
Int. J. Anal. Appl. (2023), 21:29

Analytic Solution of Black-Scholes-Merton European Power Put Option Model on

Dividend Yield with Modified-Log-Power Payoff Function

S.E. Fadugba1,2,3, A.A. Adeniji4, M.C. Kekana4, J.T. Okunlola5, O. Faweya6

1Department of Mathematics, Ekiti State University, Ado Ekiti, 360001, Nigeria
2Department of Physical Sciences, Mathematics Programme, Landmark University, Omu-Aran,

Nigeria
3Landmark University SDG 4 (Quality Education Research Group), Omu-Aran, Nigeria
4Department of Mathematics, Tshwane University of Technology, Pretoria, South Africa

5Department of Mathematical and Physical Sciences, Afe Babalola University, Ado Ekiti, Nigeria
6Department of Statistics, Ekiti State University, Ado Ekiti, 360001, Nigeria

∗Corresponding author: sunday.fadugba@eksu.edu.ng, fadugba.sunday@lmu.edu.ng

Abstract. This paper proposes a framework based on the celebrated transform of Mellin type (MT) for

the analytic solution of the Black-Scholes-Merton European Power Put Option Model (BSMEPPOM)

on Dividend Yield (DY) with Modified-Log-Power Payoff Function (MLPPF) under the geometric

Brownian motion. The MT has the capability of tackling complex functions by means of its funda-

mental properties and it is closely related to other well-known transforms such as Laplace and Fourier

types. The main goal of this paper is to use MT to obtain a valuation formula for the European Power

Put Option (EPPO) which pays a DY with MLPPF. By means of MT and its inversion formula, the

price of EPPO on DY was expressed in terms of integral equation. Moreover, the valuation formula

of EPPO was obtained with the help of the convolution property of MT and final time condition.

The MT was tested on an illustrative example in order to measure its performance, effectiveness and

suitability. The MLPPF was compared with other existing payoff functions. Hence, the effect of DY

on the pricing of EPPO with MLPPF was also investigated.

1. Introduction

The popularity of option pricing in financial mathematics has been displayed as one of the key major

areas in derivative security. In other words, option valuation has contributed greatly to the financial
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markets. There is a massive growth in trading activities on derivatives globally from the inception of

the Black-Scholes pricing formula [1,2]. It is noteworthy to say that the Black-Scholes model for linear

payoff has been used by many researchers and as well as become one of the utmost areas in financial

markets over the last few decades. Immediately after the huge success recorded by the Black-Scholes

model for vanilla option flavours, several other valuation formula were developed for options pricing

with different payoff functions such as Mellin transform, binomial model, finite difference method,

Monte Carlo method, e.t.c; see [3] – [6]. For mathematical framework, some implementations of

transform methods of different types in financial markets; see [7]– [15]. Ghevariya [16] solved the

classical Black-Scholes European put option model for modified-log payoff function with the help of

the MT. Fadugba et al. [17] obtained a direct solution of the Black-Scholes-Merton European put

option model on dividend yield with modified-log payoff function via a framework based on MT. In this

paper, an analytic solution of BSMEPPOM via the celebrated transform of Mellin type is proposed in

the sense of DY and MLPPF. The remaining part of the paper is listed as follows; Section 2 captures

the brief concepts of MT. The governing model for EPPO on a DY with MLPPF is presented in

Section 3. Section 4 captures the solution of BSMEPPOM with DY and MLPPF. An illustrative

example on the application of MT to EPPO is captured in Section 5. Section 6 is the concluding part

of the paper.

2. Mellin Transform

This section captures some definitions of terms based on the framework of the Mellin transform

and its inversion formula [18].

Definition 2.1. Let f (x) be a locally Lebesgue integrable function. The Mellin transform of f (x) is

defined as

M[f (x), ω] := f̃ (ω) =
∫ ∞
0

f (x)xω−1dx (2.1)

The Mellin transform variable ω is a complex number, ω = <(.) + i=(.), where <(.) is the real part,

i is the imaginary unit and =(.) is the imaginary part..

Definition 2.2. If f (x) is an integrable function with fundamental strips (a, b), then if c is such that

a < c < b and {f̃ (ω) : ω = c + i t} is integrable, the inverse Mellin transform is defined as

M−1[f̃ (ω)] = f (x) =
1

2πi

∫ c+i∞

c−i∞
f̃ (ω)x−ωdω (2.2)

Remark 2.1. It is clearly seen that the Mellin transformM[f (x), ω] and the inverse Mellin transform

M−1[f̃ (ω)] are linear integral operators.

Remark 2.2. For more details on the condition that ensures the existence of MT; see [18,19].
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Remark 2.3. The fundamental operational properties of the Mellin transforms such as scaling, shifting,

derivatives, integrals, convolution, multiplicative convolution and Parseval’s formula are well detailed

in [9, 12,18,20].

3. The BSMEPPOM on a DY with MLPPF

The BSMEPPOM on a DY with MLPPF is given by

∂Pρ(S
ρ
t , t)

∂t
+ ρ

(
r − q +

(ρ− 1)σ2

2

)
Sρt
∂Pρ(S

ρ
t , t)

∂Sρt

+
(σSρt )

2

2

∂2Pρ(S
ρ
t , t)

∂(Sρt )
2
= rPρ(S

ρ
t , t)

(3.1)

subject to the boundary conditions

lim
Sρt→∞

Pρ(S
ρ
t , t) = 0 on [0, T ) (3.2)

lim
Sρt→0

Pρ(S
ρ
t , t) =

K

er(T−t)
on [0, T ) (3.3)

and MLPPF

Pρ(S
ρ
T , T ) =

[
SρT ln

(
K

SρT

)]+
on [0,∞) (3.4)

where Pρ(S
ρ
t , t), ρ, t, T , S

ρ
t , K, σ, r and q are the price of EPPO, power of the option, current time,

time to expiry, underlying asset price, strike price, volatility, risk-free interest rate and DY, respectively.

4. Solution of the Black-Scholes-Merton European Put Option Model with MLPPF

Ghevariya derived BSM formula on non-dividend yield for ML-payoff function [16]. In this section,

analytic solution of BSMEPPOM with dividend yield for ML-power payoff function is obtained via the

MT as follows.

Taking the MT of (3.1) and using its linearity, independence of time derivatives and shifting properties

and rearranging terms, one obtains

∂P̃ρ(ω, t)

∂t
= −

σ2ρ2

2
(ω2 + ω(1− b1)− b2)P̃ρ(ω, t) (4.1)

where

b1 =
ρ− 1
ρ
+
2(r − q)
ρσ2

,

b2 =
2r

ρ2σ2

(4.2)

Solving (3.1), yields

P̃ρ(ω, t) = l(ω)e
− 1
2
ρ2σ2(ω2+ω(1−b1)−b2)t (4.3)

But

l(ω) =M(Pρ(ST , T ), ω)e
1
2
ρ2σ2(ω2+(1−b1)ω−b2)T (4.4)
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which is equivalent to

l(ω) = f̃ (ω)e
1
2
ρ2σ2(ω2+(1−b1)ω−b2)T (4.5)

Substituting (4.5) into (4.3), yields

P̃ρ(ω, t) = f̃ (ω)e
1
2
ρ2σ2(ω2+(1−b1)ω−b2)τ (4.6)

where τ = T − t. By means of (2.2), (4.6) yields

Pρ(S
ρ
t , t) =

1

2πi

∫ c+i∞

c−i∞
f̃ (ω)e

1
2
ρ2σ2(ω2+(1−b1)ω−b2)τ (Sρt )

−ωdω (4.7)

which is the integral equation for governing equation (3.1). Let

ξ(Sρt ) =
1

2πi

∫ c+i∞

c−i∞
e
ρ2σ2

2
(ω2+ω(1−b1)−b2)(Sρt )

−ωdω (4.8)

Using the fact that

e
1
2
ρ2σ2(ω2+(1−b1)ω−b2)τ = e−α1(α

2
2+b2)+α1(ω+α2)

2

(4.9)

where

α1 =
ρ2σ2τ

2
, α2 =

1− b1
2

(4.10)

Thus

ξ(Sρt ) =
e−α1(α

2
2+b2)

2πi

∫ c+i∞

c−i∞
eα1(ω+α2)

2

(Sρt )
−ωdω (4.11)

By means of the transformation given by [21], one obtains

eφω
2

=
1

2
√
π

∫ ∞
0

1√
φ
exp

(
−(lnSρt )2

4φ

)
(Sρt )

ω−1dSρt , <(φ) ≥ 0 (4.12)

Therefore,

ξ(Sρt ) = e
−α1(α22+b2)

(Sρt )
α2

ρσ
√
2πτ

e
− 1
2

(
ln(S

ρ
t )

ρσ
√
τ

)2
(4.13)

Similarly,

ξ

(
Sρt
v

)
= e−α1(α

2
2+b2)

(
Sρt
v )

α2

ρσ
√
2πτ

e

− 1
2

 ln
(
S
ρ
t
v

)
ρσ
√
τ


2

(4.14)

Using (3.4), then

h(Sρt ) =M−1(f̃ (ω)) =
[
SρT ln

(
K

SρT

)]+
(4.15)

Thus,

h(v) =

[
v ln

(
K

v

)]+
(4.16)

With the help of the convolution property of MT, (4.7) becomes

Pρ(S
ρ
t , t) =

∫ ∞
0

h(v)ξ

(
Sρt
v

)
1

v
dv (4.17)
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Using (4.14) and (4.16), (4.17) becomes

Pρ(S
ρ
t , t) =

∫ ∞
0

[
v ln

(
K

v

)]+
e−α1(α

2
2+b2)

(
Sρt
v )

α2

ρσ
√
2πτ

e

− 1
2

 ln
(
S
ρ
t
v

)
ρσ
√
τ


2

1

v
dv (4.18)

Pρ(S
ρ
t , t) = e

−α1(α22+b2)
(Sρt )

α2

ρσ
√
2πτ

∫ K

0

[
v1−α2 ln

(
K

v

)]
e

− 1
2

 ln
(
S
ρ
t
v

)
ρσ
√
τ


2

1

v
dv (4.19)

Simplifying further, yields

Pρ(S
ρ
t , t) = e

−α1(α22+b2)
(Sρt )

α2

ρσ
√
2πτ

∫ K

0

ln(K)
1

vα2
e

− 1
2

 ln
(
S
ρ
t
v

)
ρσ
√
τ


2

dv

− e−α1(α22+b2)
(Sρt )

α2

ρσ
√
2πτ

∫ K

0

ln(v)
1

vα2
e

− 1
2

 ln
(
S
ρ
t
v

)
ρσ
√
τ


2

dv

(4.20)

Pρ(S
ρ
t , t) = e

−α1(α22+b2)
(Sρt )

α2

ρσ
√
τ
[ln(K)H1 −H2] (4.21)

where

H1 =
1√
2π

∫ K

0

1

vα2
e

− 1
2

 ln
(
S
ρ
t
v

)
ρσ
√
τ


2

dv (4.22)

H2 =
1√
2π

∫ K

0

ln(v)

vα2
e

− 1
2

 ln
(
S
ρ
t
v

)
ρσ
√
τ


2

dv (4.23)

Let

x =
ln
(
Sρ

v

)
ρσ
√
τ

(4.24)

Thus

H2 = ρσ
√
τ(Sρt )

−α2+1eα1(α2−1)
2

[ρσ
√
τG1 − ln(Sρt )G2] (4.25)

where

G1 =
1√
2π

∫ ln

(
S
ρ
t
v

)
ρσ
√
τ

∞
xe−

1
2
(x−ρσ

√
τ(α2−1))2dx (4.26)

G2 =
1√
2π

∫ ln

(
S
ρ
t
v

)
ρσ
√
τ

∞
e−

1
2
(x−ρσ

√
τ(α2−1))2dx (4.27)
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Once again, by variable transformation

y = x − ρσ
√
τ(α2 − 1),

dρ =
ln
(
Sρt
K

)
− ρ2σ2τ(α2 − 1)

ρσ
√
τ

=
ln
(
Sρt
K

)
+
(
r − q +

(
ρ− 12

)
σ2
)
τ

ρσ
√
τ

(4.28)

Equations (4.26) and (4.27) become

G1 = −[η(dρ) + ρσ
√
τ(α2 − 1)N (−dρ)] (4.29)

and

G2 = −N (−dρ) (4.30)

respectively, with

η(κ) =
1√
2π
e−

κ2

2 ,N (κ) =
∫ κ

−∞
η(κ)dκ (4.31)

Substituting (4.29) and (4.30) into (4.25), yields

H2 = −ρσ
√
τ(Sρt )

−α2+1eα1(α2−1)
2

[ρσ
√
τη(dρ)

+(ρ2σ2τ(α2 − 1)− ln(Sρt ))N (−dρ)]
(4.32)

Similarly,

H1 = ρσ
√
τ(Sρt )

−α2+1eα1(α2−1)
2

[N (−dρ)] (4.33)

Using (4.32) and (4.33) and the values of b2, α1 and α2, (4.21) becomes

Pρ(S
ρ
t , t) = S

ρ
t e
[r(ρ−1)−ρq+ 12ρ(ρ−1)σ

2]τ [ρσ√τη(dρ)− (Q1 +Q2τ)N (−dρ)] (4.34)

with

Q1 = ln

(
Sρt
K

)
, (4.35)

Q2 = ρ

(
r − q +

(
ρ−
1

2

)
σ2
)
, (4.36)

dρ =
Q1 +Q2τ

ρσ
√
τ

, (4.37)

τ = T − t. (4.38)

Remark 4.1. Setting q = 0 in (4.34), yields the fundamental valuation formula for BSMEPPOM on

non DY with MLPPF

Pρ(S
ρ
t , t) = S

ρ
t e
[r(ρ−1)+ 12ρ(ρ−1)σ

2]τ [ρσ√τη(dρ)− (R1 + R2τ)N (−dρ)] (4.39)

with

R1 = ln

(
Sρt
K

)
, (4.40)
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R2 = ρ

(
r +

(
ρ−
1

2

)
σ2
)
, (4.41)

dρ =
R1 + R2τ

ρσ
√
τ

, (4.42)

τ = T − t. (4.43)

Remark 4.2. Setting ρ = 1 in (4.34), yields the fundamental valuation formula for plain EPO on DY

P1(St , t) = Ste
−qτ [σ√τη(d1)− (D1 +D2τ)N (−d1)] (4.44)

with

D1 = ln

(
St
K

)
, (4.45)

D2 =

(
r − q +

σ2

2

)
, (4.46)

d1 =
D1 +D2τ

σ
√
τ

, (4.47)

τ = T − t. (4.48)

Remark 4.3. Setting ρ = 1 and q = 0 in (4.34), yields the fundamental valuation formula for plain

EPO on non DY

P1(St , t) = St
[
σ
√
τη(d1)− (B1 + B2τ)N (−d1)

]
(4.49)

with

B1 = ln

(
St
K

)
, (4.50)

B2 =

(
r +

σ2

2

)
, (4.51)

d1 =
B1 + B2τ

σ
√
τ

, (4.52)

τ = T − t. (4.53)
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5. Numerical Example

Consider the valuation of the EPPO on a DY with MLPPF via the MT using the following parameters

in Table 1. The results obtained are displayed in Figures 1 - 10.

Table 1. The parameters

Parameters Values

S in dollars 100

K in dollars 100, 110, 120, 130, 140, 150

r 8%

σ 50%

q 0, 5%, 20%, 60%, 100%

T in years 1
2

Figure 1. The Effect of DY on the price of EPPO with ρ = 1, q = 0
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Figure 2. The Effect of DY on the price of EPPO with ρ = 1, q = 0.05

Figure 3. The Effect of DY on the price of EPPO with ρ = 1, q = 0.2
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Figure 4. The Effect of DY on the price of EPPO with ρ = 1, q = 0.6

Figure 5. The Effect of DY on the price of EPPO with ρ = 1, q = 1.0
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Figure 6. The Comparative Study of EPPO Price with different DY.

Figure 7. The Plots of Linear Payoff.
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Figure 8. The Plots of MLPPF for ρ = 1.

Figure 9. The Plots of Log Payoff.
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Figure 10. The comparative study of Linear Payoff, MLPPF and Log Payoff.

6. Conclusion

An analytic solution of BSMEPPOM via the celebrated transform of Mellin type in the sense of

DY and MLPPF has been proposed in this paper. The integral equation for the representation of the

price of EPPO with DY was obtained. The closed form approximation formula for EPPO was also

obtained via MT with the help of its convolution property and final time condition. Moreover, the MT

was tested on some parameters to show its performance and suitability. The effect of DY is captured

in Figures 1 -5. From Figure 6, it is observed that increase in DY leads to increase in the prices of the

EPPO with MLPPF. It also is observed from Figures 6, that the holder is more beneficial to enter into

a European power put option. In other words, however, the benefits of these cash flows are given to

the holder of a put option. The plots of linear payoff, MLPPF and log payoff are displayed in Figures

7, 8 and 9, respectively. From Figure 10, it is clearly seen that the MLPPF used in this present paper

performed better than the log payoff used in [22] and also was found to be very close to the linear

payoff of plain vanilla [1]. Hence, from the results displayed in Figures 6 and 10, it can be concluded

that MT is suitable for the valuation of EPPO with MLPPF and DY due to its capacity power of

solving BSMEPPOM directly in terms of market price.
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