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Abstract. In the current note, we study Lorentzian para-Kenmotsu (in brief, L P-Kenmotsu) manifolds
admitting conformal Ricci-Yamabe solitons (CRYS) and gradient conformal Ricci-Yamabe soliton (gra-

dient CRYS). At last by constructing a 5-dimensional non-trivial example we illustrate our result.

1. Introduction

As a generalization of the classical Ricci flow [8], the concept of conformal Ricci flow was introduced

by Fischer [5], which is defined on an n-dimensional Riemannian manifold M by the equations

09 g _
i =2(S + n) —pg, r(g)=-1,

where p defines a time dependent non-dynamical scalar field (also called the conformal pressure), g is
the Riemannian metric; r and S represent the scalar curvature and the Ricci tensor of M, respectively.
The term —pg plays a role of constraint force to maintain r in the above equation.

In [1], the authors Basu and Bhattacharyya proposed the concept of conformal Ricci soliton on M

and is defined by
2
£kg+25+ 2N =(p+))g =0,

where £ represents the Lie derivative operator along the smooth vector field K on M and A € R

(the set of real numbers).
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Very recently, a scalar combination of Ricci and Yamabe flows was proposed by the authors Giiler
and Crasmareanu [7], this advanced class of geometric flows called Ricci-Yamabe (RY) flow of type

(0, p) and is defined by

2 6(t) +205(g(1)) + or()a(t) =0, 9(0) = go

for some scalars o and p. A solution to the RY flow is called Ricci-Yamabe soliton (RYS) if it depends
only on one parameter group of diffeomorphism and scaling. A Riemannian (or semi-Riemannian)
manifold M is said to have a RYS if [9, 10]

£xg+20S+ (2N —pr)g =0. (1.1)

A Riemannian (or semi-Riemannian) manifold M is said to have a conformal Ricci-Yamabe soliton
(CRYS) if [20]

2
£Kg+205+(2/\—pr—(p—i—E))g:O, (1.2)

where o, p, A\ € R.

If K is the gradient of a smooth function v on M, then (1.2) is called the gradient conformal
Ricci-Yamabe soliton (gradient CRYS) and hence (1.2) turns to

V2vtos+(A-2 L 2ng=o, (1.3)
2 2 n

where V2v is the Hessian of v and is defined by Hessv = VVv.

A CRYS is said to be shrinking, steady or expanding if A < 0,=0 or > 0, respectively. A CRYS is
said to be a
e Conformal Ricci soliton if o =1, p =0,
e Conformal Yamabe soliton if 0 =0, p =1,
e Conformal Einstein soliton if 0 =1,p = —1.

As a continuation of this study, we tried to study CRYS and gradient CRYS in the frame-work of
L P-Kenmotsu manifolds of dimension n. We recommend the papers [2—4,6,13-17] and the references

therein for more details about the related studies.

2. Preliminaries

An n-dimensional differentiable manifold M with structure (¢, {, v, g) is said to be a Lorentzian
almost paracontact metric manifold, if it admits a (1, 1)-tensor field ¢, a contravariant vector field ,

a 1-form v and a Lorentzian metric g satisfying
v(()+1=0, (2.1)
©’E = E+ v(E), (2.2)

©(=0, v(pE)=0,
9(wE, pF) = g(E, F) + v(E)v(F),
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9(E. () = v(E), (2.3)

0(E, F)=w(F,E)=g(E,¢F)

for any vector fields E, F € x(M), where x(M) is the Lie algebra of vector fields on M.

If ¢ is a killing vector field, the (para) contact structure is called a K-(para) contact. In such a case,

we have
Ve( = pE.

Recently, the authors Haseeb and Prasad defined and studied the following notion:

Definition 2.1. A Lorentzian almost paracontact manifold M is called Lorentzian para-Kenmostu
manifold if [11]

(VeQ)F = —g(wE, F)( — v(F)pE
for any E, F on M.

In an LP-Kenmostu manifold, we have
Vel =—-E—-v(E), (2.4)

(Vev)F = —g(E, F) — v(E)v(F), (2.5)

where V denotes the Levi-Civita connection respecting to the Lorentzian metric g.

Furthermore, in an LP-Kenmotsu manifold, the following relations hold [11]:
9(R(E. F)G.¢) = v(R(E, F)G) = g(F, G)v(E) — 9(E, G)v(F),
R(C E)F = —=R(E.Q)F = g(E, F)¢ = v(F)E,

R(E,F) =v(F)E — v(E)F,

R(¢ E)C = E+v(E), (2.6)
S(E.Q) = (n=1w(E), 5(¢.{)=—(n—1), (2.7)
Q¢ = (n—1)C,

for any E, F, G € x(M), where R, S and Q represent the curvature tensor, the Ricci tensor and the

Q@ Ricci operator, respectively.

Definition 2.2. [19] An LP-Kenmotsu manifold M is said to be v-Einstein manifold if its S(# 0) is

of the form
S(E,F)=ag(E,F)+ bv(E)v(F),

where a and b are smooth functions on M. In particular, if b =0, then M is termed as an Einstein

manifold.
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Remark 2.1. [12] In an L P-Kenmotsu manifold of n-dimension, S is of the form
r r
S(E,F):(m—l)g(E, F)—i—(m—n)u(E)u(F), (2.8)
where r is the scalar curvature of the manifold.

Lemma 2.1. /n an n-dimensional L P-Kenmotsu manifold, we have

C(r)y=2(r—n(n—1)), (2.9)
(VEQ)( = QE — (n—1)E, (2.10)
(V¢Q)E = 2QE — 2(n — 1)E, (2.11)
for any E on M.
Proof. Equation (2.8) yields
r r
Taking the covariant derivative of (2.12) with respect to £ and making use of (2.4) and (2.5), we
lead to
F
(VrQE = (B 4 u(E)0) — (s~ m)(9(E, F)C + W(EVF + 20(E)(F)C).

By contracting F in the foregoing equation and using trace {F — (VFQ)E} = %E(r), we find

2(’7,7__31)5(0 = {,f(_r)l — (r—n(n—1))}v(E),

which by replacing E by ¢ and using (2.1) gives (2.9). We refer the readers to see [13] for the proof
of (2.10) and (2.11). O

Remark 2.2. From the equation (2.9), it is noticed that if an n-dimensional L P-Kenmotsu manifold
possesses the constant scalar curvature, then r = n(n — 1) and hence (2.8) reduces to S(E, F) =

(n—1)g(E, F). Thus the manifold under consideration is an Einstein manifold.

3. CRYS on LP-Kenmotsu Manifolds

Let the metric of an n-dimensional LP-Kenmotsu manifold be a conformal Ricci-Yamabe soliton,

thus (1.2) holds. By differentiating (1.2) covariantly with resprct to G, we have
(Ve£kg)(E.F) = —20(VeS)(E F)+p(Gr)g(E. F). (3.1)
Since Vg = 0, then the following formula [18]
(£kVEg —VELK9 — VK 9)(F.G) = —g((£kV)(E. F),G) — 9g((£«kV)(E. G), F)

turns to
(VeLkg)(F.G) =g((£kV)(E. F),G) + 9((£«V)(E. G), F).
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Since the operator £,V is symmetric, therefore we have
29((£xkV)(E, F).G) = (VELK9)(F. G) + (VE£k9)(E, G) = (V6 £kg)(E. F),
which by using (3.1) takes the form
29((£kV)(E. F).G) = —20[(VES)(F.G)+ (VES)(G. E) = (V6S)(E. F)]
+p[(Er)g(F,G) + (Fr)g(G. E) = (Gr)g(E. F)]. (3.2)
Putting F = ¢ in (3.2) and using (2.3), we find
29((£kV)(E.C).G) = —20[(VES)((.G) + (V¢S)GL E) = (V6S)(E Q)]
+p[(Er)v(G) +2(r — n(n—1))g(E,G) = (Gr)v(E)].  (3.3)
By virtue of (2.10) and (2.11), (3.3) leads to
29((£«kV)(E.C).G) = —40[S(E.G)—(n—1)g(E.G)]
+pl(Er)v(G) +2(r — n(n—1))g(E. G) = (Gr)v(E)].
By eliminating G from the foregoing equation, we have
2(£xV)(F.C) = pg(Dr,F)C—p(Dr)v(F) —40QF (3.4)
+[40(n — 1) +2p(r — n(n — 1))]F.
If we take r as constant, then from (2.9) it follows that r = n(n — 1), and hence (3.4) reduces to
(£xV)(F.¢) = —20QF +20(n—1)F. (3.5)
Taking covariant derivative of (3.5) with respect to E, we have
(Ve£kV)(F.Q) = (£xkV)(F E) = 20v(E)[QF — (n—1)F] (3.6)
— 20(VEQ)F.
Again from [18], we have
(£kR)(E.F)G = (Ve£kV)(F,G) = (VF£4V)(E. G),
which by putting G = ¢ and using (3.6) takes the form
(£kR)(E,F)¢ = 20u(F)(QE — (n—1)E) — 20u(E)(QF — (n—1)F) (3.7)
—20((VEQ)F = (VEQ)E).
Putting F = ¢ in (3.7) then using (2.1), (2.2), (2.10) and (2.11), we arrive at
(£kR)(E. ()¢ =0. (3.8)
The Lie derivative of (2.6) along K leads to
(£kR)(E. )¢ — 9(E, £4C)¢ + 20(£KC)E = —(£xv)(E)C. (3.9)
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From (3.8) and (3.9), we have

(£xv)(E)C = —2v(£kQ)E +g(E, £C)C.

Taking the Lie derivative of g(E, () = v(E), we find

By putting F = { in (1.2) and using (2.7), we have

where r = n(n — 1) being used.

(£k9)(E. )

(£xv)(E) = 9(E, £1C) + (£k9)(E. Q).

~{20(n 1)+ 20~ prln—1) = (p+ 2)I(E),

Taking the Lie derivative of g({, () = —1 along K we lead to

(£k9)(¢. ¢) = —2v(£k().

From (3.12) and (3.13), we find

v(£k() = —{o(n-1)+ A -

pon(n—1)
2

1 2
S(p+ )}

Now combining the equations (3.10), (3.11), (3.12) and (3.14), we find

Thus we have

_ pn(n—1)

2

2

o(n—1)+ =(p + %).

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

Theorem 3.1. Let (M, g) be an n-dimensional L P-Kenmotsu manifold admitting CRYS with constant

-1
scalar curvature tensor, then N = % —o(n—1)+3(p+32).

Corollary 3.1. Let the metric of n-dimensional L P-Kenmotsu manifold is CRYS. Then we have

Values of o, p

Soliton type

Soliton constant

CRYS to be expanding,

shrinking or steady

conformal Ricci

A=1(p+2)—(n—

CRYS is shrinking, steady
and expanding if p >

c=1p=0 soliton 1 2(n2;n—1)y p = 2(n2;n—1)
and p < @ resp.

CRYS is shrinking, steady

60 o1 conformal Yam- | N = %(er %) + | and expanding if p <

Bk abe soliton w _("371”2+2), p= _(”3_nnz+2)
and p > M resp.

CRYS is shrinking,

conformal Ein- | A = L(p + 2) — steady and exgand—

g=ie=-1 stein soliton 7(”_1)(”3'2) ’ ng P < %

2 p = 2,

n
2_
p> D) o0,
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4. Gradient CRYS on LP-Kenmotsu Manifolds

Let M be an n-dimensional LP-Kenmotsu manifold with g as a gradient CRYS. Then equation
(1.3) can be written as

1 2
VEDv+0QE—|—(/\—%—§(p+ﬁ))E:O, (4.1)

for all vector fields £ on M, where D denotes the gradient operator of g. Taking the covariant

derivative of (4.1) with respect to F, we have

F(r)

VEVEDy = —0o{(VEQ)E +Q(VEFE)} +p 5 E (4.2)
or 1 2
—(N = 5 E(P + E))VFE-
Interchanging E and F in (4.2), we lead to
VeVEDy = —o{(VEQ)F + Q(VEF)} + PE;r) F (4.3)
or 1 2
~(A=7 =5+ ))VeF.
By making use of (4.1)-(4.3), we find
R(E,F)Dv =0{(VEQ)E — (VEQ)F} + g{E(r)F — F(r)E}. (4.4)
Now from (2.8), we find
QF = (—— — DE+ (- — nw(E),
which on taking covariant derivative with repect to F leads to
(VrQE = TOE L uE) - (L - e F) (45)
+2v(E)v(F)C+ v(E)F).
By using (4.5) in (4.4), we have
R(E., F)Dv W{E(r)F ~ F(NE} + ——{F(NW(E)C — E(Nv(F)}
—~o(——= — N(UE)F ~ v(F)E). (4.6)
Contracting forgoing equation along E gives
n—1)%2p—20(n—
s(F.ov) = —{! 1)287 _Qf)( 2\ F(r) (4.7)
o(n—=3)(r—n(n—1))
+ p— v(F).
From the equation (2.8), we have
r r
S(F,Dv):(n_1 —1)F(v)+(m—n)//(F)C(v). (4.8)
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Now by equating (4.7) and (4.8), then putting F = ¢ and using (2.1), (2.9), we find

_r—n(n—1)
C(V)—?

Taking the inner product of (4.6) with ¢, we get

{o—(n—1)p}. (4.9)

F(v(E) = E(v)v(F) = g{E(f)V(F) — F(nv(E)},

which by replacing E by ¢ then using (2.9) and (4.9), we infer

o(r—n(n—1)) 0
7 (A3

If we take r as constant, then from Remark 2.5, we get r = n(n—1). Thus (4.10) leads to F(v) = 0.

F(v)=— F(r). (4.10)

This implies that v is constant. Thus the soliton under the consideration is trivial. Hence we state:

Theorem 4.1. /f the metric of an n-dimensional L P-Kenmotsu manifold of constant scalar curvature

tensor admitting a special type of vector field is gradient CRYS, then the soliton is trivial.

For v constant, (1.3) turns to

1 2
N

E=-— - -)E
0QE = ~(A =5~ 2(p+ D)E,
which leads to
1 on(n—1 1 2
S(E,F):——(/\—Q—f(p—i—f))g(E, F), o#0. (4.11)
o 2 2 n
By putting E = F = in (4.11) and using (2.7), we obtain
_pn(n—1) 1 2
A= 5 o(n 1)+2(p—|—n). (4.12)
Corollary 4.1. If an n-dimensional L P-Kenmotsu manifold admits a gradient CRYS with the constant
scalar curvature, then the manifold under the consideration is an Einstein manifold and \ = w -
o(n—1)+3(p+32).
5. Example
We consider the 5-dimensional manifold M° = {(x1,%, X3, %, x5) € R®:xs >0}, where

(x1, X0, X3, X4, X5 ) are the standard coordinates in R®. Let g1, 02, 03, 04 and gs be the vector fields on
M?® given by
0 0 0 0

0
:exsi’ :exsi' :eX57’ :eX57, _
01 ax1 02 9% 03 O3 04 Oxa 05 Ox

= C’
which are linearly independent at each point of M®. Let g be the Lorentzian metric defined by

g(oi,0))=1, for 1<i<4 and g(gs, 05)=—-1,

g(ei0)=0,  for i#j 1</ <5
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Let v be the 1-form defined by v(E) = g(E,es) = g(E.¢) for all E € x(M?), and let @ be the
(1, 1)-tensor field defined by

PO1 = —02, P2 = —01, PO3 = —04, P4 = —03, Y5 = 0.
By applying linearity of ¢ and g, we have
v(¢) = 9(¢.¢) = =1, 9’E = E+v(E)¢ and g(pE, oF) = g(E, F) + v(E)v(F)

for all E, F € x(M®). Thus for g5 = ¢, the structure (¢, , v, g) defines a Lorentzian almost paracon-

tact metric structure on M°. Then we have
loi,0j]] = —0i, for 1<i<4,j=5,
[0i,0]] =0, otherwise.

By using Koszul's formula, we can easily find we obtain

IN
~

05, 1<i=j
1 <4,j=05,

IN
IA

Vo 0j =4 —0i, 1
0, otherwise.
Also one can easily verify that
Ve¢=-E—-n(E){ and (Vep)F =—g(wE, F)(—v(F)pE.

Therefore, the manifold is an L P-Kenmotsu manifold.

From the above results, we can easily obtain the non-vanishing components of R as follows:
R(e1, 02)e1 = —02, R(e1,02)02 = 01, R(e1,03)01 = —e3, R(e1,03)03 = 01,
R(e1. 04)e1r = —va, R(e1.04)0a = 01, R(e1.05)e1 = —es, R(e1, 05)05 = —o1,
R(02,03)02 = —e3, R(02,03)03 = 02, R(02, 04)02 = —04, R(02,04)04 = 02,
R(02, 05)02 = —05, R(02,05)05 = —02, R(03,04)03 = —04, R(03,04)04 = 03,
R(es3, 05)e3 = —05, R(e3,05)05 = —03, R(04,05)04 = —0s, R(ea4, 05)05 = —04.
Also, we calculate the Ricci tensors as follows:
S(01,01) = 5(02,02) = S(03,03) = S(04,04) =4, S(05,05) = —4.
Therefore, we have
r=5(o1,01) + S(02, 02) + S(e3. 03) + S(e4, 04) — S(os, 05) = 20.
Now by taking Dv = (o1v)e1 + (02v)e2 + (e3v)e3s + (04v)e4 + (05v)0es5, we have
Vo Dv = (e1(e1v) — (esv))er + (e1(e2v))e2 + (e1(e3v))es + (e1(eav))es

+(e1(esv) — (01v))es,
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VeDv = (02(01v))o1 + (02(02v) — (05v)) 02 + (02(03V))03 + (2(04V))0a

+(02(05v) — (02v))0s,

VosDv = (e3(01v))e1 + (e3(02v))02 + (03(03v) — (05Vv))03 + (03(04V))04

+(e3(esv) — (e3v))os,

Vo Dv = (04(01v))o1 + (0a(02v))02 + (04(03v))03 + (04(04v) — (05V)) 04

+(e4(05v) — (04V))0s,

Vs Dv = (e5(01v))e1 + (es5(02v))e2 + (e5(e3v))es + (e5(0aVv))ea + (e5(05Vv))0s.

Thus by virtue of (4.1), we obtain

01(01v) — osv = —(A+40 — 10p — 3(p + 2)),

02(02v) — 05V = —(A+ 40 — 100 — 3(p + 3)),

03(03v) — osv = —(A+ 40— 10p — 3(p + 2)),

04(0av) — osv = —(A+ 40 — 100 — 3(p+ 2)),

os(osv) = —(A+40 —10p— 2(p + 2)),

01(e2v) = 01(e3v) = e1(0av) = 0, (5.1)
02(e1v) = 02(e3v) = 02(04v) =0,

03(e1v) = 03(e2v) = e3(04v) =0,

04(01v) = 04(02v) = e4(03v) =0,

01(osv) — (o1v) = 02(05v) — (02v) =0,

03(osv) — (e3v) = 04(osv) — (0av) = 0.
Thus the equations in (5.1) are respectively amounting to

2 1 2
250 L OV (At 40100~ L(p+ o),

aixl2 Oxs 5
2X522X\22/ _ ;‘:5 = —(A+40—10p— %(er %)),
szZig _ ng_r, = —(A+ 40— 10p - %(p+ %)),
%szg _ ngs — —(A+40—10p-— %(p+ %)),

Zig = —(A+40 —10p— %(p+ %)),
82y o%v o%v o%v v 0%v

8X16X2 - 8X13X3 - 8X18X4 - 8X25‘X3 - 5‘X28X4 - 8X38X4 =0
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X5 62‘/ +ﬂ: X5 a2V +ﬂ: X5 62V +ﬂ: X5 62\/ +&:O
8X58X1 aXl 8X58X2 8xz 6X56X3 @X3 8X56X4 6X4
From the above equations it is observed that v is constant for A = —40 4 10p + %(p + %). Hence

equation (4.1) is satisfied. Thus, g is a gradient RYS with the soliton vector field K = Dv, where v
is constant and A = —40 + 10p + 4(p + 2). Thus, Theorem 4.1 is verified.
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