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Abstract. Based on the concept of fuzzy points, the notion of a prominent fuzzy GE-filter is defined,

and the various properties involved are investigated. The relationship between a fuzzy GE-filter and

a prominent fuzzy GE-filter is discussed, and the characterization of a prominent fuzzy GE-filter is

considered. The conditions under which a fuzzy GE-filter can be a prominent fuzzy GE-filter are

explored, and conditions for the trivial fuzzy GE-filter to be a prominent fuzzy GE-filter are provided.

The conditions under which the ∈t-set and Qt-set can be prominent GE-filters are explored. Finally,

the extension property for the prominent fuzzy GE-filter is discussed.

1. Introduction

Henkin and Scolem introduced the concept of Hilbert algebra in the implication investigation in

intuitionistic logics and other nonclassical logics. Diego [6] established that Hilbert algebras form a

locally finite variety. Later several researchers extended the theory on Hilbert algebras (see [4,5,7,8]).

The notion of BE-algebra was introduced by Kim et al. [9] as a generalization of a dual BCK-algebra.

Rezaei et al. [13] discussed relations between Hilbert algebras and BE-algebras. As a generalization

of Hilbert algebras, Bandaru et al. [2] introduced the notion of GE-algebras, and investigated several

properties. Bandaru et al. [3] introduced the concept of bordered GE-algebra and investigated its

properties. Later, Ozturk et al. [10] introduced the concept of strong GE-filters, GE-ideals of bordered

GE-algebras and investigated its properties. Song et al. [14] introduced the concept of Imploring

GE-filters of GE-algebras and discussed its properties. Rezaei et al. [12] introduced the concept of
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prominent GE-filters in GE-algebras and discussed its properties. Bandaru et al. [1] discussed the fuzzy

notion of GE-filters in GE-algebras.

The purpose of this paper is to define a prominent fuzzy GE-filter using the concept of fuzzy points

and investigate the various properties involved. We consider the relationship between a fuzzy GE-filter

and a prominent fuzzy GE-filter. We explore the conditions under which a fuzzy GE-filter can be a

prominent fuzzy GE-filter. We discuss the characterization of a prominent fuzzy GE-filter. We provide

conditions for the trivial fuzzy GE-filter to be a prominent fuzzy GE-filter. We explore the conditions

under which the ∈t-set and Qt-set can be prominent GE-filters. We finally discuss the extension

property for the prominent fuzzy GE-filter.

2. Preliminaries

2.1. Basics related to GE-algebras.

Definition 2.1 ( [2]). By a GE-algebra we mean a set X with a constant “1” and a binary operation

“ ∗ ” satisfying the following axioms:

(GE1) a ∗ a = 1,
(GE2) 1 ∗ a = a,
(GE3) a ∗ (b ∗ c) = a ∗ (b ∗ (a ∗ c))

for all a, b, c ∈ X.

We denote the GE-algebra by X := (X, ∗, 1). A binary relation “ ≤ ” in a GE-algebra X := (X, ∗, 1)
is defined by:

(∀x, y ∈ X)(x ≤ y ⇔ x ∗ y = 1). (2.1)

Definition 2.2 ( [2]). A GE-algebra X := (X, ∗, 1) is said to be

• transitive if it satisfies:

(∀a, b, c ∈ X) (a ∗ b ≤ (c ∗ a) ∗ (c ∗ b)) . (2.2)

• commutative if it satisfies:

(∀a, b ∈ X) ((a ∗ b) ∗ b = (b ∗ a) ∗ a) . (2.3)

Note that every commutative GE-algebra is transitive and antisymmetric.

Proposition 2.1 ( [2]). Every GE-algebra X := (X, ∗, 1) satisfies the following items.

(∀a ∈ X) (a ∗ 1 = 1) . (2.4)

(∀a, b ∈ X) (a ∗ (a ∗ b) = a ∗ b) . (2.5)

(∀a, b ∈ X) (a ≤ b ∗ a) . (2.6)
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(∀a, b, c ∈ X) (a ∗ (b ∗ c) ≤ b ∗ (a ∗ c)) . (2.7)

(∀a ∈ X) (1 ≤ a ⇒ a = 1) . (2.8)

(∀a, b ∈ X) (a ≤ (a ∗ b) ∗ b) . (2.9)

If X := (X, ∗, 1) is transitive, then

(∀a, b, c ∈ X) (a ≤ b ⇒ c ∗ a ≤ c ∗ b, b ∗ c ≤ a ∗ c) . (2.10)

(∀a, b, c ∈ X) (a ∗ b ≤ (b ∗ c) ∗ (a ∗ c)) . (2.11)

(∀a, b, c ∈ X) (a ∗ b ≤ (c ∗ a) ∗ (c ∗ b)) . (2.12)

Definition 2.3. A subset F of a GE-algebra X := (X, ∗, 1) is called

• a GE-filter of X := (X, ∗, 1) (see [2]) if it satisfies:

1 ∈ F, (2.13)

(∀a, b ∈ X)(a ∈ F, a ∗ b ∈ F ⇒ b ∈ F ). (2.14)

• a prominent GE-filter of X := (X, ∗, 1) (see [12]) if it satisfies (2.13) and

(∀a, b, c ∈ X)(a ∗ (b ∗ c) ∈ F, a ∈ F ⇒ ((c ∗ b) ∗ b) ∗ c ∈ F ). (2.15)

Lemma 2.1 ( [2]). Every GE-filter F of X := (X, ∗, 1) satisfies:

(∀x, y ∈ X)(x ≤ y , x ∈ F ⇒ y ∈ F ). (2.16)

Lemma 2.2 ( [12]). Every prominent GE-filter is a GE-filter.

2.2. Basics related to fuzzy sets. A fuzzy set f in a set X of the form

f (b) :=

{
t ∈ (0, 1] if b = a,
0 if b 6= a,

is said to be a fuzzy point with support a and value t and is denoted by at .

For a fuzzy set f in a set X and t ∈ (0, 1], we say that a fuzzy point at is

(i) contained in f , denoted by at ∈ f , (see [11]) if f (a) ≥ t.
(ii) quasi-coincident with f , denoted by at q f , (see [11]) if f (a) + t > 1.

If at α f is not established for α ∈ {∈, q}, it is denoted by at α f .

Given t ∈ (0, 1] and a fuzzy set f in a set X, consider the following sets

(f , t)∈ := {x ∈ X | xt ∈ f } and (f , t)q := {x ∈ X |
x
t q f }

which are called an ∈t-set and Qt-set of f , respectively, in X.
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Definition 2.4 ( [1]). A fuzzy set f in a GE-algebra X := (X, ∗, 1) is called a fuzzy GE-filter of

X := (X, ∗, 1) if it satisfies:

(∀t ∈ (0, 1]) ((f , t)∈ 6= ∅ ⇒ 1 ∈ (f , t)∈) , (2.17)

x ∗ y ∈ (f , tb)∈, x ∈ (f , ta)∈ ⇒ y ∈ (f ,min{ta, tb})∈ (2.18)

for all x, y ∈ X and ta, tb ∈ (0, 1].

3. The Prominentness of Fuzzy GE-Filters

In what follows, let X := (X, ∗, 1) denote a GE-algebra unless otherwise specified.

Definition 3.1. A fuzzy set f in X is called a prominent fuzzy GE-filter of X := (X, ∗, 1) if it satisfies
(2.17) and

(∀x, y , z ∈ X)(∀ta, tb ∈ (0, 1])

(
x ∗ (y ∗ z) ∈ (f , tb)∈, x ∈ (f , ta)∈ ⇒
((z ∗ y) ∗ y) ∗ z ∈ (f ,min{ta, tb})∈

)
. (3.1)

Example 3.1. Let X = {1, 2, 3, 4, 5, 6, 7} be a set with a binary operation “ ∗ ” given by Table 1.

Table 1. Cayley table for the binary operation “∗”

∗ 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7

2 1 1 1 4 6 6 1

3 1 2 1 5 5 5 7

4 1 1 3 1 1 1 1

5 1 2 1 1 1 1 7

6 1 2 3 1 1 1 1

7 1 2 3 6 5 6 1

Then X := (X, ∗, 1) is a GE-algebra (see [12]). Define a fuzzy set f in X as follows:

f : X → [0, 1], x 7→

{
0.85 if x ∈ {1, 2, 3, 7},
0.37 otherwise.

It is routine to verify that f is a prominent fuzzy GE-filter of X := (X, ∗, 1).

We discuss the relationship between a fuzzy GE-filter and a prominent fuzzy GE-filter.

Theorem 3.1. Every prominent fuzzy GE-filter is a fuzzy GE-filter.

Proof. Let f be a prominent fuzzy GE-filter of X := (X, ∗, 1). Let x, y ∈ X and ta, tb ∈ (0, 1] be
such that x ∈ (f , ta)∈ and x ∗ y ∈ (f , tb)∈. Then x ∗ (1 ∗ y) = x ∗ y ∈ (f , tb)∈ by (GE2), and so
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y = ((y ∗ 1) ∗ 1) ∗ y ∈ (f , tb)∈ by (GE1), (GE2), (2.4) and (3.1). Hence f is a fuzzy GE-filter of

X := (X, ∗, 1). �

The following example shows that the converse of Theorem 3.1 may not be true.

Example 3.2. Consider the GE-algebra X := (X, ∗, 1) in Example 3.1 and let f be a fuzzy set in X

defined by

f : X → [0, 1], x 7→

{
0.79 if x ∈ {1, 3, 7},
0.46 otherwise.

It is routine to verify that f is a fuzzy GE-filter of X := (X, ∗, 1). But it is not a prominent fuzzy

GE-filter of X := (X, ∗, 1) since 3 ∈ (f , 0.67)∈ and 3 ∗ (4 ∗ 2) = 1 ∈ (f , 0.62)∈, but ((2 ∗ 4) ∗ 4) ∗ 2 =
2 /∈ (f , 0.62)∈ = (f ,min{0.67, 0.62})∈.

We explore the conditions under which a fuzzy GE-filter can be a prominent fuzzy GE-filter.

Theorem 3.2. Given a fuzzy GE-filter f of X := (X, ∗, 1), it is a prominent fuzzy GE-filter of X :=

(X, ∗, 1) if and only if it satisfies:

(∀x, y ∈ X)(∀t ∈ (0, 1])(x ∗ y ∈ (f , t)∈ ⇒ ((y ∗ x) ∗ x) ∗ y ∈ (f , t)∈). (3.2)

Proof. Assume that f is a prominent fuzzy GE-filter of X := (X, ∗, 1) and let x, y ∈ X and t ∈ (0, 1]
be such that x ∗ y ∈ (f , t)∈. Then 1 ∗ (x ∗ y) = x ∗ y ∈ (f , t)∈ by (GE2). Since 1 ∈ (f , t)∈, it follows
from (3.1) that ((y ∗ x) ∗ x) ∗ y ∈ (f , t)∈.

Conversely, let f be a fuzzy GE-filter of X := (X, ∗, 1) that satisfies the condition (3.2). Let

x, y , z ∈ X and ta, tb ∈ (0, 1] be such that x ∗ (y ∗ z) ∈ (f , tb)∈ and x ∈ (f , ta)∈. Then y ∗ z ∈
(f ,min{ta, tb})∈ by (2.18), and so ((z ∗ y) ∗ y) ∗ z ∈ (f ,min{ta, tb})∈ by (3.2). Therefore f is a

prominent fuzzy GE-filter of X := (X, ∗, 1). �

Lemma 3.1 ( [1]). Every fuzzy GE-filter f of X satisfies:

(∀x, y ∈ X)(∀ta ∈ (0, 1]) (x ≤ y , x ∈ (f , ta)∈ ⇒ y ∈ (f , ta)∈) , (3.3)

(∀x, y , z ∈ X)(∀ta, tb ∈ (0, 1])

(
z ≤ y ∗ x, y ∈ (f , tb)∈, z ∈ (f , ta)∈
⇒ x ∈ (f ,min{ta, tb})∈

)
. (3.4)

Theorem 3.3. In a commutative GE-algebra, every fuzzy GE-filter is a prominent fuzzy GE-filter.

Proof. Let f be a prominent fuzzy GE-filter of X := (X, ∗, 1). It is sufficient to show that f satisfies

the condition (3.1). Let x, y , z ∈ X and ta, tb ∈ (0, 1] be such that x ∗ (y ∗ z) ∈ (f , tb)∈ and
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x ∈ (f , ta)∈. Using (2.3), (2.7), and (2.12), we have

1 = ((z ∗ y) ∗ y) ∗ ((y ∗ z) ∗ z)

≤ (y ∗ z) ∗ (((z ∗ y) ∗ y) ∗ z)

≤ (x ∗ (y ∗ z)) ∗ (x ∗ (((z ∗ y) ∗ y) ∗ z))

≤ x ∗ ((x ∗ (y ∗ z)) ∗ (((z ∗ y) ∗ y) ∗ z)),

and so x ∗ ((x ∗ (y ∗ z)) ∗ (((z ∗ y) ∗ y) ∗ z)) = 1, i.e., x ≤ (x ∗ (y ∗ z)) ∗ (((z ∗ y) ∗ y) ∗ z). It follows
from Lemma 3.1 that ((z ∗ y) ∗ y) ∗ z ∈ (f ,min{ta, tb})∈. Therefore f is a prominent fuzzy GE-filter

of X := (X, ∗, 1). �

Theorem 3.4. A fuzzy set f in X is a prominent fuzzy GE-filter of X := (X, ∗, 1) if and only if it

satisfies:

(∀x ∈ X)(f (1) ≥ f (x)). (3.5)

(∀x, y , z ∈ X)(f (((z ∗ y) ∗ y) ∗ z) ≥ min{f (x), f (x ∗ (y ∗ z))}). (3.6)

Proof. Assume that f is a prominent fuzzy GE-filter of X := (X, ∗, 1). Suppose there exists a ∈ X
such that f (1) < f (a). Let t0 = 1

2(f (1) + f (a)). Then f (1) < t0 and 0 < t0 < f (a) ≤ 1. Hence

a ∈ (f , t0)∈ and so (f , t0)∈ 6= ∅. Thus 1 ∈ (f , t0)∈, that is, f (1) ≥ t0, which is contradiction. Hence

f (1) ≥ f (x) for all x ∈ X. Let x, y , z ∈ X be such that f (x) = t1 and f (x ∗ (y ∗ z)) = t2. Then

x ∈ (f , t1)∈ and x ∗ (y ∗ z) ∈ (f , t2)∈. It follows from (3.1) that ((z ∗ y) ∗ y) ∗ z ∈ (f ,min{t1, t2})∈.
Hence f (((z ∗ y) ∗ y) ∗ z) ≥ min{t1, t2} = min(f (x), f (x ∗ (y ∗ z))).

Conversely, assume that f satisfies (3.5) and (3.6). Let t ∈ (0, 1] and x ∈ (f , t)∈. Then f (x) ≥ t
and hence f (1) ≥ f (x) ≥ t. Thus 1 ∈ (f , t)∈. Let x, y , z ∈ X be such that x ∈ (f , t1)∈ and

x ∗ (y ∗ z) ∈ (f , t2)∈. Then f (x) ≥ t1 and f (x ∗ (y ∗ z)) ≥ t2. Therefore f (((z ∗ y) ∗ y) ∗ z) ≥
min{f (x), f (x ∗ (y ∗ z))} ≥ min{t1, t2} by (3.6). Hence ((z ∗ y) ∗ y) ∗ z ∈ (f ,min{t1, t2})∈. Thus f
is a prominent fuzzy GE-filter of X := (X, ∗, 1). �

Theorem 3.5. Given an element b ∈ X, define a fuzzy set fb in X as follows:

fb : X → [0, 1], x 7→

{
t1 if x ∈ ~b,
t2 otherwise.,

where ~b := {x ∈ X | b ≤ x} and t1 > t2 in (0, 1]. Then fb is a prominent fuzzy GE-filter of

X := (X, ∗, 1) if and only if X := (X, ∗, 1) satisfies:

(∀x, y , z ∈ X)(x ∈ ~b, x ∗ (y ∗ z) ∈ ~b ⇒ ((z ∗ y) ∗ y) ∗ z ∈ ~b). (3.7)

Proof. Assume that fb is a prominent fuzzy GE-filter of X := (X, ∗, 1) and let x, y , z ∈ X be such

that x ∈ ~b and x ∗ (y ∗ z) ∈ ~b. Then fb(x) = t1 = fb(x ∗ (y ∗ z)), which implies from (3.6) that

fb(((z ∗ y) ∗ y) ∗ z) ≥ min{fb(x), fb(x ∗ (y ∗ z))} = t1.
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Hence fb(((z ∗ y) ∗ y) ∗ z) = t1, and thus ((z ∗ y) ∗ y) ∗ z ∈ ~b.
Conversely, suppose that X := (X, ∗, 1) satisfies the condition (3.7). Since 1 ∈ ~b, we get fb(1) =

t1 ≥ fb(x) for all x ∈ X. For every x, y , z ∈ X, if x /∈ ~b or x ∗ (y ∗ z) /∈ ~b, then fb(x) = t2 or

fb(x ∗ (y ∗ z)) = t2. Hence

fb(((z ∗ y) ∗ y) ∗ z) ≥ t2 = min{fb(x), fb(x ∗ (y ∗ z))}.

If x ∈ ~b and x ∗ (y ∗ z) ∈ ~b, then fb(x) = t1 and fb(x ∗ (y ∗ z)) = t1. Thus

fb(((z ∗ y) ∗ y) ∗ z) = t1 = min{fb(x), fb(x ∗ (y ∗ z))}.

Therefore fb is a prominent fuzzy GE-filter of X := (X, ∗, 1) by Theorem 3.4. �

Consider a fuzzy set f in X which is given by

f : X → [0, 1], x 7→

{
t1 if x = 1,

t2 otherwise,

where t1 > t2 in (0, 1]. It is clear that f is a fuzzy GE-filter of X := (X, ∗, 1), which is called the

trivial fuzzy GE-filter of X := (X, ∗, 1). But it is not a prominent fuzzy GE-filter of X := (X, ∗, 1) as
seen in the following example.

Example 3.3. Consider the GE-algebra X := (X, ∗, 1) in Example 3.1 and let f be a fuzzy set in X

defined by

f : X → [0, 1], x 7→

{
0.83 if x = 1,

0.57 otherwise.

Then f is a fuzzy GE-filter of X := (X, ∗, 1), but it is not a prominent fuzzy GE-filter of X := (X, ∗, 1)
since 1 ∈ (f , 0.69)∈ and 1 ∗ (4 ∗ 2) = 1 ∈ (f , 0.64)∈, but ((2 ∗ 4) ∗ 4) ∗ 2 = 2 /∈ (f ,min{0.69, 0.64})∈.

We provide conditions for the trivial fuzzy GE-filter to be a prominent fuzzy GE-filter.

Theorem 3.6. In a commutative GE-algebra, the trivial fuzzy GE-filter is a prominent fuzzy GE-filter.

Proof. Let f be the trivial fuzzy GE-filter of a commutative GE-algebra X := (X, ∗, 1). Then

(f , t)∈ =


∅ if t ∈ (t1, 1],
{1} if t ∈ (t2, t1],
X if t ∈ (0, t2].

It is sufficient to show that (f , t)∈ = {1} is a prominent GE-filter of X := (X, ∗, 1). Let x, y , z ∈ X
be such that x ∈ {1} and x ∗ (y ∗ z) ∈ {1}. Using (GE2), (2.3) and (GE1), we get y ∗ z = 1, and
thus ((z ∗ y) ∗ y) ∗ z = ((y ∗ z) ∗ z) ∗ z = (1 ∗ z) ∗ z = z ∗ z = 1 ∈ {1}. Hence (f , t)∈ = {1} is a
prominent GE-filter of X := (X, ∗, 1), and therefore f is a prominent fuzzy GE-filter of X := (X, ∗, 1)
by Theorem ??. �
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We explore the conditions under which the ∈t-set and Qt-set can be prominent GE-filters.

Theorem 3.7. Given a fuzzy set f in X, its ∈t-set (f , t)∈ is a prominent GE-filter of X for all

t ∈ (0.5, 1] if and only if f satisfies:

(∀x ∈ X)(f (x) ≤ max{f (1), 0.5}), (3.8)

(∀x, y ∈ X)(min{f (x), f (x ∗ (y ∗ z))} ≤ max{f (((z ∗ y) ∗ y) ∗ z), 0.5}). (3.9)

Proof. Assume that the ∈t-set (f , t)∈ of f is a prominent GE-filter of X for all t ∈ (0.5, 1]. If there
exists a ∈ X such that f (a) � max{f (1), 0.5}, then t := f (a) ∈ (0.5, 1], at ∈ f and 1t ∈ f , that is,
a ∈ (f , t)∈ and 1 /∈ (f , t)∈. This is a contradiction, and thus f (x) ≤ max{f (1), 0.5} for all x ∈ X. If
(3.9) is not valid, then

min{f (a), f (a ∗ (b ∗ c))} > max{f (((c ∗ b) ∗ b) ∗ c), 0.5}

for some a, b, c ∈ X. If we take t := min{f (a), f (a ∗ (b ∗ c))}, then t ∈ (0.5, 1], at ∈ f and
a∗(b∗c)
t ∈ f . Hence a ∈ (f , t)∈ and a ∗ (b ∗ c) ∈ (f , t)∈, which imply that ((c ∗ b) ∗ b) ∗ c ∈ (f , t)∈.

Thus ((c∗b)∗b)∗ct ∈ f , and so f (((c ∗ b) ∗ b) ∗ c) ≥ t > 0.5 which is a contradiction. Therefore

min{f (x), f (x ∗ (y ∗ z))} ≤ max{f (((z ∗ y) ∗ y) ∗ z), 0.5}

for all x, y ∈ X.
Conversely, suppose that f satisfies (3.8) and (3.9). Let (f , t)∈ 6= ∅ for all t ∈ (0.5, 1]. Then there

exists a ∈ (f , t)∈ and thus at ∈ f , i.e., f (a) ≥ t. It follows from (3.8) that max{f (1), 0.5} ≥ f (a) ≥
t > 0.5. Thus 1t ∈ f , i.e., 1 ∈ (f , t)∈. Let t ∈ (0.5, 1] and x, y , z ∈ X be such that x ∈ (f , t)∈ and

x ∗ (y ∗ z) ∈ (f , t)∈. Then xt ∈ f and x∗(y∗z)t ∈ f , that is, f (x) ≥ t and f (x ∗ (y ∗ z)) ≥ t. Using

(3.9), we get

max{f (((z ∗ y) ∗ y) ∗ z), 0.5} ≥ min{f (x), f (x ∗ (y ∗ z))} ≥ t > 0.5

and so ((z∗y)∗y)∗zt ∈ f , i.e., ((z ∗ y) ∗ y) ∗ z ∈ (f , t)∈. Therefore (f , t)∈ is a prominent GE-filter of X

for all t ∈ (0.5, 1]. �

Lemma 3.2 ( [1]). A fuzzy set f in X is a fuzzy GE-filter of X if and only if the nonempty ∈t-set
(f , t)∈ of f in X is a GE-filter of X for all t ∈ (0, 1].

Lemma 3.3 ( [12]). Let F be a GE-filter of X := (X, ∗, 1). Then it is a prominent GE-filter of

X := (X, ∗, 1) if and only if it satisfies:

(∀x, y ∈ X)(x ∗ y ∈ F ⇒ ((y ∗ x) ∗ x) ∗ y ∈ F ). (3.10)

Theorem 3.8. A fuzzy set f in X is a prominent fuzzy GE-filter of X := (X, ∗, 1) if and only if the

nonempty ∈t-set (f , t)∈ of f in X is a prominent GE-filter of X := (X, ∗, 1) for all t ∈ (0, 1].



Int. J. Anal. Appl. (2023), 21:26 9

Proof. Assume that f is a prominent fuzzy GE-filter of X := (X, ∗, 1). Then f is a fuzzy GE-filter

of X := (X, ∗, 1) (see Theorem 3.1), and so the nonempty ∈t-set (f , t)∈ of f in X is a GE-filter

of X := (X, ∗, 1) for all t ∈ (0, 1] by Lemma 3.2. Let x, y ∈ X and t ∈ (0, 1] be such that

x ∗ y ∈ (f , t)∈. Since f is a prominent fuzzy GE-filter of X := (X, ∗, 1), it follows from (3.2) that

((y ∗ x) ∗ x) ∗ y ∈ (f , t)∈, and therefore (f , t)∈ is a prominent GE-filter of X := (X, ∗, 1) for all
t ∈ (0, 1] by Lemma 3.3.

Conversely, suppose that the nonempty ∈t-set (f , t)∈ of f in X is a prominent GE-filter of X :=

(X, ∗, 1) for all t ∈ (0, 1]. Then (f , t)∈ is a GE-filter of X := (X, ∗, 1) by Lemma 2.2, and thus

f is a fuzzy GE-filter of X := (X, ∗, 1) by Lemma 3.2. Let x, y ∈ X and t ∈ (0, 1] be such that

x ∗ y ∈ (f , t)∈. Then ((y ∗ x) ∗ x) ∗ y ∈ (f , t)∈ by Lemma 3.3. It follows from Theorem 3.2 that f is

a prominent fuzzy GE-filter of X := (X, ∗, 1). �

Theorem 3.9. If f is a prominent fuzzy GE-filter of X := (X, ∗, 1), then the nonempty Qt-set (f , t)q

of f is a prominent GE-filter of X := (X, ∗, 1) for all t ∈ (0, 1].

Proof. Let f be a prominent fuzzy GE-filter of X := (X, ∗, 1) and assume that (f , t)q 6= ∅ for all

t ∈ (0, 1]. Then there exists a ∈ (f , t)q, and so at q f , i.e., f (a)+t > 1. Hence f (1)+t ≥ f (a)+t > 1,
i.e., 1 ∈ (f , t)q. Let x, y , z ∈ X be such that x ∈ (f , t)q and x ∗ (y ∗ z) ∈ (f , t)q. Then xt q f and
x∗(y∗z)
t q f , that is, f (x) + t > 1 and f (x ∗ (y ∗ z)) + t > 1. It follows from (3.6) that

f (((z ∗ y) ∗ y) ∗ z) + t ≥ min{f (x), f (x ∗ (y ∗ z))}+ t

= min{f (x) + t, f (x ∗ (y ∗ z)) + t} > 1.

Hence ((z∗y)∗y)∗zt q f , and therefore ((z ∗ y) ∗ y) ∗ z ∈ (f , t)q. Consequently, (f , t)q is a prominent

GE-filter of X := (X, ∗, 1) for all t ∈ (0, 1]. �

We finally discuss the extension property for the prominent fuzzy GE-filter.

Question. Let f and g be fuzzy GE-filters of X := (X, ∗, 1) such that f ⊆ g, that is, f (x) ≤ g(x)

for all x ∈ X. If f is a prominent fuzzy GE-filter of X := (X, ∗, 1), then is g also a prominent fuzzy

GE-filter of X := (X, ∗, 1)?

The example below provides a negative answer to the Question.

Example 3.4. Let X = {1, 2, 3, 4, 5, 6} be a set with a binary operation “ ∗ ” given by Table 2.

Then X := (X, ∗, 1) is a GE-algebra (see [12]). Define a fuzzy set f in X as follows:

f : X → [0, 1], x 7→

{
0.65 if x = 1,

0.37 otherwise.
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Table 2. Cayley table for the binary operation “∗”

∗ 1 2 3 4 5 6

1 1 2 3 4 5 6

2 1 1 3 4 3 1

3 1 6 1 1 6 6

4 1 2 1 1 2 2

5 1 1 1 4 1 1

6 1 1 3 4 3 1

It is routine to verify that f is a prominent GE-filter of X := (X, ∗, 1). Now, we define a fuzzy set g

in X as follows:

g : X → [0, 1], x 7→


0.73 if x = 1,

0.67 if x ∈ {2, 6},
0.48 otherwise.

Then f (x) ≤ g(x) for all x ∈ X, that is, f ⊆ g, and g is a fuzzy GE-filter of X := (X, ∗, 1). Since

4 ∗ 5 = 2 ∈ (g, 0.61)∈ and ((5 ∗ 4) ∗ 4) ∗ 5 = 5 /∈ (g, 0.61)∈, we know that g is not a prominent fuzzy

GE-filter of X := (X, ∗, 1) by Theorem 3.2.

We provide conditions for the answer of Question above to be positive.

Theorem 3.10. (Extension property for the prominent fuzzy GE-filter) Let f and g be fuzzy GE-

filters of a transitive GE-algebra X := (X, ∗, 1) such that f ⊆ g, that is, f (x) ≤ g(x) for all x ∈ X. If
f is a prominent fuzzy GE-filter of X := (X, ∗, 1), then so is g.

Proof. If f is a prominent fuzzy GE-filter of X := (X, ∗, 1), then it is a fuzzy GE-filter of X := (X, ∗, 1)
by Theorem 3.1 and (f , t)∈ is a prominent GE-filter of X := (X, ∗, 1) for all t ∈ (0, 1] by Theorem

3.8. Let a := x ∗ y ∈ (g, t)∈ for all x, y ∈ X and t ∈ (0, 1]. Then 1 ∈ (f , t)∈ by (2.17) and

1 = a∗(x ∗y) ≤ x ∗(a∗y) by (GE1) and (2.7). Hence x ∗(a∗y) ∈ (f , t)∈ by (3.3). Using assumption

and Theorem 3.2 induces

(((a ∗ y) ∗ x) ∗ x) ∗ (a ∗ y) ∈ (f , t)∈ ⊆ (g, t)∈.

Since (((a ∗ y) ∗ x) ∗ x) ∗ (a ∗ y) ≤ a ∗ ((((a ∗ y) ∗ x) ∗ x) ∗ y) by (2.7) and (g, t)∈ is a GE-

filter of X := (X, ∗, 1), we have a ∗ ((((a ∗ y) ∗ x) ∗ x) ∗ y) ∈ (g, t)∈ by Lemma 2.1. Hence

(((a ∗ y) ∗ x) ∗ x) ∗ y ∈ (g, t)∈ by (2.14). Since y ≤ a ∗ y by (2.6), we have

(((a ∗ y) ∗ x) ∗ x) ∗ y ≤ ((y ∗ x) ∗ x) ∗ y
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by running (2.10) three times. It follows from Lemma 2.1 that ((y ∗ x) ∗ x) ∗ y ∈ (g, t)∈. Hence

(g, t)∈ is a prominent GE-filter of X := (X, ∗, 1) by Lemma 3.3, and therefore g is a prominent fuzzy

GE-filter of X := (X, ∗, 1) by Theorem 3.8. �

Corollary 3.1. Let X := (X, ∗, 1) be a transitive GE-algebra. Then the trivial fuzzy GE-filter f is a

prominent fuzzy GE-filter of X := (X, ∗, 1) if and only if every fuzzy GE-filter is a prominent fuzzy

GE-filter of X := (X, ∗, 1).

Corollary 3.2. In a commutative GE-algebra, every fuzzy GE-filter is a prominent fuzzy GE-filter.

The following example describes the extension property for the prominent fuzzy GE-filter.

Example 3.5. Let X = {1, 2, 3, 4, 5, 6} be a set with a binary operation “ ∗ ” given by Table 3.

Table 3. Cayley table for the binary operation “∗”

∗ 1 2 3 4 5 6

1 1 2 3 4 5 6

2 1 1 3 4 4 6

3 1 2 1 5 5 6

4 1 1 1 1 1 6

5 1 1 1 1 1 6

6 1 2 3 4 5 1

Then X := (X, ∗, 1) is a GE-algebra (see [12]). Define a fuzzy set f in X as follows:

f : X → [0, 1], x 7→

{
0.59 if x ∈ {1, 2, 3},
0.36 otherwise.

Then f is a prominent fuzzy GE-filter of X := (X, ∗, 1). If we take a fuzzy set g in X defined as

follows:

g : X → [0, 1], x 7→

{
0.69 if x ∈ {1, 2, 3, 6},
0.56 otherwise,

then f ⊆ g and g is a prominent fuzzy GE-filter of X := (X, ∗, 1).

4. Conclusion

Using the concept of fuzzy points, we have introduced the notion of a prominent fuzzy GE-filter in

GE-algebras, and have investigated the various properties involved. We have considered the relationship

between a fuzzy GE-filter and a prominent fuzzy GE-filter, and have discussed the characterization

of a prominent fuzzy GE-filter. We have explored the conditions under which a fuzzy GE-filter can

be a prominent fuzzy GE-filter. We have provided conditions for the trivial fuzzy GE-filter to be a
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prominent fuzzy GE-filter, and have explored the conditions under which the ∈t-set and Qt-set can
be prominent GE-filters. We finally have discussed the extension property for the prominent fuzzy

GE-filter.
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