {o,} is a Sp-Cauchy sequence. The sequence {o,} — v € (B,Sp) emerges from
the completeness of (B, Sp). We begin by presuming that G is continuous. Therefore, we have
V= nli_}moo Opt1 = nli_}moo Go,=G nli_)moo 0, = Gu. Since {0,} is a Sp-convergent sequence to v in P and

a(v,v,v) > ¢(v,v,v). Then to prove v = Guv. Suppose that v # Gv. From (3.1), we have

3 3
F(Sp(v,v,Gr)) < T <(1 —;b )Sp(v, v, gu)> =T <(1 —;b )nli_>mOO Sp(Ont1, Ontt, gan+1)>

1+ b3
r <( —; )nlmm Sb(ganygan.gan-‘rl))

IN

6] (r(n[}moo Mg(o'nv On, Un-i—l))) r(n“—>moo Mg(gnv O Ont1))

(3.12)

where

Sb(0n 0n 0nt1) . Sp(0n, 0, Gop),

lim l\/lgo,a,a = lim max Sy (o o o
o b( niYn n+1) oo b( n+1, n+1vg n+1)v
56(0n,00.G0n+1)+S5p(0n+1,.0n+1,G00)
453

Sp(v,v,v),Sp(v,v,Gr),
= max Sp(v,v,Gv)
Sb (U, v, g//) , T

By taking limit as n — oo in (3.12), we have

} =Sy (v, v, Gu).

r(sb(//, //.gl/)) < ﬁ(r(nirgoMg(Unvaann+l))> r(nimwMg(UnxUnyUn+l))
< B (Sp(v,v,Gv)))T(Sp(v,v,Gr))

A

we can deduce that % < B (Sp(v,v,Gr)))

We obtain that nIi_}mooﬁ (M(Sp(v,v,Gv))) = 1. Therefore, S, (v, v, Gr) = 0 implies Gv = v. and thus
v is a fixed point of G. Assume further that v and v* are two fixed points of G such that v # v*.
Consider

1+ b3
2

C(Sp(v,v,v*)) < T <( )Sp(Gv, G, gu*)> <B (MM (v, v, v*)) T(MI (v, v,v"))

(3.13)

where

M (v, v, v*) :max{ Sp (v, v, v*), Sp(v,v,Gr), }

S ’ : * +S *’ *'
Sp (v, v, Gu*) , 2ty )4b3b(” v'.Gv)

< max Sp(v,v,v*),Sp(v,v,v), = Sy (00 1)
- Sy (I/*, v I/*) ’ Sb(u,u,u*)+2b5b(zz,3u*,u*)+5b(l/,u,u*) — 2\
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b (W, v, V) T(Sp (v, v, v")).
“))-

we can deduce that % < B (Sp (v,

We obtain that Ii_}m B(M(Sp(v,v,v*)))=1
n—oo

Therefore, Sy, (v, v, v*) = 0 implies v = v*. Consequently, v is a unique fixed point of G. O

Using by (3.13), we have I (Sp(v, v, v*)) < B(T'(S
v, v

Example 3.1. Let S, : B3 — R be defined as Sp(u, v, &) = (Jv + € — 2u| + v — €)% where
P = [0,00). It is obvious that (B, Sp,) is a complete with b = 4. Define G : P — P by G(u) = 15

and T - [0,00) — [0,00) and B : [0, 00) — [0,1) as [(t) = t, B(t) = ey 1€(0.00)

0, t=0

4, (u,u,v)€0,1
also define a, ¢ : P x P x P — RT a(u, w, v) = (w, w,v) €[0,1]
0, Otherwise

o 0, Otherwise
Let o, p, Gu) > ¢, w, Gu). Thus w, Gu € [0, 1] and so G?u = G(Gu) € [0, 1] which implies

that a(Gu, Gu, G?1) > (Gu, Gu, G?w) that is G is a-orbital admissible with respect to ¢. Now,
let o, w,v) > ¢(u,p,v) and a(v,v,Gv) > ¢(v,v,Gr), we get that u,v,Gv € [0,1] and so
a(w, u, Gv) > ¢(u, u, Grv). Therefore G is triangular a-orbital admissible with respect to ¢. Let
{un} be a sequence such that {un} is Sp-convergent to x

and a(tn, n, bn+1) = &(n, n, wnty1) for all n € N. Then {u,} € [0,1] for any n € N and
so x € [0, 1] which we have, a(x,x.x) = &(Xx,x.Xx) and obviously the function G is continuous.
Following that, we show that G is a generalised (c, ¢, T")-Geraghty contraction type mapping. Let
w, v € P with o, w,v) > ¢(u, w,v). Thus u,v € [0, 1].We can assume without losing generality
that 0 <v < < 1.

Therefore,

2 1
Sh(G1s, Gas. G) = (11 + Gv — 2G| + 11 — Gv1)* = (2| £ - [)” = z5Sulas..v)

and

2“1, _ l/|)2, 3969!112v 39691/2

g _ ( 45 45 _ 3969 2

Mb (/J,,/J,, V) - maX{ ((‘43M_V|)2;;)(3|N_43V|)2 T 45 /J’
4

2 2
—
so that 65 3969 ,,2 < & 3969 ,,2

ox45 45 KT = 1527

M (425501, G, Gv)) =T (555 Sott 4, v) ) = 555 (. 1, )

4 65 1 e ¥
Since 5075 < 50 < 172

2
65 3969 ,,2 K 3969 ,,2 3969 ,,2 3969 ,,2
< oo b S 1e+uz 25 M Sﬁ(r( 25 M )r( 25 K

< B (MM (1, ., v))) T(ME (1, 1, v))

As a result, all of Theorem (3.1)’s requirements are satisfied, and 0 is the only fixed point of G.
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4. Application to Integral Equations

As an application of Theorem (3.1), we will look at the existence of a unique solution to an initial

value problem in this section.
Theorem 4.1. Consider the I. V. P.
o'(t) =G(t,o(t)), tel=101], a(0) = 0oy (4.1)

where G : | x R — R is a continuous function and og € R.
Let T :[0,00) = [0,00),8 : [0,00) — [0,1) be a two functions defined as ['(t) = t and B(t) = %

Also examine the following conditions,

(/) If there exist a function a, ¢ : R® — R such that there is an oy € C(I), for all t € I,we've

o (Ul(t),al(t),/g(s,al(s))ds) > ¢ (Ul(t),ol(t),/g(s,al(s))ds) |
0 0

(inVtel andV x,y € C(I),

a(o(t), o(t),s(t)) = a(o(t), Cf(t) s(t) =

<3b3+fg(sas))ds 3b3+fgsa s))ds, 3b3+fg(sg s))d >
> ¢ <3b3 + fg(s a(s))ds, 3% —I—fg(s o(s))ds, 355 + fg(s q(s))ds)

(iii) for any point o of a sequence {o,} of points in C(I) with
a(on,0n,0nt1) > @(0n,0n, 0n41), lim infa (o, 0,y,0) > lim inf¢ (o, 0n,0). Then (4.1)
n—oo n—oo

has unique solution .
Proof. The integral equation of I. V. P. (4.1 ) is

o(t) = 00+ 3(* zbg) /g(s, o(s))ds.
0

Let = C (/) and Sp(0,5,7) = (|s + T — 20| +|s — 7|)? for 0,6, 5 € P. Then (B, Sp) is a complete,
also define T : ¢ — B by

T = 35 /g@a@»m (42)

Now

3 3
(5 T(6).T(0)) = (57 To(0)+ Ts(0) - 2Ta(e) |+ | To(e) = Ts(e) )
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2
_ 8(1+b7)
= 9(1+53)2

0o+ 3(2) [ G(s, 0(s))ds — <o — 3(22) [ G(s, <(s))ds
0 0

- 9(1ib3) | o(t) —s(t) P = 79(1_?,33) Sp(o,0,6) < % Sp(0,0,9)

< B(T(Sb(0,0.9))) T (Sp(0,0,5)) <B(T(M} (0,0.))) T (M} (0,0,5))

Thus we have T ((%’ﬁ)sb(m(t), To(t), Tc(t))) <B(F(M[(0,0.5)))T(M](0,0,¢))Vo,s € P
Let us define o : P x P x P — [0, 00) and ¢ : P x P x P — [0, 00) by

_ 6, 0,5 €[0,1] - 2, 0,6s€][0,1]
a(a,a,g)—{ 0, 0,6 € (1,) ,¢(a,a,g)—{ 1, 0,5 € (1,00)

Then obviously, T is triangular c-orbital admissible with respect to ¢. Let 0,5 € B, if a(0,0,5) =6
and ¢(o0,0,5) =2, then a(o(t), o(t),s(t)) > ¢ (a(t), o(t),s(t)). From (ii) we have
a(To(t), To(t), Ts(t)) > ¢(To(t), To(t), Ts(t)) and so a(To, To, Ts) =6 and
¢(To,To,Ts) =2. Thus T is is triangular a-orbital admissible with respect to ¢. From (i), there
exist 01,61 € B such that a(o1,01, Toy) = 6 and ¢(s1,61, Ts1) = 2. By (iii), we have that for any
point o of a sequence {o,} of points in C(/) with a (o, 0y, 0pt1) = 6, nli_}mooinfoz (on,0p,0) =6 and

¢ (0n, 0n, Ont1) = 2, Ii_)m inf ¢ (0, 0n, 0) = 2. Therefore, for all 0,5 € P and t € I, we have
n o0

a (a(1), o(t), s(1) > b (o(t), o (1), s(t)) —> F((lg—lﬁ)sb(TJ(t),TU(t),Tq(t)))
<B(F(M](0,0,9))) T(M] (0.0.<))

Theorem (3.1) states that T has a unique solution in 3.

5. Application to Homotopy

The existence of a unique homotopy theory solution is investigated in this section.

Theorem 5.1. Let (B, Sp) be a complete Sy-metric space, U and U be a open and closed subset
of P such that U C U . Suppose a, ¢ : P x P x P — [0,00), Hy : U x [0,1] — P is a triangular
a-orbital admissible operator with respect to ¢ and B € § satisfying the following conditions:

(T0) 0 # $Hp(0, k), for each 0 € OU and k € [0, 1] (Here OU is boundary of U inB)

(11) forallo,s €U and k € [0,1], a(o, 0, 9(0, K)) > ¢(0, 0, He(0, K)) implies

3
r <( 1 J;b )S6($He(0, k), Hp(o, K), Ne(s, n))) < B(F(Sp(0,0,9))) T(Sh(0,0,5))

(12) 3 Mp>03 Sp(96(0, k), He(0, ), Hp(0,¢)) < Mp|k — | for every o € Uand k, ¢ € [0, 1].
Then $y(.,0) has a fixed point <= $(., 1) has a fixed point.
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Proof. Let A= {k € [0,1] : 0 = $Hp(0, k) for some o € U}. We have that 0 € A since (., 0) has
a fixed point in Y. As a result, the set A is not empty. By demonstrating that A is both open and
closed in [0, 1], we shall establish that A = [0, 1]. As a result, in U, Hp(,1) has a fixed point.First,
we demonstrate that A is a closed set in [0, 1]. Let {k,}?2; C A with Kk, = Kk € [0,1] as n — oo.
We have to demonstrate that kK € A. Since Kk, € A for n =0,1,2,--- . there exists 0, € U with
Ont1 = Ho(0n, Kn). Since $Hy is a triangular a-orbital admissible operator with respect to ¢.

a(0g, 00, H6(00, ko)) = (00, 00, He(00, Ko)). We can deduce from Lemma (2.1) that

a(on, op,0nt1) = d(op, 0p,0n41) foralln >0

Consider,
Sb(o'n—l—l, On+1, Un+2) = S (5b(any K:n)v j:Jb(an, Kfn): ﬁb(o'n—i-lv K'n-i-l))
< 2bSp (ﬁh(anvK/n)vf)b(anyK'n),f)h(o'n—&-lv/{n))
+b25b (96(ont1, £n), He(Ont1, Kn), De(Tnt1, Knt1))
< 2bSp (96(0n, £n), H6(0n, Kn), He(Tnt1, kn)) + bZMb’K'n — Knt1l

Letting n — oo, we get

im Sp(Ont1,0n+1,0nt2) < lim 2bSp (96(0n, Kn), Do(0n, Kn), He(Tn+1. Kn))
n—o0 n—o0

. We get I since it is continuous and non-decreasing.

. 1+ b3
n||—>moo |— <( 4b )Sb(an+1: O-n-‘r].v Un+2)>

n—00 2

3
= lim |_<(1+b )Sb(ﬁb(an,Kfn),f)b(anvKn)vﬁb(UnJrviln)))

< lim ﬁ(r(Sb(Un,O'n,O'n-t,-l))) F(Sb(an,an,an+1))
n—oo
Therefore,
nli_>m r ((%)Sb(an+lyan+lyan+2))
i T(Soomomon)) - oised (((Spomem ) <1
In above inequality, we have ILm B (r(Sp(on,0n,0nt1))) = 1. Since B € F, we have
n—oo

lim T'(Sp(op,0n, 0nt1)) = 0 and so lim Sp(0n, 0p,0nt1) = 0. It is now time to demonstrate
n—oo n—oo

{on}, a Sp-Cauchy sequence in (B, Sp). On the other hand, suppose {o,} is not a Sp-Cauchy se-
quence. There is a monotone increasing sequence with € > 0 and Natural numbers with the property

that {my} and {nk} such that nx > my.
Sb (O'mkyo'mkyo'nk) 26 (51)

and

Sb (Omy, Omys On—1) < €. (5.2)
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From (5.1) and (5.2), we have

€ < Sp (Ome. Omy On) < 2bSp (O, Oy Omyt1) + b%S, (Omet1: Ome+1,0n, ) -

3 3 3
So that (15-)e < (242)Sp (om, Omy Omt1) + (255)Sh (Omt1, Omy+1, Oy ) -

We get that by setting kK — oo and [ is applied on both sides,

1+ b3 1+ b3
r((TJ;2 &) < lim r(( i )Sb(amm,amm,ank))
< nli_>m005 (r(sb(amk' Omy» O-”k—l))) r(sb(amk’ Omyes U”k—l))
1+ b3
< lim B (T(Sn(0m,. Om 00 ) T(F550)e).

That is

1< lim B (T(Se(0m,. Om,. On-1))) = lim B (T(Sb(0m,. Om. 1)) = 1

. This leads to the result nILm Sp(Omy Omy 0n,—1) = 0. and hence,

nILm Sp(Omi+1. Om+1.0n,) = 0.t contradicts itself. In the Sp-metric space (B, Sp), the sequence
{U,CE is a Sp-Cauchy sequence.The sequence {o,} = v € (,Sp) emerges from the completeness
of (P, Sp). nImeon+1 =V = nImeon. Since {o,} is a Sp-convergent sequence to v in X and

a(v,v,v) > ¢(v,v,v). Then to prove v = Hp(v, k). Now

r <21bSb(ﬁb(u, K), 9V, K), 1/)) < lim inf [ (Sp($36(v, k), 96(v, &), H(0n, K)))

IN

3
lim infl" <(1 b )S6(H6(v, k), He(v, K), He(0n, /’u))>

n—00 2

Tim B (T(So(v. v.00)) F(Sp(v. v, 00).

IN

So that
[ (555656 (v, K), He(v, k), V)

lim T(Sp(v, v, 0n))

< lim B(T(Sp(v,v.00)))

Thatis 1 < nli—[goﬁ (F(Sp(v,v,0,))) implies nImeﬁ (F(Sp(v,v,0p))) =1.

As a result, we obtain nIme [(Sp(v,v,0,)) = 0 and hence Sp(Hp(v, K), He(v, k), v) = 0. Thus, it
follows v = (v, k). Thus k € A. Clearly, [0, 1] closes A. Let kg € A.Consequently, there is o9 € U
such that og = $p(00, ko). Due to the fact that Uis open, r > 0 exists such that Bs, (0o, r) C U.
Choose k € (ko — €, ko + €) such that |k — kg| < ﬁ < €.

Then, for By(ao, r) = {0 € : Sp(0,0,00) < r+ b?Sp(00, 70, 00)}. Now

Sp (9e(0, k), 9(0, k), 00)) = Sp(He(0, k), He(0, k), He(00, ko))
< 2b5p ($o(0, k), He(0, K), H(0, Ko))
+b°S (96(0, K0), $H6(0, ko), (00, ko))
< 2bM|Kk — Kol + b2Sp, (95(0, ko), H6(0, ko), H6(00, ko))



14 Int. J. Anal. Appl. (2023), 21:18

Upon letting n — oo and applying I to both sides,

[ (S ($9(0. k), He(0, k), 00))) < T (b°Sp (96(0. ko), (0, ko). H(00, K0)))

3
< r((lzb )sb(m(a.no).m(a,&o),m(ao.%o))>

< B(F(Sp(e,0,00))) T (Sp(o,0,00)) <T(Sp(a,0,00)).

Therefore, S, (9(0, k), H(0. k), 00)) < Sp(0,0,00) < r + b?>Sy(00, 09, 09). Thus for each fixed

K € (ko —€ ko+e€), H(. k) : Bp(oo, r) = Bp(oo, r). Thus, Theorem (5.1)’s criteria are met in full.

Consequently, it may be said that $(.; k) has a fixed point in . But this must be in . Therefore,
k € Afor k € (ko —€,ko+¢€). Hence (kg —€,ko+€) C A. In |0, 1], Ais clearly open. The converse

can be proven using a similar method. [l

Conclusion: Using generalised (a, ¢, I')-Geraghty contractive type fixed point theorems in the setup
of Sp-metric spaces through a-orbital admissible mappings with respect to ¢, we conclude several
applications to homotopy theory and integral equations in this study.
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