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Abstract. This article reports an extension of powered inverse Rayleigh distribution via DUS trans-

formation, named DUS-Powered Inverse Rayleigh (DUS-PIR) distribution. Some statistical properties

of suggested distribution in particular, moments, mode, quantiles, order statistics, entropy and , in-

equality measures have been investigated extensively. To estimate the parameters, maximum likelihood

estimation (MLE) is discussed. The model flexibility is validated by two real data.

1. Introduction

The accuracy and consistency of statistical analysis are extremely affected by the assumed probability

model or distribution. As a result of this verity, in recent decades formulating new distributions becomes

a basic conception in statistical theory; this is generally done by adding an extra parameter to the

baseline distribution. For example, [1–5] and many more. The different transformation techniques

have been used by the several authors. For example, DUS, sine, and MG transformations are reported

by [6–8]. In all transformation exponential distribution is deemed as baseline distribution.

If g(x) and G(x) denote the probability density function (PDF) and cumulative density function

(CDF) of a baseline lifetime distribution, then the PDF and CDF of a DUS-transformation are given

as

f (x) =
1

e − 1
g(x)eG(x), x > 0, (1.1)

F (x) =
eG(x) − 1

e − 1
, x > 0. (1.2)
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Hazard rate function (HRF) is.

h(x) =
g(x)

e−[G(x)−1] − 1
. (1.3)

Inverse Rayleigh (IR) distribution was introduced by [9]. IR distribution finds enormous applications

in survival analysis. Various properties of IR distribution have been studied by [10]. Powered IR

distribution was proposed by [11] through the powered transformation to increase its flexibility and

applicability. [5] established and studied in detail the length powered IR distribution. [12] established

the several recurrence relations from powered IR distribution.

A random variable (r.v.) X follows powered IR distribution, if its PDF and CDF are given, respec-

tively by:

g(x ;α, θ) =
2α

θx2α+1
e−

1

θx2α , α, θ > 0, x > 0. (1.4)

G(x ;α, θ) = e−
1

θx2α , α, θ > 0, x > 0. (1.5)

To modelling all kinds of data sets, no single distribution can be speculated as the best fit. Despite of

existence many distributions in the literature. We are therefore induced to establish a new distribution

via DUS transformation and named as DUS-Powered IR distribution.

The paper is framed as follows: In Section 2, DUS-Powered IR distribution is derived and graphically

depicted. Several mathematical and statistical properties are established in Section 3. Also, the

entropies and measures of inequality are addressed in Sections 3. The parameters estimation is

obtained in Section 4. The model superiority is shown through two real data in Section 5. Section 6

reports the concluding remarks.

2. DUS- Powered IR Distribution

Now utilizing (1.4) and (1.5) into (1.1) and (1.2) respectively. We can obtain the CDF, PDF and

HRF for DUS-PIR distribution as follows:

F (x ;α, θ) =
exp

(
e−

1
θ
x−2α

)
− 1

e − 1
, x > 0;α, θ > 0, (2.1)

f (x ;α, θ) =
2αx−(2α+1)

(e − 1)θ
exp

(
e−

1
θ
x−2α

)
e−

1
θ
x−2α

, (2.2)

h(x, α, θ) =
2αx−(2α+1)e−

1
θ
x−2α

θ
[

exp
(

1− e−
1
θ
x−2α

)
− 1
] (2.3)

respectively.

The depiction of plots are shown in the following figures for fix parameters.
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Figure 1. f (x) for fix parameters.

Figure 2. h(x) for fix values of α and θ.

The depiction from Figures 1 and 2 are.

(i) The DUS-PIR distribution has unimodal,

(ii) The failure rate is increasing, then decreasing for fix values of parameters α and θ.

3. Some Statistical Properties

Some statistical properties of DUS-PIR distribution, including rth moments, quantile function,

skewness, kurtosis, and order statistics are studied.

3.1. The moments: Let X ∼DUS-PIR distribution with parameters (α, θ), then the rth moment is

given in Theorem 3.1.
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Theorem 3.1. The moments of DUS-PIR distribution is given as

µ
′
r =

(
1

e − 1

) ∞∑
k=0

1

(k + 1)!

(
k + 1

θ

) r
2α

Γ
(

1−
r

2α

)
. (3.1)

Proof: The rth moment of the r.v. X is

µ
′
r =

∫ ∞
0

x r f (x ;α, θ)dx.

From (2.2), we have

µ
′
r =

∫ ∞
0

2α

(e − 1)θ
x r−(2α+1)ee

− 1
θ
x2α

e−
1
θ
x2α

dx,

Since θ > 0, we have ee
− 1
θ
x2α

=
∑∞
k=0

e
− k
θx2α

k! , so

µ
′
r =

∞∑
k=0

2α

k!(e − 1)θ

∫ ∞
0

x r−(2α+1)e−
(k+1)
θ
x−2α

dx (3.2)

Let u =
(
k+1
θ

)
x−2α, then Equation (3.2) reduces as

µ
′
r =

(
1

e − 1

) ∞∑
k=0

1

(k + 1)!

(
k + 1

θ

) r
2α

Γ
(

1−
r

2α

)
.

3.2. Mode: Setting first derivative of (2.2) as follows.

f
′
(x) =

2α

(e − 1)θ2
x−2(2α+1) exp

(
e−

1
θ
x−2α −

1

θ
x−2α

)[
2α− θ(1 + 2α)x2α + 2αe−

1
θ
x−2α

]
= 0.

(3.3)

Above equation does not possess analytic solution in x .

For a quick graphical solution of the mode, we sketch the plot of left-hand side of (3.3) at different

values of α, θ as depicted in Figure 3.

Figure 3. f
′
(x) for selected values of α and θ.
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It confirms from these plots that DUS-PIR distribution has one mode based on selected values of

α and θ.

3.3. Quantiles and Random Number Generation: The quantile xq,(0 < q < 1), of DUS-PIR(α, θ)

distribution can be attained, by employing the CDF in (2.1), in the given simple form.

xq =

{
−

1

θ ln [ln(q(e − 1) + 1)]

} 1
2α

. (3.4)

One of the good characteristics of the suggested distribution is that we can smoothly calculate its

quantiles in simple as well as an explicit form.

To generate random sample with size (n ≥ 1) form DUS-PIR(α, θ) distribution, we can use (3.4) by

generating n random values for q, where q ∼ U(0, 1).

To find the median, using the above equation for q = 0.50,

Med. =

{
−

1

θ ln [ln(0.5(e + 1))]

} 1
2α

.

The shapes of DUS-PIR distribution can be viewed by skewness and kurtosis. Utilizing the concept

of quantiles, skewness and kurtosis are as follows, [13].

Bowley’ skewness:

sk =
x0.75 − 2x0.50 + x0.25

x0.75 − x0.25
.

Moors’ kurtosis:

ku =
x0.875 + x0.375 − (x0.625 + x0.125)

x0.75 − x0.25

3.4. Order Statistics: The rth order statistic (O.S.) X(r) based on ordered sample (X1 < X2 < · · · <
Xn) from a continuous distribution having CDF FX(x) and PDF fX(x) is.

fX(r)
(x) =

n!

(r − 1)!(n − r)!
fx(x)[Fx(x)]r−1[1− Fx(x)]n−r , r = 1, 2, · · · , n. (3.5)

So, the r th order statistic from DUS-PIR distribution is

fX(r)
(x) =

n!

(r − 1)!(n − r)!

2αx−(2α+1)

(e − 1)nθ
e

(
e−

1
θ
x−2α

− 1
θ
x−2α

) [
ee
− 1
θ
x−2α

− 1

]r−1 [
e − ee

− 1
θ
x−2α

]n−r
(3.6)

Putting r = 1 and r = n in (3.6), we can obtain PDF of smallest and largest (O.S.).
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3.5. Entropy: Entropy helps to measure the uncertainty of the r.v. X. Some notable entropies are

defined as follows.

Rényi entropy:

Rδ(x) =
1

1− δ log

[∫ ∞
0

f δ(x)dx

]
, δ > 0 and δ 6= 1. (3.7)

Tsallis entropy:

Tδ(x) =
1

1− δ

[∫ ∞
0

f δ(x)dx − 1

]
, δ > 0 and δ 6= 1. (3.8)

Havrda and Charvat entropy (H-C)

HCδ(x) =
1

21−δ − 1

[∫ ∞
0

f δ(x)dx − 1

]
. (3.9)

Theorem 3.2. If X ∼DUS-PIRD, then the Rényi Entropy of X is given as

Rδ(x) =
1

1− δ log

 1

2α

(
2α

θ(e − 1)

)δ
Γ

(
δ(2α+ 1)− 1

2α

) ∞∑
k=0

δk

k!

(
θ

k + δ

) δ(2α+1)−1
2α

 . (3.10)

Proof: From (2.2) into (3.7), we have

f δ(x) =

(
2α

θ(e − 1)x2α+1

)δ ∞∑
k=0

δke−
(k+δ)
θ
x−2α

k!

and ∫ ∞
0

f δ(x)dx =

(
2α

θ(e − 1)

)δ ∞∑
k=0

δk

k!

∫ ∞
0

x−δ(2α+1)e−
(k+δ)
θ
x−2α

dx

Let u = k+δ
θ x

−2δ, then x =
(
θ
k+δ

)− 1
2α u−

1
2α and∫ ∞

0

f δ(x)dx =

(
2α

θ(e − 1)

)δ ∞∑
k=0

δk

k!

(
θ

k + δ

) δ(2α+1)−1
2α 1

2α

∫ ∞
0

u
δ(2α+1)−1

2α−1
−1e−udu

=
1

2α

(
2α

θ(e − 1)

)δ ∞∑
k=0

δk

k!

(
θ

k + δ

) δ(2α+1)−1
2α

Γ

(
δ(2α+ 1)− 1

2α

)
.

Therefore, the Renyi entropy is

Rδ(x) =
1

1− δ log

 1

2α

(
2α

θ(e − 1)

)δ
Γ

(
δ(2α+ 1)− 1

2α

) ∞∑
k=0

δk

k!

(
θ

k + δ

) δ(2α+1)−1
2α

 .
Theorem 3.3. If X ∼ DUS-PIRD(α, θ), the Tsallis entropy of X is

Tδ(x) =
1

1− δ

 1

2δ

(
2α

θ(e − 1)

)δ ∞∑
k=0

δk

k!

(
θ

k + δ

) δ(2α+1)−1
2α

Γ

(
δ(2α+ 1)− 1

2α

)
− 1

 . (3.11)

Proof: Proof is easy.
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Theorem 3.4. If X ∼DUS-PIRD(α, θ), the Havrda and Charvat entropy of X is

HCδ(x) =
1

21−δ − 1

 1

2α

(
2α

θ(e − 1)

)δ ∞∑
k=0

δk

k!

(
θ

k + δ

) δ(2α+1)−1
2α

Γ

(
δ(2α+ 1)− 1

2α

)
− 1

 . (3.12)

Proof: Proof is easy.

3.6. Bonferroni and Lorenz curves: A model for inequality of wealth distribution was proposed

by [14] and to measure the income inequality introduced by [15]. Both models are used in financial

mathematics, insurance, and population studies. Bonferroni and Lorenz’s curves are defined as:

B(p) =
1

pµ

∫ q

0

xf (x)dx, L(p) =
1

µ

∫ q

0

xf (x)dx. (3.13)

From (2.2), ∫ q

0

xf (x)dx =

∞∑
k=0

2α

k!(e − 1)θ

∫ ∞
0

x−2αe−
(k+1)
θ
x−2α

dx

Let u =
(
k+1
θ

)
x−2α, then

∫ q

0

xf (x)dx =

∞∑
k=0

1

k!(e − 1)θ

(
θ

k + 1

)1− 1
2α
∫ ∞

( k+1
θ )q−2α

u−
1

2α e−udx

=
1

e − 1

(
1

θ

) 1
2α
∞∑
k=0

1

(k + 1)!
(k + 1)

1
2αΓ

(
1−

1

2α
,

(k + 1)

θ
q−2α

)
. (3.14)

From equations (3.1), when r = 1 and (3.14) into (3.13), then the Bonferroni curve is given by

B(p) =
1

pµ

∫ q

0

xf (x)dx =

∑∞
k=0

(k+1)
1

2α

(k+1)! Γ
(

1− 1
2α ,

(k+1)
θ q−2α)

)
p
∑∞
k=0

(k+1)
1

2α

(k+1)! Γ
(

1− 1
2α

) . (3.15)

The Lorenz curve is obtained as

L(p) =
1

µ

∫ q

0

xf (x)dx =

∑∞
k=0

(k+1)
1

2α

(k+1)! Γ
(

1− 1
2α ,

(k+1)
θ q−2α)

)
∑∞
k=0

(k+1)
1

2α

(k+1)! Γ
(

1− 1
2α

) . (3.16)

4. Estimation of Parameters

To understand the probabilistic model fully, estimating the unknown parameters for designated

sample is a main procedure. Various estimation approaches under classical and Bayesian model are

reported in literature. This section considers the estimation of DUS-PIR distribution via maximum

likelihood approach based on complete data.
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4.1. Maximum Likelihood Estimation: Let x1, x2, · · · , xn random sample follows the DUS-PIR dis-

tribution. The likelihood function (L.F.) of (2.2) is

L(α, θ) =

n∏
i=1

f (xi , α, θ) =

n∏
i=1

[
2αx−(2α+1)

(e − 1)θ
exp

(
e−

1
θ
x−2α

)
e−

1
θ
x−2α

]
. (4.1)

The log-L.F.is. given by

LogL(α, θ) = −n ln(e−1)+n ln(2α)−n ln(θ)−(2α+1)

n∑
i=1

ln(xi)−
1

θ

n∑
i=1

x−2α
i +

n∑
i=1

e−
1
θ
x−2α
i . (4.2)

The partial derivatives of (4.2) are as follows.

∂

∂α
LogL(α, θ) =

n

α
− 2

n∑
i=1

ln(xi) +
2

θ

n∑
i=1

x−2α
i ln(xi) +

2

θ

n∑
i=1

e−
1
θ
x−2α
i x−2α

i ln(xi),

∂

∂θ
LogL(α, θ) = −

n

θ
+

1

θ2

n∑
i=1

x−2α
i +

1

θ2

n∑
i=1

e−
1
θ
x−2α
i x−2α

i .

The MLEs of α and θ can be derived as follows.

n

α
− 2

n∑
i=1

ln(xi) +
2

θ

n∑
i=1

x−2α
i ln(xi) +

2

θ

n∑
i=1

e−
1
θ
x−2α
i x−2α

i ln(xi) = 0, (4.3)

−
n

θ
+

1

θ2

n∑
i=1

x−2α
i +

1

θ2

n∑
i=1

e−
1
θ
x−2α
i x−2α

i = 0. (4.4)

Equations (4.3) and (4.4) has no closed form. So, we shall use a numerical program system to find

its solution with respect to α and θ.

4.2. Asymptotic Confidence Interval: We derive asymptotic confidence intervals of unknown pa-

rameters using variance- covariance matrix VVV , which is the inverse Fisher information matrix. The ML

estimators are asymptotically normally distributed with multivariate normal distribution, see, [16].

(α̂, θ̂) ∼ N2(ΘΘΘ, VVV ),

where ΘΘΘ = (α, θ) and VVV is given as follows

VVV =

(
−∂

2LogL
∂α2 −∂

2LogL
∂α∂θ

−∂
2LogL
∂α∂θ −∂

2LogL
∂θ2

)−1

Θ→Θ̂

,
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where,

∂2

∂α2
LogL(α, θ) = −

n

α2
−

4

θ

n∑
i=1

x−2α
i [ln(xi)]2 +

4

θ2

n∑
i=1

e−
1
θ
x−2α
i x−2α

i [ln(xi)]2 (4.5)

−
4

θ

n∑
i=1

e−
1
θ
x−2α
i x−2α

i [ln(xi)]2,

∂2

∂α∂θ
LogL(α, θ) = −

2

θ2

n∑
i=1

x−2α
i ln(xi) +

2

θ3

n∑
i=1

e−
1
θ
x−2α
i x−4α

i ln(xi) (4.6)

−
2

θ2

n∑
i=1

e−
1
θ
x−2α
i x−2α

i ln(xi),

∂2

∂θ2
LogL(α, θ) =

n

θ2
−

2

θ3

n∑
i=1

x−2α
i +

1

θ4

n∑
i=1

e−
1
θ
x−2α
i x−4α

i −
2

θ3

n∑
i=1

e−
1
θ
x−2α
i x−2α

i . (4.7)

A 100(1− δ)% confidence interval for ΘΘΘ = (α, θ), can be approximated by

α̂± z δ
2

√
var(α̂), and θ̂ ± z δ

2

√
var(θ̂)

where z δ
2
is upper 100 δ2 -th percentile of N(0, 1), and var(Θ̂i) is the diagonal i-th element in VVV .

5. Practical Illustration

The main objective of any new distribution is to increase its adaptability and applicability, which

makes it useful in several field of studies, particularly, in the fields concerning with lifetime analysis. This

section depicts the usefulness of DUS-PIR distribution and compare with the Powered IR, Exponential

transformed IR, Transmuted IR, Exponentiated IR, IR and Rayleigh distribution using two sets of data.

For comparison some criteria such as,

• K-S. (Kolmogorov Smirnov) statistic,

K − S = sup
x
|Fm(x)− F̂ (x)|

• R2: the determination coefficient,

R2 =

∑m
i=1

(
F̂ (xi)− F

)2∑m
i=1

(
F̂ (xi)− F

)2
+
∑m
i=1

(
Fm(xi)− F̂ (xi)

)2 ,

• RMSE: the root mean square error

RMSE =

[
1

m

m∑
i=1

(
Fm(xi)− F̂ (xi)

)2

]1/2

,

• A.I.C. (Akaike Information Criterion), [17].

AIC = 2k − 2`.
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• A. I.C.C. (Akaike Information Criterion with Correction), [18].

AAIC = AIC +
2k(k + 1)

m − k + 1
,

• B.I.C. (Bayesian Information Criterion), [19].

BIC = k ln(m)− 2`,

• and H.Q.I.C. (Hannan-Quinn Information Criterion)

HQIC = 2k ln[ln(m)]− 2`,

have been used, where k and m stands for number of parameters and observed data, ` = LogL, F̂ (x)

is estimated CDF and Fm(x) is the empirical DF.

F̄ (x) =
1

m

m∑
i=1

F̂ (xi), Fm(x) =
1

m

m∑
i=1

I
(
x(i) ≤ x

)
and

I
(
x(i) ≤ x

)
=

{
1, if x(i) ≤ x
0, otherwise

According to prevailing knowledge, the model with the lowest AIC, AAIC, BIC, HQIC and K-S value

is considered as best fit for the data.

Dataset 1: The following data reported by [20]. It comprises thirty consecutive March precipitation

(in inches) observations.

0.77 1.74 0.81 1.20 1.95 1.20 0.47 1.43 3.37 2.20 3.00 3.09 1.51 2.10 0.52

1.62 1.31 0.32 0.59 0.81 2.81 1.87 1.18 1.35 4.75 2.48 0.96 1.89 0.90 2.05

For the above considered data, we have extracted the values of MLEs of parameters, K-S test, and

p-values in below table.

Table 1. MLEs, K-S statistics and p-value.
Models α̂ θ̂ λ̂ K-S p-value

DUS-PIR 0.860 1.332 – 0.14557 0.52380

PIR 0.775 0.975 – 0.15223 0.462057

ETIR – 1.454 – 0.18935 0.207305

TIR – 1.591 -0.67 0.18176 0.247695

EIR 0.731 1.456 – 0.19818 0.166981

IR – 1.164 – 0.23956 0.053115

Rayleigh – 3.773 – 0.35059 0.000843

The log–likelihood (`), information criteria, RMSE and R2 are reported below.
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Table 2. The `, Information Criteria, RMSE and R2.
Models ` AIC AICC BIC HQIC RMSE R2

DUS-PIR -41.238 86.4760 86.9210 89.2790 87.3730 0.054453 0.96024

PIR -41.917 87.8340 88.2780 90.6360 88.7310 0.059373 0.95182

ETIR -42.026 86.0530 86.1950 87.4540 86.5010 0.075709 0.93570

TER -42.101 88.2020 88.6470 91.0050 89.0990 0.073716 0.94105

EIR -136.04 276.081 276.525 278.883 276.977 0.078017 0.92284

IR -44.137 90.2730 90.4160 91.6740 90.7210 0.107514 0.88381

Rayleigh -38.924 79.8490 79.9910 81.2500 80.2970 0.201452 0.48597

Listed values in the Tables 1-2. It has been noticed that DUS-PIR distribution interprets a better fit

among all lifetime distributions.

The variance-covariance matrix is given as

VVV =

(
0.012 0.008

0.008 0.076

)
.

Then the 95% confidence interval for α and θ for DUS-PIR distribution are (0.648, 1.073) and

(0.790, 1.874), respectively. It is shown that the LF has a unique solution by Figure 4.

Figure 4. The profile of the log-LF of α and θ.

Dataset 2: The given data set is reported by [21]. It represents the survival times (in days) of 72

guinea pigs injected with different doses of tubercle bacilli.

2 24 34 44 54 57 60 61 65 70 76 84 95 109 129 146 233 297

15 32 38 48 54 58 60 62 67 72 76 85 96 110 131 175 258 341

22 32 38 52 55 58 60 63 68 73 81 87 98 121 143 175 258 341

24 33 43 53 56 59 60 65 70 75 83 91 99 127 146 211 263 376

Estimated values of parameters, test statistic and criterion are provided in the following table.
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Table 3. MLEs, K-S statistics and p-value.
Models α̂ θ̂ λ̂ K-S p-value

DUS-PIR 0.782 0.003 – 0.18446 0.01290686

PIR 0.797 0.004 – 0.19755 5.1528E-24

ETIR – 5.715×10−4 – 0.20597 0.00371676

TIR – 6.503×10−4 -0.781 0.17999 0.01642093

EIR 0.616 6.555×10−4 – 0.20997 0.00290489

IR – 4.571×10−4 – 0.25083 0.00017822

Rayleigh – 1.628×104 – 0.97964 3.3351×10−62

Table 4. The ` , Information Criteria, RMSE and R2.
Models ` AIC AICC BIC HQIC RMSE R2

DUS-PIR -394.466 792.932 793.106 797.485 794.744 0.068685 0.931008

PIR -395.649 795.298 795.472 799.852 797.111 0.076096 0.913825

ETIR -400.074 802.149 802.206 804.426 803.055 0.092092 0.899998

TIR -398.920 801.839 802.013 806.392 803.652 0.078811 0.929423

EIR -614.106 1232.00 1232.00 1237.00 1234.00 0.083047 0.899951

IR -406.736 815.472 815.529 817.749 816.378 0.126351 0.831767

Rayleigh -408.300 818.600 818.657 820.877 819.506 0.576828 5.726×10−05

From Tables 3-4. It has been observed that DUS-PIR distribution suggests a better fit among all

lifetime distributions for considered data. The variance-covariance matrix is given as

VVV =

(
0.004 −7.853× 10−5

−7.853× 10−5 1.680× 10−6

)
.

Then the 95% confidence interval for α and θ for DUS-PIR distribution are (0.659, 0.905) and

(1.589R×10−4, 0.005.), respectively. It is shown that the LF has a unique solution by Figure 5.

Figure 5. The profile of the log-LF of α and θ.
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6. Conclusion

In this article, a new exponential transformed powered inverse Rayleigh distribution which includes

unimodal behavior, and some of its basic properties are investigated. From the computation, it is

confirmed that proposed distribution complies a better fitting to the datasets under consideration in

terms of all the criteria.
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