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Abstract. In this paper, we investigate the existence and uniqueness of solutions for functional impulsive
fractional differential equations and integral boundary conditions. Our results are based on some fixed

point theorems. Finally, we provide an example to illustrate the validity of our main results.

1. Introduction

In this paper, we discuss the existence and uniqueness of solutions to a boundary value problem

(BVP for short) for functional impulsive fractional differential equation, in the following form:

CD'y(t)=f(t.ys), ted=[aTlt#t. k=1 ..m, (1.1)
Ay le=t,= I(y(t7)), t=tx, k=1,...m, (1.2)
Ay o=t = k(¥ (t)), t=tx, k=1,..m, (1.3)
y(t)=¢(t), tela—Ta], y’(T)Z/aTh(s,y(S))dS- (1.4)

where ﬁDr is the Caputo-Hadamard fractional derivative of order 1 < r <2, a>0, f : Jx C([a—
7,a],R) = R, h: JxR — R are given continuous functions, ¢ € C([a—, a],R) and I, I, € C(R,R),

k=12,...ma=1t <t <..<tny<tm1=T. Forany continuous functions y defined on
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J =N\ {t1, .t} Ayle=g, = y(£5) =y (t) and Ay'|e=e, = ¥/ (£5) =y () ¥ (), y(t; ) represent
the right and the left limits of y(t) at t = tx , we denote by y; the element of C; = C([a—T, a], R),
defined by y;(0) = y(t+6).0 € [a— T, a], hence y:(-) represents the history of the state from time
t — 7 up to the present time t.

In the last few decades, the analysis of impulsive boundary value problems has developed. It has
also been extremely useful in developing various applied mathematical models of real-world processes
in engineering and applied sciences. Tian and Bai [16] discussed some existence results of impulsive
boundary value problems involving Caputo’s type fractional derivatives. Results of existence and
uniqueness have been developed using fixed-point theorem. Recently, it has been noted that much
of the works on this subject are focused on the fractional differential equations of Riemann-Liouville
and Caputo types with different conditions such as impulses, time delays, boundary value conditions
[1,6-9, 14,20, 21].

The Hadamard fractional derivative, introduced in 1892, [10] is another type of fractional derivative
that appears in the literature alongside the Riemann-Liouville and Caputo derivatives. It differs from the
previous ones in that it contains an arbitrary logarithm function, further details can be found in [3-5].
Next, Jarad et al. proposed a Caputo-type modification of the Hadamard fractional derivative in [15]
by the Caputo Hadamard fractional derivative and implemented the fundamental fractional calculus
theorem in the Caputo-Hadamard. Recently, some researchers have focused on impulsive differential
equations with Hadamard and Caputo-Hadamard derivatives (see [11-13, 17, 18] and the references
therein).

The rest of the paper is organized as follows. In Section 2, we introduce some notions preliminary
and properties on the fractional culcules. In Section 3, we give a supporting lemma describing the
solutions of the considered problem and discuss the main findings. Finally, we give an example to

illustrate the obtained results.

2. Preliminaries

In this section, we introduce notations, definitions and preliminary facts that will be used in the
remainder of this paper.

By C(J,R) we denote the Banach space of all continuous functions from J into R with the norm

[¥lloc = sup{ly(t)] : t € J}.

Also C, is endowed with the norm

1@llc, = sup{l|¢(0)]| : a — 7 <6 < a}.

Let L1(J R) as the Banach space of Lebesgue integrable functions y : J — R with the norm

)
Wl = / y(D)ldt.
a
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The space AC(J,R) is the space of functions y : J — R that are absolutely continuous. Let

0= t%, and then we set
ACI(UR) ={y:J— R, 6" ty(t) € AC(JR)}.

Definition 2.1. [19] The Hadamard derivative of fractional order r for a C"~* functiony : [a, T] — R
is defined by

t £\t ds
HDry(t) = ( / log — y(s)—,n—1<r<nn=][r]+ 1
( r) s s
Definition 2.2. [19] The Hadamard fractional integral of order r for a continuous function y is defined

t r—1
Hiry(t) = I—(lr)/ (Iog z) y(s)%, r>0,

provided the integral exists.

as a function

Definition 2.3. [19] For an n—times differentiable functiony : [a, T] — R the Caputo type Hadamard

derivative of fractional order r is defined as
1 t £\t ds
gDry(t):r(n_r)/a (logs) (5”_)/(5)?, n—1<r<n, n:[r]+1,
where § = t% and [r] denotes the integer part of the real number r and log(.) = loge(.).

Lemma 2.1. [2] Letr e R" and n=[r] = 1. Ify(t) € ACJ(J,R) then Caputo-Hadamard fractional

differential equation
“Dly(t) =0

has a solution

>
=

k
=> <|09 > ,
k=0
and the following formula holds:

n—1 k
t
HInEDm)(D) = y(D) + 3 <|og a) ,
k=0
where ¢, € R, k=0,1,2,...,n—1.

3. Existence of Solutions

In this section, we will establish the existence and uniqueness of solutions for (1.1)-(1.4).
:J—= R, y € AC2((tx, txs1). R) and there exist y(t; )andy(t;), k=1,...m,
A@(J,R):{y, k€ AC (bt B) y(6) and y(t;) }
with, y(t;) = y(t)
with the norm

Iyllacr =sup{lly(t)ll :a<t < T}
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Let B be set defined by
B={y:(a—7,T] >R \ ye AC'(JR)NC,},

is endowed with the norm

lylls = sup{lly(o)ll : t € [a— 7, T]}.

Definition 3.1. A function y € B is said to be a solution of the problem (1.1)-(1.4) if y satisfies the
equation §;D"y(t) = f(t, y) on J' and the conditions (1.2)-(1.4).

We need the following auxiliary lemma to prove the existence and uniqueness of solutions to the
problem(1.1)-(1.4).

Lemma 3.1. Let 1 < r < 2. Assume that o, 0 € AC%(J,R), then the following BVP :

HDry(t)y=o(t), teJ=]aT] t#ty (3.1)
AY o=t = Ik(y(t ), t=te, k=1,.,m, (3.2)
AY o= Tk(y(t0)), t=tx, k=1,..,m, (3.3)

T
@ =7 v = [ as)ds (3.4)

has the following integral equation:

V+ o (logt)+ ﬁ [5(log &) o(s) 4, if t€la t]
_ t “1
y+ e (log£) + 5 Jy, (log H" o(s)

k t; 1
(1) = +r 2 Jy, (log %) o(s) £

log £ : Nr—2 _
P, ) 0 (og ) o905 4 T ()

+ 300t (log £) Ty (), if t € (8, tipal, k=1,...m,

where

r—2 m : A\ m T —
2 =T J] e(s)ds = [ty S, (109 ) 7 o(9)% + X7, gy S, (log £) 2 0(5)% + X, ()T (v ()]
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proof: Let y be the solution of (3.1)-(3.4). For t € [a, t1]. Using Lemma 2.1, for some constants

y(t) = I’(lr) /at <Iog £> - a(s)% +a+o <Iog ;)

Acccording the a condition y(a) =y, we deduce that ¢c; =¥ and thus

Y(t) =7+ - r( | t <|og z>rla(s)f+c2 (Iog ;) |

, 1 t £\ 2 ds o
y'(t) = tl’(r—l)/a (Iog 5) O'(S)?-i-T.

If t € (t1, to], then we have

y(t) = r(lr)/t: <|09 z>r_1cf(s)dsS +di+do (Iog ttl> :
y(t) = tl'rl—l)/t (Iog z>r—2 (s )E + @

Using the impulses conditions Ay |¢=¢,= y(t]7 ) —y(t;) = I (y(t7)) and Ay’ |e=r,= ¥/ () =Y/ (t]) =
l1(y(t;)), we obtain

d = hy(t;)+y+o (Iog 2) + r(l)/tl (Iog 7;1>r—1 a(s)%.

t r—2
=R ) et o [ (00 2) oL

Thus, for t € (t1, to] we have

-7 ks [ () o0 [ o) M 2L [ ) T

f (Iog ti) L) + h((6)) + & (Iog a) |

c1, &2 € R, we have

and

Continuing in the same manner, we obtain for t € (t,, T],

w0 =+ [ (o03) ot >+r(r)2/ (100 >r_10(5)cf+é//(ﬂt,—_))
+ir((lig_él)) ’ <|Og 7;'> 2 0(5)§ +§t,- <|og ;) Lyt )+ e (Iog ;) ,

ti—1
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By the application of the boundary condition y'(T) = faT o(s)ds, we have

e S S L OO I SRR S /“ 8)" e 28
y(T)_T—FTF(r—l)/tm (lOgs U(S)5+§Tr(r—l) o IOgs U(S)s

UNYATA _
+3 () 1t
i=1
We obtain the reguired value of the constant ¢, where

T T -2 i i -2 T. -
=T [, o(s)ds— [ﬁ Jy (l0g 5) " a()% + 37, =Y o, (log ©) o (s) L + S () (y( 1) -
This completes the proof.

Our first result is based on the uniqueness of solutions for problem (1.1)-(1.4) and relies on the Banach

fixed point theorem.

Theorem 3.1. Assume that :

(H1) There exists a constant L1 > 0 such that
|f(t,u) —f(t,v)| < Lillu—vl|c,, foreachte Jandu,v e Cs.
(H2) There exists a constants L, > 0 such that
|h(t, x) — h(t,y)| < La|x —y|, foreachte Jand x,y € R.
(H3) For each k =1,2,...,m, there exist I, I* > 0 such that
1) = kW < Hx =yl [Tk(x) = Tk(W)| < I"[x — y|, foreach x,y € R.
If the condition

{Ll (rr(rlj—ll) + 1;—(3),77) (Iog :)r + L, T(T — a) <Iog 7a—> +ml+2mi*T <Iog 73—)] <1, (3.5)

then the boundary value problem (1.1)-(1.4) has a unique solution on [a — T, T].

proof : Transform the problem (1.1)-(1.4) into a fixed point problem. Consider the operator
F : B — B defined by:

(1), if te(a—rT, 4
¢(a) + T (log £) [T h(s,y(s))ds — (log £) [ ft: (log E)r_z f(s,ys)%
i oy S (109 8) T F(s,va) L+ S T (v (87)]

(Fy)(®) = t 1 o 1 (36)
r— i r—
iy o (1098 (s y) L+ iy Xy Sy (log £)7 F(s,v5) %

log i r— -
ety ) 1 109 £) (s, 008 4+ 34 hv(e)

+ X0t (log £) Ty (t)), if t € [t tial k=1, m.
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Clearly, the fixed point of the operator F are solutions of problem (1.1)-(1.4). Let x,y € B, if

t € [a—T,a], we have
[(Fx)(t) = (Fy)(£) = [¢(t) — ¢(t)| =0
If t € [a, T], by (H1)-(H3), we have:

[(Fx)(t) = (Fy)(0)]

< 71109 ) 1 [ i xto — e vtsptas + T [ (109 T) s ) — 550 %
=N 9 iox -~ ts.3 %
+1 (1o )|Za|/<x<t DTN+ s [ (00 L) irtsn) - (s 2
T Z/tll<log ) i x -~ rts.30 %
+Zr(k:g 1)) g ) x5 2
+Z ILGC87) — B )+ Z t (109 £ ) x() = F(e)
CH /;Lz\x(s)fy(s)|d$+‘r((l(:g_gl))‘ T (IogT)r_ZLllxsysbds
+los. 1)2/“( ) Ll = vl % 41 10g ) Zt,/ X(E) = y(&)
v [ (oat) i 2+ F(F)Z/t (106 %) tabe sl
+ir(k:91)) (100 %) tab -l 2 +Z/|x(t> Y&
+Z t (109 £ ) Fix(e) = ()
¢ (o) (D) (o)

Lﬁ}‘ffly)”Z/t/l( 7) O T Xy

! Hx—yll/ < ) g Lillx =yl / < ) 'ds
- Je ) Z s
K Lillx =yl (log £) o £\ ds T
+>0 ( )/t (Iog g) < T mlix=yll+mT (Iog 5) I*[|x — ||
1

— M(r—1)

< {Lg(T _aT (Iog g) YL (F?;j—ll) n 1r+(r2)’”) <Iog g) + mi+2mT (Iog g) /*} Ix =yl

Thus, we have

m+1 14+2m T\" T « T
_ < _ _ _ _ _
|Fx — Fy|l {Ll (I’(r 0 + 50 ) (Iog a) + LoT(T a) (Iog a) +ml+2mlT (Iog a)] IIx = yll.

i—
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Consequently by (3.5), F is a contraction, as a conseguence of Banach fixed point theorem, we
deduce that F has a fixed point which is a solution of the problem (1.1)-(1.4). This completes the
proof.

Our second result deals with the existence of solutions for problem (1.1)-(1.4) by applying on

Scheafer fixed point theorem.

Theorem 3.2. Assume that the following conditions hold :

(H4) The function f . J x C; — R is continuous.

(H5) The function h: R — R is continuous.

(H6) The functions I, 1y :R — R are continuous.

(H7) There exists a constant N > 0 such that |f(t,y)| < N, foreacht € J andy € C;.

(H8) There exists a constant N* > 0 such that |h(t, x)| < N* for each x € R.

(H9) There exist two constants Ny > 0, Ny > 0 such that |I,(x)| < N1, |[Ix(x)| < Ny for each ,

then the boundary value problem (1.1)-(1.4) has at least one solution on [a — T, T],

Proof: We shall use Scheafer fixed point theorem to prove that F has a fixed point, defined by 3.6.
The proof will be given in several steps.
Step 1: F is continuous.

Let {y,} be a sequence such that y, — y in B. If t € [a, T], we have
" T
FOm@) = FOO = T (10g%) [ 1G5, 3n(s) = b5, (5D
a

t T r—2
+ 80230 [ (o0 ) ) sl

) Z / (100 %) 1) s3I

(|og ) > 6l ) = ()

3

1 t t r—1 ds
N CH AR EIATE
1 [t

1

ti r=t ds
g2 ) (o) 1w - reva g

t; r—2
' ! ti ds
r(r_l) /t;l (log S) |f(SuYns)_ f(51y5)|?

k
2 () ~ I+ 36 (loa £ ) () = ()
i=1 i=1
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Since f, hand Iy, I, k=1,..., m, are continuous functions, we have
lF(vn) — F(¥)lloo — 0 as n — oo.

Step 2: F maps bounded sets into bounded sets in B.
Indeed, it is enough to show that for any n* > 0, there exists a positive constant L such that for each
y € Dy ={y € B: |yl £n*}, we have ||F(y)|| < L. By (H7), (H8) and (H9), for each t € J, we

can obtain
T t T r—2
F)O1 < o+ (oa ) [ s vopios+ T [ (1og 1) irts,

r('fg_l)'z/ (109 5) " 1rts.000 % +1 (1 )|Zt,|/(y<t )

r() t<|og > 1|f(5,ys : r(r)z/ <|og > |(s,ys)|§
+Z I(loa£)l s <|og’;)r_zv(s,ysndj+§;|//<y<t,-))I

Mr—1)

3 CRIZS)
i=1 :

< le(a)| +N*T (Iog t> /aT ds+N|((r|OE’%|/tmT <|09 Z)erSS
Nr|(r'°f 5 Z/t' <Iog >r ds+m<log :) TN,
NGRS o A CH -
+IZ:;W[1 (Iog Z)r_ZCerleerT(log g)/\/z
< ol +(T—aT ('og T) we p yEF2m (0g5)" @+ m) (log 5)
- a

r(r) M(r+1)
T
+mNy +2mT <Iog a) No.

Therefore

14+ m . 1+2m
F(r+1) r(r)

T\’ T
IFyll < llell+N { } (Iog a) + mNy + [(T — a)N* +2mN,] T (Iog a> = L.

Step 3: F maps bounded sets into equicontinuous sets of B .

Let 71,72 € J, 71 < T2, Dy be a bounded set of B as in Step 2, and let y € Dy«. Then



10 Int. J. Anal. Appl. (2023), 21:15

IA
-

T T2 T r—2
To (log 72 T ds
(10 n) [ s yoias + e [ (e L) il

S'(r i 2/ (100 ) |f(s,ys>|dj+(lo H)Ztu(y(t )

ti—1

trf, (%) (oo )it S o g [ (e 3) e

+§£'(ig_1) [ (e ) s+ (109 ) énﬁ@(q))«

As 71 — T, the right-hand side of the above inequality tends to zero. As a consequence of Steps
1 to 3, together with the Arzela-Ascoli theorem, we can conclude that F : B — B is completly
continuous.

Step 4: A priori bounds.

Now it remains to show that thesete = {y € B— B :y = AF(y) for some 0 < X\ < 1} is bounded.
Let y € €, then y = AF(y) for some 0 < XA < 1. Thus, for each t € J we have

T t\ T r—2
F©) = xo@) +T (109 2) ["atsvonos - 202 [ (1og 1) rts v &

m

KL () 1o > o) st
+r?r) /tt <Iog i)r_ f(&)’s)% + r(Ar)lz_k;/ttl ('09 Z)r_ f(s’yS)%
k '09 o) / (|og >r_2 f(s,ys)chrAiz:;//(Y(f,-_))

sz: t; (log tt> li(y(t))

i=1 !

For each t € J, by (H7)-(H9), we have

T 1+m 14+2m T\" T
< - 2 N - Z
IFyll < Jlell+T(T —a) <Iog a) N*+ N {F(r—i— ) + 10 ] (Iog a) + mNy +2mT (Iog a) N>.

This shows that the set € is bounded. As a consequence of Schaefer’s fixed point theorem, we deduce

that F has a fixed point which is a solution of the problem (1.1)-(1.4).

By applying the of Leray-Schauder nonlinear alternative type.

Theorem 3.3. Assume that (H4)-(H6) and the following conditions hold :
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(H10) There exist ¢pr € C(J,R*) and 9 : [0, 00) — [0, 00) continuous and non-decreasing such that
If(t,u)| < oe(t)W(lul), for all te J ueCy.

(H11) There exist ¢, € L(J,RT) and ¥* : [0,00) — [0, 00) continuous and non-decreasing such
that

lh(t, v)| < dn(t)¥*(lv|), for all te J veR.

(H12) There exist ¥*, 9** : [0,00) — [0, 00) continuous and non-decreasing such that
(W) < *(Iv]),  |Ik(V)] <¥**(|v|), for all vER, k=1,..., m.

(H13) There exists a number M > 0 such that
M

>1,
Il + T (1og L) 9+ (M) |dnlle: + ¢w(M) (225 + 1222) (log L) + mip* (M) +2mT (log L) 4 (1)

where ¢ = sup{¢¢(t) : t € J}, then the problem(1.1)-(1.4) has at least one solution on [a — T, T].

Proof: Consider the operator F defined as in 3.6. It can be easily shown that F is continuous and

completely continuous.
For A € [0,1] and each t € J, let y(t) = X(Fy)(t). Then from(H10)-(H12), we have

t T r—2
@ < T ()|+T(|og )/ s, vomias + 22k [ (g 1) i vn 2

| ( ) #0012 + (log 2) > o)

i=1

ti—

+r(1r)/ <|og 9 it FIZ/ (o0?) el E

+i (('(:g_fll)) ’ (|Og %) (s, vs |7+Z|/(y )|+Zt, (Iog )\l'f(y(tf))l

o@|+ T (1oa ) [ ¢h<s>¢*<|y(s)|>ds+r(('fgff) (o0 D) et mwnn s

IN

m

r("jg_l)z/ ( at) ¢f<s>w(\ys\)§+(logg)zt,w‘**<|y(tr>|>

i=1

z_k: (log £) fo (logi’)r2<z>f<s>w<|ys|>dj+§kl;w‘*(|y<tr>|)+ét, (logé)w@*uwﬁ)n

o+ T (1og —) w ) [ s+ D gy + MO iy

IN
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(log 1)’
r(r+1)

m (log L)

(v + gy )

4 (109 T ) v (vl +

m (log =

7009 iy + m (vl + T (109 %) (v

MG

(14 m)

<llol+ (109 T ) w Uy Dlosls + ouiivl) ((§5 + CLED) (1og

4 (Iy1) + 2T (109 L) 47y 1)

Thus
llyll

Then by condition (H13), there exists M such that ||y|| # M. Let

U={yeB:llyl <M}

<1.
ol + T (log T) (D lignlls + dw(lvll) (285 + H22) (tog )+ mi=(llyll) + 2mT (log T) % (lly)

The operator F : U — B is continuous and completely continuous. From the choice of U, there is no

y € 0U such that y = AF(y) for some A € (0,1). As a consequence of the nonlinear alternative of

Leray-Schauder type, we deduce that F has a fixed point y € U which is a solution of the problem

(1.1)-(1.4).
This completes the proof.

4. Example

Let consider the following problem:

e el

LD y(t) = (et +5)2 (1 + ye)’

te [1,2],t7é%,

4 )
RARTPET)

(4 ()l
3 17+ Iy(3)|

2
y(t) = ¢(t), tel-1], y’<2>=/1 13|i(lj/)(|)|d

Set

! |Yt|

(ef +5)2 (1 +Iyel)’

fF(tye) = (t.y)e JxC(1-71R),

2
h(t,y(t)):/l 13|j/_(|i/)(|5)|d5, (t.y) e xR,

|yl T(y) = ly|

I(y) = , - ,
W =17 M 17+ |y

y eR.
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Hence the hypotheses (H1)-(H3) holds, with L1 = %, Lo = &, | = 1%
We shall check that condition (3.5). With r=3 m=1,t; =%,T =2,a=1.

Further

[LgT(T —a) (Iog Z) + L1 <FZ—: :;) + L ;(%m) <Iog :)r +ml+2mlI*T (Iog Zﬂ

2 1 (2,3
1399736 \ 1 (3) T (3

0.414779517 < 1.

4
(log 2)% +ml+ ﬁ(log 2)

Note that M(3) = 2/, [(3) = 2/
Then all hypotheses of Theorem (3.1) are fulfilled, and consequently the boundary value problem
(4.1)-(4.4) has a unique solution on [1,2].
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