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Abstract. In the present time world, digital images are crucial for various applications, that includes

the medical industry, aircraft and satellite imaging, underwater imaging and so on. For this huge

quantities of digital images are produced and used by these applications. For a variety of reasons,

these images also need to be transmitted and stored. Therefore, a technique known as compression is

applied to resolve this storage issue while transmitting these images. In this article, by extending some

unique fixed point theorem results for comparison function on a complete symmetric G-metric space

are used and it is a new approach. Moreover, this paper focuses on a compression method using the

new structure of extended G-contraction mapping as it assists in compressing the size of the image.

Thus, grayscale images are compressed using extended G-contraction mapping. And thus, grayscale

images can be represented as matrices in this structure (pixel values). Also, similar images of reduced

size can be obtained using an appropriate matrix G-metric and extended G-contraction mapping. The

size of the matrix can be substantially reduced without losing any quality by controlling the order of

sub matrices. These images are easy to store and transmit, with little variation between the original

and contracted image.

1. Introduction

Fixed point theory in metric space is one of the primary research areas in applied and pure math-

ematics. Its applications are useful in most other areas in various parts of science and engineering.

The Banach contraction mapping concept [1], is an important tool in analysis, and also one of the

Received: Mar. 16, 2023.

2020 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. comparison function; fixed point; extended G-contraction mapping; G-Cauchy sequence;

G-metric space; matrix distance.

https://doi.org/10.28924/2291-8639-21-2023-110
ISSN: 2291-8639

© 2023 the author(s).

https://doi.org/10.28924/2291-8639-21-2023-110


2 Int. J. Anal. Appl. (2023), 21:110

fixed point theory’s most basic and important results to be considered. Throughout the years, math-

ematicians have generalized this concept in various approaches and in different spaces. On the other

hand, in metric spaces with partial ordering, fixed point theory has drawn a lot of research. (Ran

and Reurings, 2004) provided the first finding in this direction and demonstrated applications of their

discoveries to matrix equations [21]. There was various generalization of a metric, notably a 2-metric,

a D-metric, a G-metric, a cone metric, and a complex-valued metric.

In [2], Gähler first proposed the idea of a 2-metric. Consider a 2-metric is not a continuous function

of its variables compared to a standard metric. The results obtained in 2-metric spaces and metric

spaces could not then easily relate to one another. The fixed point theorems on 2-metric spaces and

metric spaces may be readily unconnected. Due to this, Dhage proposed the idea of a D-metric in [3].

However, Mustafa and Sims demonstrated in [4] found that most of the topological characteristics

of the D-metric were incorrect. To overcome the drawbacks of a D-metric, Mustafa and Sims estab-

lished the idea of a G-metric in [5]. The authors analyzed the topological characteristics of this space

and demonstrated how G-metric spaces can use the analogue of the Banach contraction mapping

concept and numerous fixed point theorems on G-metric spaces have been established since then.

The concept of a cone metric was defined by Huang and Zhang in [7]. Subsequently, many authors

developed numerous fixed point theorems from metric spaces to cone metric spaces. The fixed point

results in cone metric spaces can also be obtained by reducing cone metric spaces to their standard

metric counterparts. And, it was also demonstrated by various authors. Azam, Fisher, and Khan [8]

demonstrated the concept of a complex-valued metric and stated some fixed point theorems.

A digital image is made up of a number of pixels, each of which has a unique position and value.

Mathematical representations of these images are achievable. These are also referred to as raster

images or bitmap images. Due to its numerous uses in various industries, digital imaging is in high

demand. The drawbacks of digital images are that they require more memory space and consequently

take a longer time to transfer from one device to another. Therefore, the size of the image is crucial in

these situations in order to get better outcomes. A contraction is a tool that reduces the length of a

distance, and it is at the centre of a wide range of image processing tools. Using general topology and

functional analysis, digital topology is linked to the 2D and 3D features of digital images in [18, 26].

In [9–11, 17], Rosenfeld, Kong, Boxer, Karaca, Han, and others have used topological tools, particu-

larly algebraic topology, to characterize the properties of digital images.

In [9], Rosenfeld found that the field of digital topology has influenced a wide range of uses, in-

cluding pattern recognition and image processing. The concept of digital continuity for 2D and 3D

digital images is being further developed in [33,40]. In [19–21], Boxer studied a variety of continuous

digital functions as well as the digital version of several topological concepts. In [11, 12], Ege et al.

explored the Banach fixed point theorem as it is pertinent to digital images. Therefore, introduced dif-

ferent outcomes and characteristics on 2D digital homology groups, proved the Lefschetz fixed point
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theorem for digital images in [11], gave some examples of the fixed point property, and illustrated

that sphere-like digital images have the fixed point property. By implementing the Banach contraction

principle to digital metric spaces at digital intervals, simply closed k-curves, and simply closed 18-

surfaces, in [10,13] Sang-Eon Han illustrated in the digital metric space which is complete. The need

for storage space is growing in combination with the rapid demand for large amounts of image files.

There are different kinds of compression methods available to help in reducing the size of these data

files. Hence, in this paper, an image contraction approach is used to decrease the dimension of image

files in extended G-contractive mapping applications. Image resizing (decrease) can be accomplished

by reducing the total number of pixels.

2. Basic Concepts

Definition 2.1. [5] Let X be a non empty set, and let G : X ×X ×X → R+ be a function satisfying

the following conditions:

(1) G(x, y , z) = 0 if x = y = z

(2) G(x, x, y) > 0; for all x, y ∈ X with x 6= y

(3) G(x, x, y) ≤ G(x, y , z) for all x, y , z ∈ X with y 6= z

(4) G(x, y , z) = G(x, z, y) = G(y , z, x) = ... (symmetry in all three variables)

(5) G(x, y , z) ≤ G(x, a, a) + G(a, y , z) for all x, y , z, a ∈ X (rectangle inequality)

Then the function G is called a generalized metric or more specially, a G-metric on X , and (X , G) is

called a G-metric space.

Definition 2.2. [5] Let (X , G) be a G-metric space.

(i) The sequence {xn} is G-convergent to x ∈ X if and only if lim
n,m→∞

G(x, xn, xm) = 0.

(i i) The sequence {xn} is G-Cauchy if and only if lim
n,m,l→∞

G(xn, xm, xl) = 0.

(i i i) (X , G) is G-complete if and only if every G-Cauchy sequence in X is G-convergent.

Definition 2.3. [27, 28]A map ϕ : [0,∞)→ [0,∞) is called comparison function if it satisfies:

(i) ϕ is monotonic increasing.

(i i) The sequence {ϕn(t)}∞n=0 converges to zero for all t > 0.

(i i i)
∑∞
k=0 ϕ

k(t) converges for all t ∈ R+.

Lemma 2.1. [27, 28] If ϕ : [0,∞)→ [0,∞) is called comparison function, then:

(i) Each iterate ϕn is also comparison function.

(i i)ϕ(t) < t for all t > 0.

(i i i)ϕ is continuous at t = 0 and ϕ(0) = 0.

Definition 2.4. The matrix A is given by Frobenius norm as:

ρF =

√√√√ m∑
i=1

n∑
j=1

(ai j)2 =
√
trace(AA′)
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3. Main Results

Theorem 3.1. In a complete symmetric G-metric space (X , G), a self mapping T : X → X has a

unique fixed point if there exists a comparison function with for all x, y , z ∈ X , and

ϕ(G(T x, T y , T z)) ≤ αϕ(G(x, y , z)) + βϕ (max {G(x, T x, T x), G(x, y , z)})

+ γϕ



G(x, y , z)

[
1 +

√
G(x, T x, T x).G(x, y , z)

]2
[1 + G(x, y , z)]2


 (3.1)

where α, β, γ ∈ [0, 1) and 0 ≤ L = α+ β + γ < 1.

Proof. Let u0 ∈ X be a arbitrary point and the sequence {un} in X , define as follows

un+1 = T un, n = 0, 1, 2, 3.... (3.2)

Consider, ϕ(G(un, un+1, un+1)) = ϕ(G(T un−1, T un, T un))

ϕ(G(un, un+1, un+1)) ≤ αϕ(G(un−1, un, un)) + βϕ (max{G(un−1, T un−1, T un−1), G(un−1, un, un)})

+ γϕ



G(un−1, un, un)

[
1 +

√
G(un−1, T un−1, T un−1).G(un−1, un, un)

]2
[1 + G(un−1, un, un)]2




≤ αϕ(G(un−1, un, un)) + βϕ (max{G(un−1, un, un), G(un−1, un, un)})

+ γϕ



G(un−1, un, un)

[
1 +

√
G(un−1, un, un).G(un−1, un, un)

]2
[1 + G(un−1, un, un)]2




= αϕ(G(un−1, un, un)) + βϕ(G(un−1, un, un)) + γϕ(G(un−1, un, un))

ϕ(G(un, un+1, un+1)) ≤ (α+ β + γ)ϕ(G(un−1, un, un))

Since, ϕ(t) ≤ t, for all t ≥ 0

G(un, un+1, un+1) ≤ LG(un−1, un, un)

Continuing in the similar fashion, we have

G(un, un+1, un+1) ≤ LnG(u0, u1, u1) (3.3)

Taking limit n →∞, Ln → 0.

lim
n→∞

G(un, un+1, un+1) = 0 (3.4)
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For n > m ≥ 1, then

G(un, um, um) ≤ G(un−1, un, un) + G(un−2, un−1, un−1) + ...+ G(um, um+1, um+1)

≤ Ln−1G(u0, u1, u1) + Ln−2G(u0, u1, u1) + ...+ LmG(u0, u1, u1)

≤ (Ln−1 + Ln−2 + ...+ Lm)G(u0, u1, u1)

G(un, um, um) ≤
Ln

(1− L)
G(u0, u1, u1)

Taking limit n,m →∞, we have

lim
n,m→∞

G(un, um, um) = 0. (3.5)

To prove: {un} is Cauchy Sequence

G(un, um, ul) ≤ G(un, um, um) + G(um, um, ul)

Applying limit n,m, l →∞, we get

lim
n,m,l→∞

G(un, um, ul) = 0 (by using (3.5)) (3.6)

Hence, {un} is a G-Cauchy sequence.

Since, (X , G) be G-complete, there exists p ∈ X such that,

p = lim
n→∞

un. (3.7)

Suppose that T p 6= p

ϕ(G(p, T p, T p)) ≤ ϕ(G(p, un, un)) + ϕ(G(un, T p, T p))

≤ ϕ(G(p, un, un)) + αϕ(G(un−1, p, p)) + βϕ (max{G(un, T p, T p), G(un−1, p, p)})

+ γϕ



G(un−1, p, p)

[
1 +

√
G(un, T p, T p).G(un−1, p, p)

]2
[1 + G(un−1, p, p)]2




Taking limit n →∞, we get

ϕ(G(p, T p, T p)) ≤ 0 + αϕ(0) + βϕmax {G(p, T p, T p), 0}+ γϕ




(0)
[

1 +
√

(G(p, T p, T p).0)
]2

[1 + 0]2




Since, ϕ(t) ≤ t, for all t ≥ 0.

G(p, T p, T p) ≤ βG(p, T p, T p)

which is contradiction, since β < 1

Hence, T p = p (3.8)



6 Int. J. Anal. Appl. (2023), 21:110

Suppose that T p = p and T q = q then by (3.1), we have

ϕ(G(p, q, q)) = ϕ(G(T p, T q, T q))

≤ αϕ(G(p, q, q)) + βϕ (max{G(p, T p, T p), G(p, q, q)})

+ γϕ



G(p, q, q)

[
1 +

√
(G(p, TT p, T p).G(p, q, q))

]2
[1 + G(p, q, q)]2




= αϕ(G(p, q, q)) + βϕ (max{0, G(p, q, q)}) + γϕ



G(p, q, q)

[
1 +

√
(0).G(p, q, q)

]2
[1 + G(p, q, q)]2




≤ αϕ(G(p, q, q)) + βϕ(G(p, q, q)) + γϕ(G(p, q, q))

ϕ(G(p, q, q)) ≤ (α+ β + γ)ϕ(G(p, q, q))

Since, ϕ(t) ≤ t, for all t ≥ 0.

G(p, q, q) ≤ LG(p, q, q)

which is contradiction, since L < 1

p = q (3.9)

Thus, T has a unique fixed point in X . �

Corollary 3.1. In a complete symmetric G-metric space (X , G), a self mapping T : X → X has a

unique fixed point if there exists a comparison function with for all x, y ∈ X , and

ϕ(G(T x, T y , T x)) ≤ αϕ(G(x, y , x)) + βϕ (max {G(x, T x, T x), G(x, y , x)})

+ γϕ



G(x, y , x)

[
1 +

√
G(x, T x, T x).G(x, y , x)

]2
[1 + G(x, y , x)]2


 (3.10)

where α, β, γ ∈ [0, 1) and 0 ≤ L = α+ β + γ < 1.

Proof. Put x = z , we get the conclusion by using Theorem 3.1. �

Theorem 3.2. In a complete symmetric G-metric space (X , G), a self mapping T : X → X has a

unique fixed point and also {un} converging to a point p ∈ X if there exists a comparison function

and {un} has a subsequence converging to a point p ∈ X with for all x, y , z ∈ X ,

ϕ(G(T x, T y , T z)) ≤ αϕ(G(x, y , z)) + βϕ (max {G(x, T x, T x), G(x, y , z)})

+ γϕ



G(x, y , z)

[
1 +

√
G(x, T x, T x).G(x, y , z)

]2
[1 + G(x, y , z)]2


 (3.11)

where α, β, γ ∈ [0, 1) and 0 ≤ L = α+ β + γ < 1.
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Proof. Let u0 ∈ X be a arbitrary point and the sequence {un} in X , define as follows

un+1 = T un, n = 0, 1, 2, 3, . . . . (3.12)

If lim
k→∞

unk = p (3.13)

Suppose that T p 6= p

ϕ(G(p, T p, T p)) ≤ ϕ(G(p, unk , unk )) + ϕ(G(unk , T p, T p))

≤ ϕ(G(p, unk , unk )) + αϕ(G(unk−1, p, p)) + βϕ
(

max{G(unk−1, T p, T p), G(unk−1 , p, p)}
)

+ γϕ



G(unk−1, p, p)

[
1 +

√
G(unk−1, T p, T p).G(unk−1, p, p)

]2
[1 + G(unk−1, p, p)]2




Taking limit k →∞, we get

ϕ(G(p, T p, T p)) ≤ 0 + αϕ(0) + βϕ (max{G(p, T p, T p), 0}) + γϕ




(0)
[

1 +
√

(G(p, T p, T p).0)
]2

[1 + 0]2




ϕ(G(p, T p, T p)) ≤ βϕ(G(p, T p, T p))

Since, ϕ(t) ≤ t, for all t ≥ 0.

G(p, T p, T p) ≤ βG(p, T p, T p)

which is contradiction, since β < 1

Hence, T p = p (3.14)

Using 3.1 and rectangular inequality in def. 2.1, we obtain p is the unique fixed point of T by Theorem

3.1.

To prove: {un} converging to p in X .
Consider,

ϕ(G(p, un, un)) = ϕ(G(T u, un, un))

≤ ϕ(G(un+1, un, un)) + ϕ(G(T u, un+1, un+1))

≤ ϕ(G(un+1, un, un)) + αϕ(G(p, un, un)) + βϕ (max{G(un+1, un+1, un), G(p, un, un)})

+ γϕ



G(p, un, un)

[
1 +

√
G(un+1, un+1, un).G(p, un, un)

]2
[1 + G(p, un, un)]2




Using condition (3.4), we get

ϕ(G(p, un, un)) ≤ 0 + αϕ(G(p, un, un)) + βϕ (max{G(0), G(p, un, un)})

+ γϕ



G(p, un, un)

[
1 +

√
(0).G(p, un, un))

]2
[1 + G(p, un, un)]2



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≤ αϕ(G(p, un, un)) + βϕ(G(p, un, un)) + γϕ(G(p, un, un))

ϕ(G(p, un, un)) ≤ (α+ β + γ)ϕ(G(p, un, un))

Since, ϕ(t) ≤ t, for all t ≥ 0

G(p, un, un) ≤ LG(p, un, un)

G(p, un, un)− LG(p, un, un) = 0

G(p, un, un) = 0

lim
n→∞

G(p, un, un) = 0 (3.15)

Thus, {un} converging to p in X . �

Corollary 3.2. In a complete symmetric G-metric space (X , G), a self mapping T : X → X has a

unique fixed point and also {un} converging to a point p ∈ X if there exists a comparison function

and {un} has a subsequence converging to a point p ∈ X with for all x, y ∈ X ,

ϕ(G(T x, T y , T x)) ≤ αϕ(G(x, y , x)) + βϕ (max {G(x, T x, T x), G(x, y , x)})

+ γϕ



G(x, y , x)

[
1 +

√
G(x, T x, T x).G(x, y , x)

]2
[1 + G(x, y , x)]2


 (3.16)

where α, β, γ ∈ [0, 1) and 0 ≤ L = α+ β + γ < 1.

Proof. Put x = z , we get the conclusion by using Theorem 3.2. �

4. Application of Proposed G-metric Space Based Image Contraction Algorithm

Any grayscale digital image can be figured off as a matrix, with each element indicating the pixel’s

grey value in the corresponding index. Rectangular arrays of square pixels are used to represent digital

images. These pixels have 256 shades [0, 255] in gray scale, 8 but, with 0 being black and 255 being

white, and 254 shades of grey in between. As described in the following algorithm, the methodology

involves parallel local operations on each element (pixel value) and immediate states.

Step 1: Place the grayscale image I into the programme.

Step 2: From I, get matrix A of order p × q.
Step 3: Divide the space into fixed-size blocks N = n × n(n ≥ 2).

Step 4: Using extend G- contraction condition, find the B1s that corresponds to each Ans .
Step 5: Obtain matrix B, which has been contracted.

Step 6: Get the image I ′ that was contracted.
For the implementation of the above algorithm, the authors used matlab. The intensity of each

pixel in the image is used as a starting point, and each element of I is transformed into a matrix
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representing that pixel’s intensity. Divide I into several fixed-block-size segments, below are the pixel

values for the illustrated box in Fig. 1, as well as the contracted region that was considered. As an

outcome, the pixel values will differ according to the size of the contracted part. For the depicted

region,

Figure 1. The above figure to show steps of scheme

Define a mapping T : A → A given as:

T (Ai) = max{Ai : Ai ∈ A} (4.1)

Each N = n × n is a non-overlapping square sub-matrix Ans of fixed dimension (n ≥ 2), resulting

in A = ∪si=1Ans . Using the function T is maximum values, each one of Ans is changed to a square

sub-matrix B1s of dimension 1 × 1. All these B1s matrices are sequentially positioned in place Ans of

each to produce a contracted matrix with a smaller dimension than the initial matrix A. Convert

contracted matrix B to contracted image I ′, which takes up less space than I.

5. Proposed Approach

Initially, consider the different resolution of images such as low resolution images and high resolution

images.

5.1. Low Resolution Images. The low resolution images are ship, chest and flower of grayscale image

of region space of 512×512, 720×820 and 600×471 respectively. We will focus on a limited 16×16

region, as shown by an illustrated small circle in Figs. 2, 3 and 4, each block is handled independently

of the others.
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Figure 2. 512× 512 Figure 3. 720× 820 Figure 4. 600× 471

5.2. High Resolution Images. The high resolution images are satellite, paddy field and stadium of

grayscale image of region space of 1200 × 720, 1280 × 1024 and 1920 × 1200 respectively. We will

focus on a limited 16 × 16 region, as shown by an illustrated small circle in Figs. 5, 6 and 7, each

block is handled independently of the others.

Figure 5. 1200× 720 Figure 6. 1280× 1024 Figure 7. 1920× 1200

Figure 8. Sub

matrix (16 ×
16)

Figure

9. 64 A2s 2×
2

Figure

10. 64 B1s 1×
1

Fig. 8 shows that, the 16 × 16 region blown up to emphasize the independent pixels, whereas

Fig. 9 and Fig. 10 show the subdivision corresponding to 64 non-overlapping A2s , each of which is a
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2× 2 block, and 64 non-overlapping B1s , each of which is a 1× 1 block. Below are the pixel values for

the highlighted box in Fig. 8 and the contracted region when considering Ans for n = 2. For n > 2, as

a result of the varying pixel values, the contracted region’s size will vary. In the region illustrated,

A =



127 123 125 120 126 123 127 128 125 129 129 132 129 132 127 120

128 126 128 122 125 125 122 129 127 128 131 128 129 131 128 127

128 124 128 126 127 120 128 129 128 131 135 126 130 126 128 129

124 127 128 129 121 128 129 128 129 133 130 132 128 130 128 125

126 125 128 126 126 125 127 128 131 127 128 136 127 128 130 129

125 127 126 126 128 128 128 126 130 129 128 131 132 128 130 131

127 127 128 124 120 127 128 126 128 131 134 127 128 128 128 130

123 135 120 128 121 123 126 126 128 133 131 129 131 129 130 131

126 128 124 128 125 123 128 130 128 132 128 131 129 132 127 128

124 128 127 124 127 121 128 130 132 133 133 128 128 129 130 133

122 126 128 126 123 127 124 129 131 134 130 130 129 133 126 131

126 127 125 122 125 121 127 128 131 131 132 129 131 131 134 128

122 128 133 120 126 125 125 128 135 127 132 128 127 129 128 128

123 128 127 122 125 126 130 124 131 130 132 132 129 130 132 127

122 127 128 126 126 127 125 128 130 129 132 133 129 132 133 129

124 125 132 120 132 124 128 127 128 131 132 129 129 132 129 128



T (A) =



128 128 126 129 129 132 132 128

128 129 128 129 133 135 130 129

127 128 128 128 131 136 132 131

135 128 127 128 133 134 131 131

128 128 127 130 133 133 132 133

127 128 127 129 134 132 133 134

128 133 126 130 135 132 130 132

127 132 132 128 131 133 132 133


For extend G- contraction condition (3.1),

ϕ(G(T (A1), T (A2), T (A3))) ≤ αϕ(G(A1,A2,A3)) + βϕ (max {G(T (A1),A1, T (A1)), G(A1,A2,A3)})

+ γϕ



G(A1,A2,A3)

[
1 +

√
G(T (A1),A1, T (A1)).G(A1,A2,A3)

]2
[1 + G(A1,A2,A3)]2



(5.1)
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where, ϕ is comparison function with α, β, γ ∈ [0, 1) and 0 ≤ L = α+ β + γ < 1.

The comparison function ϕ : [0,∞)→ [0,∞) is defined by

ϕ(t) =
t

2t + 100
, t ≥ 0 (5.2)

Let (A, G) be a G−metric space and define G : A×A×A → A by

G(A1,A2,A3) = d(A1,A2) + d(A2,A3) + d(A3,A1) (5.3)

d= Matrix distance function is taken as Forbenius norm (def. 2.4)

where,

d(A,B) =
√
trace {(A− B)(A− B)′} (5.4)

6. Results and Analysis of Image Contraction

6.1. Low Resolution Images. The reference of low resolution images has been reduced in size to its

original size, as shown in Figs. 2, 3 and 4.

6.1.1. Ship Image: (512 × 512). The reference of ship image has been reduced in size to its origi-

nal size, as shown in Fig. 2, while the obtained contracted images are shown in Figs. 11, 12, 13 and 14.

Let A1 =

[
129 107

134 119

]
, A2 =

[
102 104

105 125

]
and A3 =

[
132 169

149 191

]

G(T (A1), T (A2), T (A3)) = 132 (6.1)

G(A1,A2,A3) = 243.33 (6.2)

G(T (A1),A1, T (A1)) = 62.58 (6.3)

Substitute (6.1), (6.2) and (6.3) in (5.1), we have

ϕ(132) ≤ αϕ(243.33) + βϕ(243.33) + γϕ(63.08)

0.36 ≤ (α+ β)(0.41) + γ(0.28) (using (5.2)) (6.4)

For some α, β, γ ∈ [0, 1) in (6.4) satisfies the contractivity condition (5.1).
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Figure

11. 256× 256

Figure

12. 170 ×
170

Figure

13. 128×
128

Figure

14. 102×
102

Table 1. Summary of Original Image 2 After Contracted
Test Image Contracted

Figure 2 11 12 13 14

Dimension 512 × 512 256 × 256 170 × 170 128 × 128 102 × 102

Size (KB) 256 9.75 5.59 3.45 2.58

Block Size - 2 × 2 3 × 3 4 × 4 5 × 5

% Space Saved - 96.19 97.82 98.65 98.99

6.1.2. Chest Image: (720×820). The reference of chest image has been reduced in size to its origi-

nal size, as shown in Fig. 3, while the obtained contracted images are shown in Figs. 15, 16, 17 and 18.

Let A1 =

[
161 162

162 166

]
, A2 =

[
162 167

166 167

]
and A3 =

[
171 174

170 176

]

G(T (A1), T (A2), T (A3)) = 20 (6.5)

G(A1,A2,A3) = 41.83 (6.6)

G(T (A1),A1, T (A1)) = 15.10 (6.7)

Substitute (6.5), (6.6) and (6.7) in (5.1), we have

ϕ(20) ≤ αϕ(41.83) + βϕ(41.83) + γϕ(15.57)

0.14 ≤ (α+ β)(0.28) + γ(0.12) (using (5.2)) (6.8)

For some α, β, γ ∈ [0, 1) in (6.8) satisfies the contractivity condition (5.1).
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Figure

15. 410× 410

Figure

16. 273 ×
273

Figure

17. 205×
205

Figure

18. 164×
164

Table 2. Summary of Original Image 3 After Contracted
Test Image Contracted

Figure 3 15 16 17 18

Dimension 720 × 820 410 × 410 273 × 273 205 × 205 164 × 164

Size (KB) 65.2 18.5 9.6 6.2 4.4

Block Size - 2 × 2 3 × 3 4 × 4 5 × 5

% Space Saved - 72.0 85.2 90.4 93.2

6.1.3. Flower Image: (600×471). The reference of flower image has been reduced in size to its orig-

inal size, as shown in Fig. 4, while the obtained contracted images are shown in Figs. 19, 20, 21 and 22.

Let A1 =

[
47 42

49 46

]
, A2 =

[
67 39

63 28

]
and A3 =

[
46 55

41 56

]

G(T (A1), T (A2), T (A3)) = 36 (6.9)

G(A1,A2,A3) = 93.09 (6.10)

G(T (A1),A1, T (A1)) = 15.77 (6.11)

Substitute (6.9), (6.10) and (6.11) in (5.1), we have

ϕ(36) ≤ αϕ(93.09) + βϕ(93.09) + γϕ(16.24)

0.21 ≤ (α+ β)(0.33) + γ(0.12) (using (5.2)) (6.12)

For some α, β, γ ∈ [0, 1) in (6.12) satisfies the contractivity condition (5.1).
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Figure

19. 235× 235

Figure

20. 157 ×
157

Figure

21. 117×
117

Figure

22. 102×
102

Table 3. Summary of Original Image 4 After Contracted
Test Image Contracted

Figure 4 19 20 21 22

Dimension 600 × 471 235 × 235 157 × 157 117 × 117 102 × 102

Size (KB) 28.9 9.2 5.2 3.5 2.6

Block Size - 2 × 2 3 × 3 4 × 4 5 × 5

% Space Saved - 68.9 82.0 87.8 91.0

6.2. High Resolution Images. The reference of high resolution images has been reduced in size to

its original size, as shown in Figs. 5, 6 and 7.

6.2.1. Satellite Image: (1200 × 720). The reference of satellite image has been reduced in size to

its original size, as shown in Fig. 5, while the obtained contracted images are shown in Figs. 23, 24, 25

and 26.

Let A1 =

[
129 127

119 131

]
, A2 =

[
126 136

126 130

]
and A3 =

[
130 131

136 144

]

G(T (A1), T (A2), T (A3)) = 26 (6.13)

G(A1,A2,A3) = 51.98 (6.14)

G(T (A1),A1, T (A1)) = 25.62 (6.15)

Substitute (6.13), (6.14) and (6.15) in (5.1), we have

ϕ(26) ≤ αϕ(51.98) + βϕ(51.98) + γϕ(26.03)

0.17 ≤ (α+ β)(0.25) + γ(0.17) (using (5.2)) (6.16)
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For some α, β, γ ∈ [0, 1) in (6.16) satisfies the contractivity condition (5.1).

Figure

23. 385× 385

Figure

24. 256 ×
256

Figure

25. 192×
192

Figure

26. 154×
154

Table 4. Summary of Original Image 5 After Contracted
Test Image Contracted

Figure 5 23 24 25 26

Dimension 1200 × 720 385 × 385 256 × 256 192 × 192 154 × 154

Size (KB) 313 49.5 23.2 13.7 9.5

Block Size - 2 × 2 3 × 3 4 × 4 5 × 5

% Space Saved - 84.1 92.5 95.6 96.9

6.2.2. Paddy Field Image: (1280 × 1024). The reference of paddy field image has been reduced

in size to its original size, as shown in Fig. 6, while the obtained contracted images are shown in

Figs. 27, 28, 29 and 30.

Let A1 =

[
82 86

81 86

]
, A2 =

[
89 92

89 92

]
and A3 =

[
93 93

93 93

]

G(T (A1), T (A2), T (A3)) = 14 (6.17)

G(A1,A2,A3) = 38.48 (6.18)

G(T (A1),A1, T (A1)) = 12.80 (6.19)

Substitute (6.17), (6.18) and (6.19) in (5.1), we have

ϕ(14) ≤ αϕ(38.48) + βϕ(38.48) + γϕ(13.27)

0.11 ≤ (α+ β)(0.22) + γ(0.10) (using (5.2)) (6.20)

For some α, β, γ ∈ [0, 1) in (6.20) satisfies the contractivity condition (5.1).
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Figure

27. 512× 512

Figure

28. 341 ×
341

Figure

29. 256×
256

Figure

30. 204×
204

Table 5. Summary of Original Image 6 After Contracted
Test Image Contracted

Figure 6 27 28 29 30

Dimension 1280 × 1280 512 × 512 341 × 341 256 × 256 204 × 204

Size (KB) 1000 53.3 24.1 13.5 9.1

Block Size - 2 × 2 3 × 3 4 × 4 5 × 5

% Space Saved - 94.6 97.5 98.6 99.0

6.2.3. Stadium Image: (1920× 1200). The reference of stadium image has been reduced in size to

its original size, as shown in Fig. 7, while the obtained contracted images are shown in Figs. 31, 32, 33

and 34.

Let A1 =

[
230 208

218 237

]
, A2 =

[
150 167

197 173

]
and A3 =

[
219 177

210 188

]

G(T (A1), T (A2), T (A3)) = 80 (6.21)

G(A1,A2,A3) = 244.38 (6.22)

G(T (A1),A1, T (A1)) = 70.74 (6.23)

Substitute (6.21), (6.22) and (6.23) in (5.1), we have

ϕ(80) ≤ αϕ(244.38) + βϕ(244.38) + γϕ(71.23)

0.31 ≤ (α+ β)(0.42) + γ(0.29) (using (5.2)) (6.24)

For some α, β, γ ∈ [0, 1) in (6.24) satisfies the contractivity condition (5.1).
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Figure

31. 600× 600

Figure

32. 400 ×
400

Figure

33. 300×
300

Figure

34. 240×
240

Table 6. Summary of Original Image 7 After Contracted
Test Image Contracted

Figure 7 31 32 33 34

Dimension 1920 × 1200 600 × 600 400 × 400 300 × 300 240 × 240

Size (KB) 893 135 63.2 37.5 24

Block Size - 2 × 2 3 × 3 4 × 4 5 × 5

% Space Saved - 84.8 92.9 95.8 97.3

7. Conclusion

The notion of extended G-contraction mapping was implemented in this paper. The metric is

appropriately formed in a nonempty space, and its application to use in a digital image is demonstrated.

The original image size has been reduced without significant loss of image quality. As a result, the

contracted image that occupied less storage space, and it is also easier to send. The framework is

implemented with a variety of block sizes to see how far an image can be contracted. Since the

designed function iterates repeatedly on the input image, the concluding contracted images are of

high quality when the input image is exceptionally large or has little color variation.
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