
International Journal of Analysis and Applications
ISSN 2291-8639
Volume 5, Number 1 (2014), 45-55
http://www.etamaths.com

INEQUALITIES FOR CO-ORDINATED m−CONVEX FUNCTIONS

VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS

ÇETİN YILDIZ1,∗, MEVLÜT TUNÇ2, AND HAVVA KAVURMACI1

Abstract. In this paper, we prove some new inequalities of Hadamard-type

for m−convex functions on the co-ordinates via Riemann-Liouville fractional

integrals.

1. INTRODUCTION

Let f : I ⊆ R→ R be a convex function defined on the interval I of real numbers
and a < b. The following double inequality;

f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

2

is well known in the literature as Hadamard’s inequality. Both inequalities hold
in the reversed direction if f is concave.

In [7], Dragomir defined convex functions on the co-ordinates as following:

Definition 1. Let us consider the bidimensional interval ∆ = [a, b] × [c, d] in
R2 with a < b, c < d. A function f : ∆ → R will be called convex on the co-
ordinates if the partial mappings fy : [a, b]→ R, fy(u) = f(u, y) and fx : [c, d]→ R,
fx(v) = f(x, v) are convex where defined for all y ∈ [c, d] and x ∈ [a, b]. Recall that
the mapping f : ∆→ R is convex on ∆ if the following inequality holds,

f(λx+ (1− λ)z, λy + (1− λ)w) ≤ λf(x, y) + (1− λ)f(z, w)

for all (x, y), (z, w) ∈ ∆ and λ ∈ [0, 1].

In [7], Dragomir established the following inequalities of Hadamard’s type for
co-ordinated convex functions on a rectangle from the plane R2.
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Theorem 1. Suppose that f : ∆ = [a, b]× [c, d]→ R is convex on the co-ordinates
on ∆. Then one has the inequalities;

f

(
a+ b

2
,
c+ d

2

)
(1.1)

≤ 1

2

[
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)
dy

]

≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y)dxdy

≤ 1

4

[
1

(b− a)

∫ b

a

f(x, c)dx+
1

(b− a)

∫ b

a

f(x, d)dx

+
1

(d− c)

∫ d

c

f(a, y)dy +
1

(d− c)

∫ d

c

f(b, y)dy

]

≤ f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
.

The above inequalities are sharp.

Similar results can be found in [7]-[12].
In [17], Toader defined m−convex functions as following:

Definition 2. The function f : [0, b] → R, b > 0 is said to be m−convex, where
m ∈ [0, 1], if we have

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y)

for all x, y ∈ [0, b] and t ∈ [0, 1].

Denote by Km(b) the class of all m−convex functions on [0, b] for which f(0) ≤ 0.
Obviously, if we choose m = 1, we have ordinary convex functions on [0, b].

In [10], Özdemir et al. defined co-ordinated m−convex functions as following:

Definition 3. Let us consider the bidimensional interval ∆ = [0, b] × [0, d] in
[0,∞)2. The mapping f : ∆→ R is m−convex on ∆ if

f(tx+ (1− t)z, ty +m(1− t)w) ≤ tf(x, y) +m(1− t)f(z, w)

holds for all (x, y), (z, w) ∈ ∆ and t ∈ [0, 1], b, d > 0 and for some fixed m ∈ [0, 1].

In [16], Sarıkaya et al. proved some Hadamard’s type inequalities for co-ordinated
convex functions as followings:

Theorem 2. Let f : ∆ ⊂ R2 → R be a partial differentiable mapping on ∆ :=

[a, b] × [c, d] in R2 with a < b and c < d. If
∣∣∣ ∂2f
∂t∂s

∣∣∣ is a convex function on the

co-ordinates on ∆, then one has the inequalities:

(1.2) ∣∣∣∣∣f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
+

1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y)dxdy −A

∣∣∣∣∣
≤ (b− a)(d− c)

16


∣∣∣ ∂2f
∂t∂s

∣∣∣ (a, c) +
∣∣∣ ∂2f
∂t∂s

∣∣∣ (a, d) +
∣∣∣ ∂2f
∂t∂s

∣∣∣ (b, c) +
∣∣∣ ∂2f
∂t∂s

∣∣∣ (b, d)

4


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where

A =
1

2

[
1

(b− a)

∫ b

a

[f(x, c) + f(x, d)] dx+
1

(d− c)

∫ d

c

[f(a, y)dy + f(b, y)] dy

]
.

Theorem 3. Let f : ∆ ⊂ R2 → R be a partial differentiable mapping on ∆ :=

[a, b]× [c, d] in R2 with a < b and c < d. If
∣∣∣ ∂2f
∂t∂s

∣∣∣q , q > 1, is a convex function on

the co-ordinates on ∆, then one has the inequalities:

(1.3)∣∣∣∣∣f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
+

1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y)dxdy −A

∣∣∣∣∣
≤ (b− a)(d− c)

4 (p+ 1)
2
p


∣∣∣ ∂2f
∂t∂s

∣∣∣q (a, c) +
∣∣∣ ∂2f
∂t∂s

∣∣∣q (a, d) +
∣∣∣ ∂2f
∂t∂s

∣∣∣q (b, c) +
∣∣∣ ∂2f
∂t∂s

∣∣∣q (b, d)

4


1
q

where

A =
1

2

[
1

(b− a)

∫ b

a

[f(x, c) + f(x, d)] dx+
1

(d− c)

∫ d

c

[f(a, y)dy + f(b, y)] dy

]
and 1

p + 1
q = 1.

Theorem 4. Let f : ∆ ⊂ R2 → R be a partial differentiable mapping on ∆ :=

[a, b]× [c, d] in R2 with a < b and c < d. If
∣∣∣ ∂2f
∂t∂s

∣∣∣q , q ≥ 1, is a convex function on

the co-ordinates on ∆, then one has the inequalities:

(1.4)∣∣∣∣∣f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
+

1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y)dxdy −A

∣∣∣∣∣
≤ (b− a)(d− c)

16


∣∣∣ ∂2f
∂t∂s

∣∣∣q (a, c) +
∣∣∣ ∂2f
∂t∂s

∣∣∣q (a, d) +
∣∣∣ ∂2f
∂t∂s

∣∣∣q (b, c) +
∣∣∣ ∂2f
∂t∂s

∣∣∣q (b, d)

4


1
q

where

A =
1

2

[
1

(b− a)

∫ b

a

[f(x, c) + f(x, d)] dx+
1

(d− c)

∫ d

c

[f(a, y)dy + f(b, y)] dy

]
.

We give some necessary definitions and mathematical preliminaries of fractional
calculus theory which are used throughout this paper.

Definition 4. Let f ∈ L1[a, b]. The Riemann-Liouville integrals Jαa+f and Jαb−f of
order α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a

and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b

where Γ(α) =
∫∞

0
e−tuα−1du, here is J0

a+f(x) = J0
b−f(x) = f(x).
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In the case of α = 1, the fractional integral reduces to the classical integral.
Properties of this operator can be found in the references [3]-[?].

Throughout of this paper, we will use the following notation:

B =
Γ (α+ 1) Γ (β + 1)

4 (b− a)
α

(d− c)β
[
Jα,βb−,d−f (a, c) + Jα,βa+,d−f (b, c) + Jα,βb−,c+f (a, d) + Jα,βa+,c+f (b, d)

]
− Γ (β + 1)

4 (d− c)β
[
Jβd−f (a, c) + Jβd−f (b, c) + Jβc+f (b, d) + Jβc+f (a, d)

]
− Γ (α+ 1)

4 (b− a)
α [Jαb−f (a, d) + Jαb−f (a, c) + Jαa+f (b, d) + Jαa+f (b, c)]

where

Jα,βb−,d−f (a, c) =
1

Γ (α) Γ (β)

b∫
a

d∫
c

(x− a)
α−1

(y − c)β−1
f (x, y) dydx

Jα,βa+,d−f (b, c) =
1

Γ (α) Γ (β)

b∫
a

d∫
c

(x− a)
α−1

(d− y)
β−1

f (x, y) dydx

Jα,βb−,c+f (a, d) =
1

Γ (α) Γ (β)

b∫
a

d∫
c

(b− x)
α−1

(y − c)β−1
f (x, y) dydx

Jα,βa+,c+f (b, d) =
1

Γ (α) Γ (β)

b∫
a

d∫
c

(b− x)
α−1

(d− y)
β−1

f (x, y) dydx.

The main purpose of this paper is to establish inequalities of Hadamard-type
inequalities for m−convex functions on the co-ordinates via Riemann-Liouville frac-
tional integrals by using a new Lemma and fairly elemantery analysis.

2. MAIN RESULTS

To prove our main result, we need the following Lemma:

Lemma 1. Let f : ∆ = [a, b]× [c, d]→ R be a twice partial differentiable mapping

on ∆ = [a, b] × [c, d] . If ∂2f
∂t∂s ∈ L (∆) and α, β > 0, a, c ≥ 0, then the following

equality holds:

(2.1)

f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
+B

=
(b− a) (d− c)

4

1∫
0

1∫
0

[(1− t)α − tα]
[
(1− s)β − sβ

] ∂2f

∂t∂s
(ta+ (1− t) b, sc+ (1− s) d) dsdt.
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Proof. Integration by parts, we can write

K =

1∫
0

1∫
0

[(1− t)α − tα]
[
(1− s)β − sβ

] ∂2f

∂t∂s
(ta+ (1− t) b, sc+ (1− s) d) dsdt

=

1∫
0

[
(1− s)β − sβ

] 1∫
0

(1− t)α ∂2f

∂t∂s
(ta+ (1− t) b, sc+ (1− s) d) dt

−
1∫

0

tα
∂2f

∂t∂s
(ta+ (1− t) b, sc+ (1− s) d) dt

 ds
=

1

b− a


1∫

0

[
(1− s)β − sβ

] [∂f
∂s

(b, sc+ (1− s) d) +
∂f

∂s
(a, sc+ (1− s) d)

− α
1∫

0

(1− t)α−1 ∂f

∂s
(ta+ (1− t) b, sc+ (1− s) d) dt

−α
1∫

0

tα−1 ∂f

∂s
(ta+ (1− t) b, sc+ (1− s) d) dt

 ds
 .

By integrating again, we get

K =
1

(b− a)(d− c)
{f(a, c) + f(a, d) + f(b, c) + f(b, d)

−β
1∫

0

(1− s)β−1
f (b, sc+ (1− s) d) ds− β

1∫
0

sβ−1f (a, sc+ (1− s) d) ds

−β
1∫

0

(1− s)β−1
f (a, sc+ (1− s) d) ds− β

1∫
0

sβ−1f (b, sc+ (1− s) d) ds

−α
1∫

0

(1− t)α−1
f (ta+ (1− t) b, d) dt− α

1∫
0

tα−1f (ta+ (1− t) b, d) dt

−α
1∫

0

(1− t)α−1
f (ta+ (1− t) b, c) dt− α

1∫
0

tα−1f (ta+ (1− t) b, c) dt

+αβ

1∫
0

1∫
0

(1− t)α−1
(1− s)β−1

f (ta+ (1− t) b, sc+ (1− s) d) dsdt

+αβ

1∫
0

1∫
0

tα−1 (1− s)β−1
f (ta+ (1− t) b, sc+ (1− s) d) dsdt
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+αβ

1∫
0

1∫
0

(1− t)α−1
sβ−1f (ta+ (1− t) b, sc+ (1− s) d) dsdt

+αβ

1∫
0

1∫
0

tα−1sβ−1f (ta+ (1− t) b, sc+ (1− s) d) dsdt

 .

By using the change of the variables, we can get

x = ta+ (1− t) b and y = sc+ (1− s) d,

that is

t =
x− b
a− b

and s =
y − d
c− d

.

Taking into account these equalities, we obtain

(2.2)

K =
1

(b− a)(d− c)
{f(a, c) + f(a, d) + f(b, c) + f(b, d)

− β

(d− c)β−1

 d∫
c

(y − c)β−1
f (a, y) dy +

d∫
c

(d− y)
β−1

f (a, y) dy

+

d∫
c

(y − c)β−1
f (b, y) dy +

d∫
c

(d− y)
β−1

f (b, y) dy


− α

(b− a)
α−1

 b∫
a

(x− a)
α−1

f (x, d) dx+

b∫
a

(x− a)
α−1

f (x, c) dx

+

b∫
a

(b− x)
α−1

f (x, d) dx+

b∫
a

(b− x)
α−1

f (x, c) dx

+
αβ

(b− a)
α−1

(d− c)β−1

×

 b∫
a

d∫
c

(x− a)
α−1

(y − c)β−1
f (x, y) dydx+

b∫
a

d∫
c

(x− a)
α−1

(d− y)
β−1

f (x, y) dydx

+

b∫
a

d∫
c

(b− x)
α−1

(y − c)β−1
f (x, y) dydx+

b∫
a

d∫
c

(b− x)
α−1

(d− y)
β−1

f (x, y) dydx

 .

Multiplying both sides of (2.2) by (b−a)(d−c)
4 and using the Riemann-Liouville

integrals, we obtain equality (2.1). This completes the proof.

Theorem 5. Let f : ∆ = [0, b]× [0, d] → R be a partial differentiable mapping on

∆ and ∂2f
∂t∂s ∈ L (∆), α, β > 0. If

∣∣∣ ∂2f
∂t∂s

∣∣∣ is m−convex function on the co-ordinates
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on ∆ where 0 ≤ a < b <∞ and 0 ≤ c < d <∞, then the following inequality holds;∣∣∣∣f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
+B

∣∣∣∣
≤ (b− a) (d− c)

4
MαMβ

×
(∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣+m

∣∣∣∣ ∂2f

∂t∂s

(
a,
d

m

)∣∣∣∣+m

∣∣∣∣ ∂2f

∂t∂s

(
b,
d

m

)∣∣∣∣)
where

Mα =

[
1

α+ 1
−
(

1
2

)α
α+ 1

]

Mβ =

[
1

β + 1
−
(

1
2

)β
β + 1

]
.

Proof. From Lemma 1 and using the property of modulus, we have∣∣∣∣f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
+B

∣∣∣∣
≤ (b− a) (d− c)

4

1∫
0

1∫
0

|(1− t)α − tα|
∣∣∣(1− s)β − sβ∣∣∣ ∣∣∣∣ ∂2f

∂t∂s
(ta+ (1− t) b, sc+ (1− s) d)

∣∣∣∣ dsdt.
Since

∣∣∣ ∂2f
∂t∂s

∣∣∣ is co-ordinated m−convex, we can write∣∣∣∣f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
+B

∣∣∣∣
≤ (b− a) (d− c)

4

1∫
0

1∫
0

∣∣∣(1− s)β − sβ∣∣∣ |(1− t)α − tα|{ts ∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣+mt(1− s)
∣∣∣∣ ∂2f

∂t∂s

(
a,
d

m

)∣∣∣∣
+(1− t)s

∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣+m(1− t)(1− s)
∣∣∣∣ ∂2f

∂t∂s

(
b,
d

m

)∣∣∣∣} dtds
By computing these integrals, we obtain∣∣∣∣f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
+B

∣∣∣∣
≤ (b− a) (d− c)

4

[
1

α+ 1
−
(

1
2

)α
α+ 1

]

×
1∫

0

∣∣∣(1− s)β − sβ∣∣∣ (s ∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣+m(1− s)
∣∣∣∣ ∂2f

∂t∂s

(
a,
d

m

)∣∣∣∣
+s

∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣+m(1− s)
∣∣∣∣ ∂2f

∂t∂s

(
b,
d

m

)∣∣∣∣) ds.
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Using co-ordinated m−convexity of
∣∣∣ ∂2f
∂t∂s

∣∣∣ again, we get∣∣∣∣f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
+B

∣∣∣∣
≤ (b− a) (d− c)

4

[
1

α+ 1
−
(

1
2

)α
α+ 1

][
1

β + 1
−
(

1
2

)β
β + 1

]

×
(∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣+

∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣+m

∣∣∣∣ ∂2f

∂t∂s

(
a,
d

m

)∣∣∣∣+m

∣∣∣∣ ∂2f

∂t∂s

(
b,
d

m

)∣∣∣∣)
Thus, the proof is completed.

Remark 1. Suppose that all the assumptions of Theorem 5 are satisfied. If we
choose α = β = m = 1, we obtain the inequality (1.2) .

Theorem 6. Let f : ∆ → R be a partial differentiable mapping on ∆ and ∂2f
∂t∂s ∈

L (∆), α, β ∈ (0, 1]. If
∣∣∣ ∂2f
∂t∂s

∣∣∣q , q > 1, is m−convex function on the co-ordinates on

∆ where 0 ≤ a < b <∞ and 0 ≤ c < d <∞, then the following inequality holds;∣∣∣∣f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
+B

∣∣∣∣
≤ (b− a) (d− c)

4 (αp+ 1)
1
p (βp+ 1)

1
p

×


∣∣∣ ∂2f
∂t∂s (a, c)

∣∣∣q +m
∣∣∣ ∂2f
∂t∂s

(
a, dm

)∣∣∣q +
∣∣∣ ∂2f
∂t∂s (b, c)

∣∣∣q +m
∣∣∣ ∂2f
∂t∂s

(
b, dm

)∣∣∣q
4


1
q

.

where p−1 + q−1 = 1.

Proof. From Lemma 1 and by applying the well-known Hölder inequality for double
integrals, then one has∣∣∣∣f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
+B

∣∣∣∣
≤ (b− a) (d− c)

4

 1∫
0

1∫
0

[
|(1− t)α − tα|

∣∣∣(1− s)β − sβ∣∣∣]p dsdt


1
p

×

 1∫
0

1∫
0

∣∣∣∣ ∂2f

∂t∂s
(ta+ (1− t) b, sc+ (1− s) d)

∣∣∣∣q dsdt


1
q

.

By using the fact that
|tα1 − tα2 | ≤ |t1 − t2|

α

for α ∈ (0, 1] and t1, t2 ∈ [0, 1] , we get

1∫
0

|(1− t)α − tα|p dt ≤
1∫

0

|1− 2t|αp dt

=
1

αp+ 1
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and

1∫
0

∣∣∣∣∣∣(1− s)β − sβ∣∣∣∣∣∣p dt ≤ 1∫
0

|1− 2s|βp dt

=
1

βp+ 1
.

Since
∣∣∣ ∂2f
∂t∂s

∣∣∣q is co-ordinated m−convex, we can write∣∣∣∣f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
+B

∣∣∣∣
≤ (b− a) (d− c)

4 (αp+ 1)
1
p (βp+ 1)

1
p

×

 1∫
0

1∫
0

[
ts

∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣q +mt (1− s)
∣∣∣∣ ∂2f

∂t∂s

(
a,
d

m

)∣∣∣∣q]

+ (1− t) s
∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣q +m (1− t) (1− s)
∣∣∣∣ ∂2f

∂t∂s

(
b,
d

m

)∣∣∣∣q dsdt)
1
q

.

By computing these integrals, we obtain∣∣∣∣f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
+B

∣∣∣∣
≤ (b− a) (d− c)

4 (αp+ 1)
1
p (βp+ 1)

1
p

×


∣∣∣ ∂2f
∂t∂s (a, c)

∣∣∣q +m
∣∣∣ ∂2f
∂t∂s

(
a, dm

)∣∣∣q +
∣∣∣ ∂2f
∂t∂s (b, c)

∣∣∣q +m
∣∣∣ ∂2f
∂t∂s

(
b, dm

)∣∣∣q
4


1
q

.

Which completes the proof.

Remark 2. Suppose that all the assumptions of Theorem 6 are satisfied. If we
choose α = β = m = 1, we obtain the inequality (1.3) .

Theorem 7. Let f : ∆ → R be a partial differentiable mapping on ∆ and ∂2f
∂t∂s ∈

L (∆), α, β ∈ (0, 1]. If
∣∣∣ ∂2f
∂t∂s

∣∣∣q , q ≥ 1, is m−convex function on the co-ordinates on

∆ where 0 ≤ a < b <∞ and 0 ≤ c < d <∞, then the following inequality holds;∣∣∣∣f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
+B

∣∣∣∣
≤ (b− a) (d− c)

4

([
1−

(
1
2

)α
α+ 1

][
1−

(
1
2

)β
β + 1

])1− 1
q

M
1
q
αM

1
q

β

×
(∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣q +m

∣∣∣∣ ∂2f

∂t∂s

(
a,
d

m

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣q +m

∣∣∣∣ ∂2f

∂t∂s

(
b,
d

m

)∣∣∣∣q)
1
q

where Mα,Mβ are defined as in Theorem 5.
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Proof. From Lemma 1 and by applying the well-known Power-mean inequality for
double integrals, then one has∣∣∣∣f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
+B

∣∣∣∣
≤ (b− a) (d− c)

4

 1∫
0

1∫
0

|(1− t)α − tα|
∣∣∣(1− s)β − sβ∣∣∣ dsdt

1− 1
q

×

 1∫
0

1∫
0

|(1− t)α − tα|
∣∣∣(1− s)β − sβ∣∣∣ ∣∣∣∣ ∂2f

∂t∂s
(ta+ (1− t) b, sc+ (1− s) d)

∣∣∣∣q dsdt


1
q

.

Since
∣∣∣ ∂2f
∂t∂s

∣∣∣q is co-ordinated m−convex, we can write∣∣∣∣f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
+B

∣∣∣∣
≤ (b− a) (d− c)

4

 1∫
0

1∫
0

|(1− t)α − tα|
∣∣∣(1− s)β − sβ∣∣∣ dsdt

1− 1
q

×

 1∫
0

1∫
0

|(1− t)α − tα|
∣∣∣(1− s)β − sβ∣∣∣ [ts ∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣q +mt (1− s)
∣∣∣∣ ∂2f

∂t∂s

(
a,
d

m

)∣∣∣∣q]

+ (1− t) s
∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣q +m (1− t) (1− s)
∣∣∣∣ ∂2f

∂t∂s

(
b,
d

m

)∣∣∣∣q dsdt)
1
q

.

By computing these integrals, we obtain∣∣∣∣f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
+B

∣∣∣∣
≤ (b− a) (d− c)

4

([
1−

(
1
2

)α
α+ 1

][
1−

(
1
2

)β
β + 1

])1− 1
q

M
1
q
αM

1
q

β

×
(∣∣∣∣ ∂2f

∂t∂s
(a, c)

∣∣∣∣q +

∣∣∣∣m ∂2f

∂t∂s

(
a,
d

m

)∣∣∣∣q +

∣∣∣∣ ∂2f

∂t∂s
(b, c)

∣∣∣∣q +m

∣∣∣∣ ∂2f

∂t∂s

(
b,
d

m

)∣∣∣∣q)
1
q

which completes the proof.

Remark 3. Suppose that all the assumptions of Theorem 7 are satisfied. If we
choose α = β = m = 1, we obtain the inequality (1.4) .
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∗Corresponding author


