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A Note on LP -Kenmotsu Manifolds Admitting Conformal Ricci-Yamabe Solitons
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Abstract. In the current note, we study Lorentzian para-Kenmotsu (in brief, LP -Kenmotsu) manifolds

admitting conformal Ricci-Yamabe solitons (CRYS) and gradient conformal Ricci-Yamabe soliton (gra-

dient CRYS). At last by constructing a 5-dimensional non-trivial example we illustrate our result.

1. Introduction

As a generalization of the classical Ricci flow [8], the concept of conformal Ricci flow was introduced

by Fischer [5], which is defined on an n-dimensional Riemannian manifold M by the equations

∂g

∂t
= −2(S +

g

n
)− pg, r(g) = −1,

where p defines a time dependent non-dynamical scalar field (also called the conformal pressure), g is

the Riemannian metric; r and S represent the scalar curvature and the Ricci tensor of M, respectively.

The term −pg plays a role of constraint force to maintain r in the above equation.

In [1], the authors Basu and Bhattacharyya proposed the concept of conformal Ricci soliton on M

and is defined by

£Kg + 2S + (2Λ− (p +
2

n
))g = 0,

where £K represents the Lie derivative operator along the smooth vector field K on M and Λ ∈ R
(the set of real numbers).
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Very recently, a scalar combination of Ricci and Yamabe flows was proposed by the authors Güler

and Crasmareanu [7], this advanced class of geometric flows called Ricci-Yamabe (RY) flow of type

(σ, ρ) and is defined by

∂

∂t
g(t) + 2σS(g(t)) + ρr(t)g(t) = 0, g(0) = g0

for some scalars σ and ρ. A solution to the RY flow is called Ricci-Yamabe soliton (RYS) if it depends

only on one parameter group of diffeomorphism and scaling. A Riemannian (or semi-Riemannian)

manifold M is said to have a RYS if [9, 10]

£Kg + 2σS + (2Λ− ρr)g = 0. (1.1)

A Riemannian (or semi-Riemannian) manifold M is said to have a conformal Ricci-Yamabe soliton

(CRYS) if [20]

£Kg + 2σS + (2Λ− ρr − (p +
2

n
))g = 0, (1.2)

where σ, ρ,Λ ∈ R.
If K is the gradient of a smooth function v on M, then (1.2) is called the gradient conformal

Ricci-Yamabe soliton (gradient CRYS) and hence (1.2) turns to

∇2v + σS + (Λ−
ρr

2
−

1

2
(p +

2

n
))g = 0, (1.3)

where ∇2v is the Hessian of v and is defined by Hessv = ∇∇v .
A CRYS is said to be shrinking, steady or expanding if Λ < 0,= 0 or > 0, respectively. A CRYS is

said to be a

• Conformal Ricci soliton if σ = 1, ρ = 0,

• Conformal Yamabe soliton if σ = 0, ρ = 1,

• Conformal Einstein soliton if σ = 1, ρ = −1.

As a continuation of this study, we tried to study CRYS and gradient CRYS in the frame-work of

LP -Kenmotsu manifolds of dimension n. We recommend the papers [2–4,6,13–17] and the references

therein for more details about the related studies.

2. Preliminaries

An n-dimensional differentiable manifold M with structure (ϕ, ζ, ν, g) is said to be a Lorentzian

almost paracontact metric manifold, if it admits a (1, 1)-tensor field ϕ, a contravariant vector field ζ,

a 1-form ν and a Lorentzian metric g satisfying

ν(ζ) + 1 = 0, (2.1)

ϕ2E = E + ν(E)ζ, (2.2)

ϕζ = 0, ν(ϕE) = 0,

g(ϕE,ϕF ) = g(E, F ) + ν(E)ν(F ),
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g(E, ζ) = ν(E), (2.3)

ϕ(E, F ) = ϕ(F,E) = g(E,ϕF )

for any vector fields E, F ∈ χ(M), where χ(M) is the Lie algebra of vector fields on M.

If ζ is a killing vector field, the (para) contact structure is called a K-(para) contact. In such a case,

we have

∇Eζ = ϕE.

Recently, the authors Haseeb and Prasad defined and studied the following notion:

Definition 2.1. A Lorentzian almost paracontact manifold M is called Lorentzian para-Kenmostu

manifold if [11]

(∇Eϕ)F = −g(ϕE, F )ζ − ν(F )ϕE

for any E, F on M.

In an LP -Kenmostu manifold, we have

∇Eζ = −E − ν(E)ζ, (2.4)

(∇Eν)F = −g(E, F )− ν(E)ν(F ), (2.5)

where ∇ denotes the Levi-Civita connection respecting to the Lorentzian metric g.

Furthermore, in an LP -Kenmotsu manifold, the following relations hold [11]:

g(R(E, F )G, ζ) = ν(R(E, F )G) = g(F,G)ν(E)− g(E,G)ν(F ),

R(ζ, E)F = −R(E, ζ)F = g(E, F )ζ − ν(F )E,

R(E, F )ζ = ν(F )E − ν(E)F,

R(ζ, E)ζ = E + ν(E)ζ, (2.6)

S(E, ζ) = (n − 1)ν(E), S(ζ, ζ) = −(n − 1), (2.7)

Qζ = (n − 1)ζ,

for any E, F, G ∈ χ(M), where R,S and Q represent the curvature tensor, the Ricci tensor and the

Q Ricci operator, respectively.

Definition 2.2. [19] An LP -Kenmotsu manifold M is said to be ν-Einstein manifold if its S( 6= 0) is

of the form

S(E, F ) = ag(E, F ) + bν(E)ν(F ),

where a and b are smooth functions on M. In particular, if b = 0, then M is termed as an Einstein

manifold.
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Remark 2.1. [12] In an LP -Kenmotsu manifold of n-dimension, S is of the form

S(E, F ) = (
r

n − 1
− 1)g(E, F ) + (

r

n − 1
− n)ν(E)ν(F ), (2.8)

where r is the scalar curvature of the manifold.

Lemma 2.1. In an n-dimensional LP -Kenmotsu manifold, we have

ζ(r) = 2(r − n(n − 1)), (2.9)

(∇EQ)ζ = QE − (n − 1)E, (2.10)

(∇ζQ)E = 2QE − 2(n − 1)E, (2.11)

for any E on M.

Proof. Equation (2.8) yields

QE = (
r

n − 1
− 1)E + (

r

n − 1
− n)ν(E)ζ. (2.12)

Taking the covariant derivative of (2.12) with respect to F and making use of (2.4) and (2.5), we

lead to

(∇FQ)E =
F (r)

n − 1
(E + ν(E)ζ)− (

r

n − 1
− n)(g(E, F )ζ + ν(E)F + 2ν(E)ν(F )ζ).

By contracting F in the foregoing equation and using trace {F → (∇FQ)E} = 1
2E(r), we find

n − 3

2(n − 1)
E(r) =

{ ζ(r)

n − 1
− (r − n(n − 1))

}
ν(E),

which by replacing E by ζ and using (2.1) gives (2.9). We refer the readers to see [13] for the proof

of (2.10) and (2.11). �

Remark 2.2. From the equation (2.9), it is noticed that if an n-dimensional LP -Kenmotsu manifold

possesses the constant scalar curvature, then r = n(n − 1) and hence (2.8) reduces to S(E, F ) =

(n − 1)g(E, F ). Thus the manifold under consideration is an Einstein manifold.

3. CRYS on LP -Kenmotsu Manifolds

Let the metric of an n-dimensional LP -Kenmotsu manifold be a conformal Ricci-Yamabe soliton,

thus (1.2) holds. By differentiating (1.2) covariantly with resprct to G, we have

(∇G£Kg)(E, F ) = −2σ(∇GS)(E, F ) + ρ(Gr)g(E, F ). (3.1)

Since ∇g = 0, then the following formula [18]

(£K∇Eg −∇E£Kg −∇[K,E]g)(F,G) = −g((£K∇)(E, F ), G)− g((£K∇)(E,G), F )

turns to

(∇E£Kg)(F,G) = g((£K∇)(E, F ), G) + g((£K∇)(E,G), F ).
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Since the operator £K∇ is symmetric, therefore we have

2g((£K∇)(E, F ), G) = (∇E£Kg)(F,G) + (∇F£Kg)(E,G)− (∇G£Kg)(E, F ),

which by using (3.1) takes the form

2g((£K∇)(E, F ), G) = −2σ[(∇ES)(F,G) + (∇FS)(G,E)− (∇GS)(E, F )]

+ρ[(Er)g(F,G) + (F r)g(G,E)− (Gr)g(E, F )]. (3.2)

Putting F = ζ in (3.2) and using (2.3), we find

2g((£K∇)(E, ζ), G) = −2σ[(∇ES)(ζ, G) + (∇ζS)(G,E)− (∇GS)(E, ζ)]

+ρ[(Er)ν(G) + 2(r − n(n − 1))g(E,G)− (Gr)ν(E)]. (3.3)

By virtue of (2.10) and (2.11), (3.3) leads to

2g((£K∇)(E, ζ), G) = −4σ[S(E,G)− (n − 1)g(E,G)]

+ρ[(Er)ν(G) + 2(r − n(n − 1))g(E,G)− (Gr)ν(E)].

By eliminating G from the foregoing equation, we have

2(£K∇)(F, ζ) = ρg(Dr, F )ζ − ρ(Dr)ν(F )− 4σQF (3.4)

+[4σ(n − 1) + 2ρ(r − n(n − 1))]F.

If we take r as constant, then from (2.9) it follows that r = n(n − 1), and hence (3.4) reduces to

(£K∇)(F, ζ) = −2σQF + 2σ(n − 1)F. (3.5)

Taking covariant derivative of (3.5) with respect to E, we have

(∇E£K∇)(F, ζ) = (£K∇)(F,E)− 2σν(E)[QF − (n − 1)F ] (3.6)

− 2σ(∇EQ)F.

Again from [18], we have

(£KR)(E, F )G = (∇E£K∇)(F,G)− (∇F£K∇)(E,G),

which by putting G = ζ and using (3.6) takes the form

(£KR)(E, F )ζ = 2σν(F )(QE − (n − 1)E)− 2σν(E)(QF − (n − 1)F ) (3.7)

−2σ((∇EQ)F − (∇FQ)E).

Putting F = ζ in (3.7) then using (2.1), (2.2), (2.10) and (2.11), we arrive at

(£KR)(E, ζ)ζ = 0. (3.8)

The Lie derivative of (2.6) along K leads to

(£KR)(E, ζ)ζ − g(E,£Kζ)ζ + 2ν(£Kζ)E = −(£Kν)(E)ζ. (3.9)
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From (3.8) and (3.9), we have

(£Kν)(E)ζ = −2ν(£Kζ)E + g(E,£Kζ)ζ. (3.10)

Taking the Lie derivative of g(E, ζ) = ν(E), we find

(£Kν)(E) = g(E,£Kζ) + (£Kg)(E, ζ). (3.11)

By putting F = ζ in (1.2) and using (2.7), we have

(£Kg)(E, ζ) = −{2σ(n − 1) + 2Λ− ρn(n − 1)− (p +
2

n
)}ν(E), (3.12)

where r = n(n − 1) being used.

Taking the Lie derivative of g(ζ, ζ) = −1 along K we lead to

(£Kg)(ζ, ζ) = −2ν(£Kζ). (3.13)

From (3.12) and (3.13), we find

ν(£Kζ) = −{σ(n − 1) + Λ−
ρn(n − 1)

2
−

1

2
(p +

2

n
)}. (3.14)

Now combining the equations (3.10), (3.11), (3.12) and (3.14), we find

Λ =
ρn(n − 1)

2
− σ(n − 1) +

1

2
(p +

2

n
). (3.15)

Thus we have

Theorem 3.1. Let (M, g) be an n-dimensional LP -Kenmotsu manifold admitting CRYS with constant

scalar curvature tensor, then Λ = ρn(n−1)
2 − σ(n − 1) + 1

2 (p + 2
n ).

Corollary 3.1. Let the metric of n-dimensional LP -Kenmotsu manifold is CRYS. Then we have

Values of σ, ρ Soliton type Soliton constant
CRYS to be expanding,

shrinking or steady

σ = 1, ρ = 0
conformal Ricci

soliton

Λ = 1
2

(p+ 2
n

)−(n−
1)

CRYS is shrinking, steady

and expanding if p >
2(n2−n−1)

n
, p =

2(n2−n−1)
n

and p < 2(n2−n−1)
n

, resp.

σ = 0, ρ = 1
conformal Yam-

abe soliton

Λ = 1
2

(p + 2
n

) +
n(n−1)

2

CRYS is shrinking, steady

and expanding if p <
−(n3−n2+2)

n
, p =

−(n3−n2+2)
n

and p > −(n3−n2+2)
n

, resp.

σ = 1, ρ = −1
conformal Ein-

stein soliton

Λ = 1
2

(p + 2
n

) −
(n−1)(n+2)

2

CRYS is shrinking,

steady and expand-

ing if p <
(n+1)(n2−2)

n
,

p =
(n+1)(n2−2)

n
and

p >
(n+1)(n2−2)

n
, resp.
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4. Gradient CRYS on LP -Kenmotsu Manifolds

Let M be an n-dimensional LP -Kenmotsu manifold with g as a gradient CRYS. Then equation

(1.3) can be written as

∇EDv + σQE + (Λ−
ρr

2
−

1

2
(p +

2

n
))E = 0, (4.1)

for all vector fields E on M, where D denotes the gradient operator of g. Taking the covariant

derivative of (4.1) with respect to F , we have

∇F∇EDv = −σ{(∇FQ)E +Q(∇FE)}+ ρ
F (r)

2
E (4.2)

−(Λ−
ρr

2
−

1

2
(p +

2

n
))∇FE.

Interchanging E and F in (4.2), we lead to

∇E∇FDv = −σ{(∇EQ)F +Q(∇EF )}+ ρ
E(r)

2
F (4.3)

−(Λ−
ρr

2
−

1

2
(p +

2

n
))∇EF.

By making use of (4.1)-(4.3), we find

R(E, F )Dv = σ{(∇FQ)E − (∇EQ)F}+
ρ

2
{E(r)F − F (r)E}. (4.4)

Now from (2.8), we find

QE = (
r

n − 1
− 1)E + (

r

n − 1
− n)ν(E)ζ,

which on taking covariant derivative with repect to F leads to

(∇FQ)E =
F (r)

n − 1
(E + ν(E)ζ)− (

r

n − 1
− n)(g(E, F )ζ (4.5)

+2ν(E)ν(F )ζ + ν(E)F ).

By using (4.5) in (4.4), we have

R(E, F )Dv =
(n − 1)ρ− 2σ

2(n − 1)
{E(r)F − F (r)E}+

σ

n − 1
{F (r)ν(E)ζ − E(r)ν(F )ζ}

−σ(
r

n − 1
− n)(ν(E)F − ν(F )E). (4.6)

Contracting forgoing equation along E gives

S(F,Dv) = −
{(n − 1)2ρ− 2σ(n − 2)

2(n − 1)

}
F (r) (4.7)

+
σ(n − 3)(r − n(n − 1))

n − 1
ν(F ).

From the equation (2.8), we have

S(F,Dv) = (
r

n − 1
− 1)F (v) + (

r

n − 1
− n)ν(F )ζ(v). (4.8)
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Now by equating (4.7) and (4.8), then putting F = ζ and using (2.1), (2.9), we find

ζ(v) =
r − n(n − 1)

n − 1
{σ − (n − 1)ρ}. (4.9)

Taking the inner product of (4.6) with ζ, we get

F (v)ν(E)− E(v)ν(F ) =
ρ

2
{E(r)ν(F )− F (r)ν(E)},

which by replacing E by ζ then using (2.9) and (4.9), we infer

F (v) = −
σ(r − n(n − 1))

n − 1
ν(F )−

ρ

2
F (r). (4.10)

If we take r as constant, then from Remark 2.5, we get r = n(n−1). Thus (4.10) leads to F (v) = 0.

This implies that v is constant. Thus the soliton under the consideration is trivial. Hence we state:

Theorem 4.1. If the metric of an n-dimensional LP -Kenmotsu manifold of constant scalar curvature

tensor admitting a special type of vector field is gradient CRYS, then the soliton is trivial.

For v constant, (1.3) turns to

σQE = −(Λ−
ρr

2
−

1

2
(p +

2

n
))E,

which leads to

S(E, F ) = −
1

σ
(Λ−

ρn(n − 1)

2
−

1

2
(p +

2

n
))g(E, F ), σ 6= 0. (4.11)

By putting E = F = ζ in (4.11) and using (2.7), we obtain

Λ =
ρn(n − 1)

2
− σ(n − 1) +

1

2
(p +

2

n
). (4.12)

Corollary 4.1. If an n-dimensional LP -Kenmotsu manifold admits a gradient CRYS with the constant

scalar curvature, then the manifold under the consideration is an Einstein manifold and Λ = ρn(n−1)
2 −

σ(n − 1) + 1
2 (p + 2

n ).

5. Example

We consider the 5-dimensional manifold M5 =
{

(x1, x2, x3, x4, x5) ∈ R5 : x5 > 0
}
, where

(x1, x2, x3, x4, x5) are the standard coordinates in R5. Let %1, %2, %3, %4 and %5 be the vector fields on

M5 given by

%1 = ex5
∂

∂x1
, %2 = ex5

∂

∂x2
, %3 = ex5

∂

∂x3
, %4 = ex5

∂

∂x4
, %5 =

∂

∂x5
= ζ,

which are linearly independent at each point of M5. Let g be the Lorentzian metric defined by

g(%i , %i) = 1, for 1 ≤ i ≤ 4 and g(%5, %5) = −1,

g(%i , %j) = 0, for i 6= j, 1 ≤ i , j ≤ 5.
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Let ν be the 1-form defined by ν(E) = g(E, %5) = g(E, ζ) for all E ∈ χ(M5), and let ϕ be the

(1, 1)-tensor field defined by

ϕ%1 = −%2, ϕ%2 = −%1, ϕ%3 = −%4, ϕ%4 = −%3, ϕ%5 = 0.

By applying linearity of ϕ and g, we have

ν(ζ) = g(ζ, ζ) = −1, ϕ2E = E + ν(E)ζ and g(ϕE,ϕF ) = g(E, F ) + ν(E)ν(F )

for all E, F ∈ χ(M5). Thus for %5 = ζ, the structure (ϕ, ζ, ν, g) defines a Lorentzian almost paracon-

tact metric structure on M5. Then we have

[%i , %j ] = −%i , for 1 ≤ i ≤ 4, j = 5,

[%i , %j ] = 0, otherwise.

By using Koszul’s formula, we can easily find we obtain

∇%i%j =


−%5, 1 ≤ i = j ≤ 4,

−%i , 1 ≤ i ≤ 4, j = 5,

0, otherwise.

Also one can easily verify that

∇Eζ = −E − η(E)ζ and (∇Eϕ)F = −g(ϕE, F )ζ − ν(F )ϕE.

Therefore, the manifold is an LP -Kenmotsu manifold.

From the above results, we can easily obtain the non-vanishing components of R as follows:

R(%1, %2)%1 = −%2, R(%1, %2)%2 = %1, R(%1, %3)%1 = −%3, R(%1, %3)%3 = %1,

R(%1, %4)%1 = −v4, R(%1, %4)%4 = %1, R(%1, %5)%1 = −%5, R(%1, %5)%5 = −%1,

R(%2, %3)%2 = −%3, R(%2, %3)%3 = %2, R(%2, %4)%2 = −%4, R(%2, %4)%4 = %2,

R(%2, %5)%2 = −%5, R(%2, %5)%5 = −%2, R(%3, %4)%3 = −%4, R(%3, %4)%4 = %3,

R(%3, %5)%3 = −%5, R(%3, %5)%5 = −%3, R(%4, %5)%4 = −%5, R(%4, %5)%5 = −%4.

Also, we calculate the Ricci tensors as follows:

S(%1, %1) = S(%2, %2) = S(%3, %3) = S(%4, %4) = 4, S(%5, %5) = −4.

Therefore, we have

r = S(%1, %1) + S(%2, %2) + S(%3, %3) + S(%4, %4)− S(%5, %5) = 20.

Now by taking Dv = (%1v)%1 + (%2v)%2 + (%3v)%3 + (%4v)%4 + (%5v)%5, we have

∇%1Dv = (%1(%1v)− (%5v))%1 + (%1(%2v))%2 + (%1(%3v))%3 + (%1(%4v))%4

+(%1(%5v)− (%1v))%5,
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∇%2Dv = (%2(%1v))%1 + (%2(%2v)− (%5v))%2 + (%2(%3v))%3 + (%2(%4v))%4

+(%2(%5v)− (%2v))%5,

∇%3Dv = (%3(%1v))%1 + (%3(%2v))%2 + (%3(%3v)− (%5v))%3 + (%3(%4v))%4

+(%3(%5v)− (%3v))%5,

∇%4Dv = (%4(%1v))%1 + (%4(%2v))%2 + (%4(%3v))%3 + (%4(%4v)− (%5v))%4

+(%4(%5v)− (%4v))%5,

∇%5Dv = (%5(%1v))%1 + (%5(%2v))%2 + (%5(%3v))%3 + (%5(%4v))%4 + (%5(%5v))%5.

Thus by virtue of (4.1), we obtain

%1(%1v)− %5v = −(Λ + 4σ − 10ρ− 1
2 (p + 2

5 )),

%2(%2v)− %5v = −(Λ + 4σ − 10ρ− 1
2 (p + 2

5 )),

%3(%3v)− %5v = −(Λ + 4σ − 10ρ− 1
2 (p + 2

5 )),

%4(%4v)− %5v = −(Λ + 4σ − 10ρ− 1
2 (p + 2

5 )),

%5(%5v) = −(Λ + 4σ − 10ρ− 1
2 (p + 2

5 )),

%1(%2v) = %1(%3v) = %1(%4v) = 0,

%2(%1v) = %2(%3v) = %2(%4v) = 0,

%3(%1v) = %3(%2v) = %3(%4v) = 0,

%4(%1v) = %4(%2v) = %4(%3v) = 0,

%1(%5v)− (%1v) = %2(%5v)− (%2v) = 0,

%3(%5v)− (%3v) = %4(%5v)− (%4v) = 0.

(5.1)

Thus the equations in (5.1) are respectively amounting to

e2x5
∂2v

∂x2
1

−
∂v

∂x5
= −(Λ + 4σ − 10ρ−

1

2
(p +

2

5
)),

e2x5
∂2v

∂x2
2

−
∂v

∂x5
= −(Λ + 4σ − 10ρ−

1

2
(p +

2

5
)),

e2x5
∂2v

∂x2
3

−
∂v

∂x5
= −(Λ + 4σ − 10ρ−

1

2
(p +

2

5
)),

e2x5
∂2v

∂x2
4

−
∂v

∂x5
= −(Λ + 4σ − 10ρ−

1

2
(p +

2

5
)),

∂2v

∂x2
5

= −(Λ + 4σ − 10ρ−
1

2
(p +

2

5
)),

∂2v

∂x1∂x2
=

∂2v

∂x1∂x3
=

∂2v

∂x1∂x4
=

∂2v

∂x2∂x3
=

∂2v

∂x2∂x4
=

∂2v

∂x3∂x4
= 0,
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ex5
∂2v

∂x5∂x1
+
∂v

∂x1
= ex5

∂2v

∂x5∂x2
+
∂v

∂x2
= ex5

∂2v

∂x5∂x3
+
∂v

∂x3
= ex5

∂2v

∂x5∂x4
+
∂v

∂x4
= 0.

From the above equations it is observed that v is constant for Λ = −4σ + 10ρ + 1
2 (p + 2

5 ). Hence

equation (4.1) is satisfied. Thus, g is a gradient RYS with the soliton vector field K = Dv , where v

is constant and Λ = −4σ + 10ρ+ 1
2 (p + 2

5 ). Thus, Theorem 4.1 is verified.
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