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Abstract. This paper proposes a framework based on the celebrated transform of Mellin type (MT) for
the analytic solution of the Black-Scholes-Merton European Power Put Option Model (BSMEPPOM)
on Dividend Yield (DY) with Modified-Log-Power Payoff Function (MLPPF) under the geometric
Brownian motion. The MT has the capability of tackling complex functions by means of its funda-
mental properties and it is closely related to other well-known transforms such as Laplace and Fourier
types. The main goal of this paper is to use MT to obtain a valuation formula for the European Power
Put Option (EPPO) which pays a DY with MLPPF. By means of MT and its inversion formula, the
price of EPPO on DY was expressed in terms of integral equation. Moreover, the valuation formula
of EPPO was obtained with the help of the convolution property of MT and final time condition.
The MT was tested on an illustrative example in order to measure its performance, effectiveness and
suitability. The MLPPF was compared with other existing payoff functions. Hence, the effect of DY
on the pricing of EPPO with MLPPF was also investigated.

1. Introduction

The popularity of option pricing in financial mathematics has been displayed as one of the key major
areas in derivative security. In other words, option valuation has contributed greatly to the financial
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markets. There is a massive growth in trading activities on derivatives globally from the inception of
the Black-Scholes pricing formula [1,2]. It is noteworthy to say that the Black-Scholes model for linear
payoff has been used by many researchers and as well as become one of the utmost areas in financial
markets over the last few decades. Immediately after the huge success recorded by the Black-Scholes
model for vanilla option flavours, several other valuation formula were developed for options pricing
with different payoff functions such as Mellin transform, binomial model, finite difference method,
Monte Carlo method, e.t.c; see [3] — [6]. For mathematical framework, some implementations of
transform methods of different types in financial markets; see [7]— [15]. Ghevariya [16] solved the
classical Black-Scholes European put option model for modified-log payoff function with the help of
the MT. Fadugba et al. [17] obtained a direct solution of the Black-Scholes-Merton European put
option model on dividend yield with modified-log payoff function via a framework based on MT. In this
paper, an analytic solution of BSMEPPOM via the celebrated transform of Mellin type is proposed in
the sense of DY and MLPPF. The remaining part of the paper is listed as follows; Section 2 captures
the brief concepts of MT. The governing model for EPPO on a DY with MLPPF is presented in
Section 3. Section 4 captures the solution of BSMEPPOM with DY and MLPPF. An illustrative
example on the application of MT to EPPO is captured in Section 5. Section 6 is the concluding part
of the paper.

2. Mellin Transform
This section captures some definitions of terms based on the framework of the Mellin transform

and its inversion formula [18].

Definition 2.1. Let f(x) be a locally Lebesgue integrable function. The Mellin transform of f(x) is

defined as
M[f(x),w] = f(w) = /OO f(x)x“ " Ldx (2.1)
0

The Mellin transform variable w is a complex number, w = R(.) + i(.), where R(.) is the real part,

i is the imaginary unit and 3(.) is the imaginary part..

Definition 2.2. /f f(x) is an integrable function with fundamental strips (a, b), then if ¢ is such that

a<c<band{f(w):w=c+ it} is integrable, the inverse Mellin transform is defined as

M (w)] = F(x) = —— / e F(w)x ¥ dw (2.2)

271 Je—iso

Remark 2.1. /t is clearly seen that the Mellin transform M[f(x),w] and the inverse Mellin transform

M1[f(w)] are linear integral operators.

Remark 2.2. For more details on the condition that ensures the existence of MT, see [18, 19].
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Remark 2.3. The fundamental operational properties of the Mellin transforms such as scaling, shifting,
derivatives, integrals, convolution, multiplicative convolution and Parseval’s formula are well detailed
in [9, 12,18, 20].

3. The BSMEPPOM on a DY with MLPPF

The BSMEPPOM on a DY with MLPPF is given by

OP,(SE, t) (p—1)0? pﬁPp(Sf, t)
A U R S ST o)
(0SE2OFASEY) _ b sp |
2 o(Sh)2 PR
subject to the boundary conditions
sflviTOO P,(SE,t)=0 on[0,T) (3.2)
. K
Slémo Pp(Sf, t) = m on [0, T) (33)
and MLPPF
K +
Po(S2.T) = [5? In <Sp)] on [0, 00) (3.4)
T

where P,(S8,t), p, t, T, S?, K, 0, r and q are the price of EPPO, power of the option, current time,

time to expiry, underlying asset price, strike price, volatility, risk-free interest rate and DY, respectively.

4. Solution of the Black-Scholes-Merton European Put Option Model with MLPPF

Ghevariya derived BSM formula on non-dividend yield for ML-payoff function [16]. In this section,
analytic solution of BSMEPPOM with dividend yield for ML-power payoff function is obtained via the
MT as follows.

Taking the MT of (3.1) and using its linearity, independence of time derivatives and shifting properties

and rearranging terms, one obtains

aPpéc:, t) _ _022,02 (W? + w(l — by) — b2) Py(w, t) (4.1)
where
blz’o_l 2(r—2q),
2;; o (4.2)
by = 0202
Solving (3.1), yields
Bo(w, t) = I(w)e™ 270" W Hew-b)=b)t (4.3)

But
Hw) = M(Py(S7,T), w)e? o @ +(1=brw—bo)T (4.4)
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which is equivalent to
I(w) = f(w)e%p202(w2+(1—b1)w—b2)7

Substituting (4.5) into (4.3), yields
By(w, t) = F(w)edf o W +(1-bw=b)r

where 7 =T — t. By means of (2.2), (4.6) yields

1 ctico | 1.0 20 2 b b
/ f(w)ezFe (w?+(1—b1)w— 2)T(Sf)_wdw
Cc

—100

which is the integral equation for governing equation (3.1). Let

1 c+ioco 202, o
§50) = 24 / e (b h) (§0) " du
c—ioco

Using the fact that
e%p202(w2+(1—b1)w—b2)T _ e—al(a§+b2)+a1(w+oz2)2

where

20T o — 1—by
2
Thus

—ai(as+by) c+ioco
s =" / e wree)’ (58)~w gy
C

2mi —ico

By means of the transformation given by [21], one obtains

) _ 2
Sy (<'”55)> (S0)41dSE, R(9) > 0

4¢
Therefore,
In(sP)
g(sﬂ) —OL1(OL2+b2) (S ) 2 %(paﬁ)
t ,00\/27r'r
Similarly,

sP
1(In vt>)
() < et G 7
v po'\/

Using (3.4), then

h(SE) = M (f(w)) = [54 In (g)T

wo-fon (]

With the help of the convolution property of MT, (4.7) becomes

Pust.t) = [ hoe (3£) Jov

Thus,

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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Using (4.14) and (4.16), (4.17) becomes
In i ’
o il A"/
1S9 K + ) (i)az 2 po\/T 1
o _ n —ai(as+b) \ v -
P,(S%. t) /0 {vln < V)} e 2 pa\/%e Vdv (4.18)
P\ 2
. _% (In<\i>)
SP o K po\/T 1
P,(SE t) = e_o‘l(o‘g‘irbz)(\;)zi [vl_o‘2 In <v>] e ;dv (4.19)
PoV2TT Jo
Simplifying further, yields
0 2
(2)
Po(S? T SHC i WP _é( Wﬁ) d
H)=¢e" 2 —_— n —e %
p( t ) po_\/% 0 ( )Va2
(SP> . (4.20)
In Tt
(SP)a2 K 1 7% po/T
— emoulodtho) 12t7 In(v)——e dv
0oV 27T Jo Va2
SP)a2
Po(SP, £) = e-en(ed+b) OO ey 4.21
p(SE 1) =e 2 poﬁ[n( )H1 2] ( )
where
PN 2
N In<7>
L ‘1 7 d 22
Hi = — — 4,
1 Vor Jo Va2€ 4 ( )
P\ 2
p _é(ln(i))
1 In(v) povT
_ 4.2
H2 \/ﬁ . oo dv ( 3)
Let
In ()
= 4.24
po\/T (4-24)
Thus
Ha = po/7(S8) ™1 e4(@2 = [p0 /76 — In(S2) Gl (4.25)
where
st
1 In<7)
G]_ = \/27/ b Xe_%(x_paﬁ(az_l))2dx (426)
T Joo
1 In(s—;>
G2 = = / Y e dlpovTla L) gy (4.27)

V2m
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Once again, by variable transformation

y=x—poyT(a2 — 1),

d, =

In (%) — p?0?7(ap — 1) ~n (575) +(r—qg+ (p—

)o?) T

00T 00T
Equations (4.26) and (4.27) become

G1 = —[n(dy) + pov/T(az = 1)N(—d,)]
and
Gy = =N (—dp)

respectively, with
K

n(m:&ef.mm: / n(k)ds

— 00

Substituting (4.29) and (4.30) into (4.25), yields
Ha = —po/T(S8) 22+ e (%27 00 /7(d))
+(p?0?T(a2 — 1) — In(SP)HN (—dp)]
Similarly,
Hi = poy/7(S7) e @V N (—dy)]
Using (4.32) and (4.33) and the values of by, a1 and ap, (4.21) becomes

Po(SE. ) = SpelrleD=eat 3D (55 /7n(dp) — (@1 + QoTIN (—d))]

with

)
leln<i<t),

L\ >

Q=p(r—qg+ p=5)o7).

d Q1+ Qor
P poT

T=T—1t.

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

Remark 4.1. Setting q = 0 in (4.34), yields the fundamental valuation formula for BSMEPPOM on

non DY with MLPPF

Po(SE, ) = SLel D306 (55 /rn(d,) — (Ry + Ro)N (—d)]

with

St
Rl =1In <K> ,

(4.39)

(4.40)



Int. J. Anal. Appl. (2023), 21:29 7

wealrr-3)%).

Rl + R2T
d,= ———, 4.42
? poNT ( )
T=T—1t. (4.43)

Remark 4.2. Setting p = 1 in (4.34), yields the fundamental valuation formula for plain EPO on DY

Pl(St, t) = Ste_qT [U\E’)’}(dl) — (Dl + DQT)N(_dl)] (4.44)
with

Dl =In (f{t> , (4.45)

2
Dy = <r g+ 2) , (4.46)

Dy + Dot
d = o (4.47)
T=T—t. (4.48)

Remark 4.3. Setting p = 1 and g = 0 in (4.34), yields the fundamental valuation formula for plain
EPO on non DY

Pi(S¢, t) = St [ov/Tn(dh) — (B1 + BoT)N(—dh)] (4.49)
with
Bl =In <f(t> , (4.50)
By = (r—i— O;) ) (451)
dy — Bl;\/?, (4.52)

T=T —t. (4.53)
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5. Numerical Example

Consider the valuation of the EPPO on a DY with MLPPF via the MT using the following parameters
in Table 1. The results obtained are displayed in Figures 1 - 10.

Table 1. The parameters

Parameters Values

S in dollars 100

K in dollars | 100, 110, 120, 130, 140, 150
r 8%
o 50%
q 0, 5%, 20%, 60%, 100%

T in years i

35

0F

251

20p

EPPO Price

151

104

5 1 1 1 1 [ 1 1 1 1
00 105 10 15 120 125 130 135 140 145 150
Strike Price, K

Figure 1. The Effect of DY on the price of EPPO with p=1, ¢g=0
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40 . . . . . . . . .
i 1 = ()05

B

0F

EPPO Price
o
[45]

[~}
=1

151

10 1 1 1 1 [ 1 1 1 1
100 106 110 115 120 125 130 135 140 145
Strike Price, K

150

Figure 2. The Effect of DY on the price of EPPO with p=1, g = 0.05

40

KLY

J0F

EPFO Price
o
m

o
=1

151

10 1 1 1 1 I 1 1 1 1
100 105 110 115 120 125 130 135 140 145
Strike Price, K

150

Figure 3. The Effect of DY on the price of EPPO with p=1, ¢ =0.2
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EPPO Price

50 T T

45+

20k B

15 1 1 1 1 [ 1 1 1 1
100 105 110 115 120 125 130 135 140 145  1&D
Strike Price, K

Figure 4. The Effect of DY on the price of EPPO with p=1, ¢ =0.6

Figure 5.

EPFO Price

50

451 4

a0} -

3 B

0 B

25| 1 1 1 1 L 1 1 1 1
00 105 110 115 1200 125 130 135 140 145 150

Strike Price, K

The Effect of DY on the price of EPPO with p=1, g=1.0
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EPPO Price

Figure 6.

Payoff

50
45
40
35
30
257
20 —+—q=0

——q =005
15 ——q=02 |

q=06
10 ——q=1 |
5 1 1 1 1 [ 1 1 1 1
00 105 10 115 120 125 130 135 140 145 150
Strike Price, K

The Comparative Study of EPPO Price with different DY.

50 T T T T T T T T T

45| g |_inear Payoff

K13
30F
251

20F

10F

G 1 1 1 1 I 1 1 1 1
100 105 110 115 120 125 130 135 140 145
Strike Price, K

Figure 7. The Plots of Linear Payoff.

150
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Payoff

Payoff

45

40+

251

201

151

10F

T T T T T T T T T

e MLPPF

0
100

0.45

1 1 1 1 [ 1 1 1 1
106 10 15 120 125 130 1365 140 145
Strike Price, K

Figure 8. The Plots of MLPPF for p = 1.

150

04

03f

0251

T T T T T T T

| 0g Payoff
b

1 1 1 1 I 1 1 1 1
105 110 115 120 125 130 135 140 145
Strike Price, K

Figure 9. The Plots of Log Payoff.

150
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50

451

e | inear Payoff
151 s (| PPF 4
e | 0 Payoft

0 . dr
100 105 110 115 120 125 130 135 140 145 1&D
Strike Price, K

Figure 10. The comparative study of Linear Payoff, MLPPF and Log Payoff.

6. Conclusion

An analytic solution of BSMEPPOM via the celebrated transform of Mellin type in the sense of
DY and MLPPF has been proposed in this paper. The integral equation for the representation of the
price of EPPO with DY was obtained. The closed form approximation formula for EPPO was also
obtained via MT with the help of its convolution property and final time condition. Moreover, the MT
was tested on some parameters to show its performance and suitability. The effect of DY is captured
in Figures 1 -5. From Figure 6, it is observed that increase in DY leads to increase in the prices of the
EPPO with MLPPF. It also is observed from Figures 6, that the holder is more beneficial to enter into
a European power put option. In other words, however, the benefits of these cash flows are given to
the holder of a put option. The plots of linear payoff, MLPPF and log payoff are displayed in Figures
7, 8 and 9, respectively. From Figure 10, it is clearly seen that the MLPPF used in this present paper
performed better than the log payoff used in [22] and also was found to be very close to the linear
payoff of plain vanilla [1]. Hence, from the results displayed in Figures 6 and 10, it can be concluded
that MT is suitable for the valuation of EPPO with MLPPF and DY due to its capacity power of
solving BSMEPPOM directly in terms of market price.
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