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Abstract. Using C-class functions, we demonstrate a few popular common coupled fixed point theo-
rems on Ap-metric spaces and discuss some implications of the main findings. Additionally, we provide
examples to illustrate the findings and their applications to both homotopy theory and integral equa-

tions.

1. Introduction

Fixed point theory plays a significant role in many parts of the development of nonlinear analysis.
It has been applied to various fields of engineering and research. This research was inspired by recent
work on the extension of the Banach contraction principle on Ap metric spaces, which was carried
out by M. Ughade et al. [1] and studied various fixed point results on these spaces. In the further, N.
Mlaiki et al. [2] and K. Ravibabu et al. [3], [4] and P. Naresh et al. [5] succeeded in deriving unique
coupled common fixed point theorems in Ap-metric spaces.

Sessa [6] began researching common fixed point theorems for weakly commuting pair of mappings
in 1982. Later, in 1986, Jungck [7] expanded the idea of weakly commuting mappings to compatible
mappings in metric spaces and proved compatible pair mappings commute on the sets of coincidence

point of the involved mappings. When they commute at their coincidence sites, Jungck and Rhoades [8]
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introduced the idea of weak compatibility in 1998 and demonstrated that compatible mappings are
weakly compatible but the reverse is not true.

However, Khan et al. [9] first proposed the idea of modifying distance function, which is a control
function that modifies the distance between two locations in a metric space. Ansari [10] presented the
idea of C-class functions in 2014 and proved the unique fixed point theorems for certain contractive
mappings with regard to the C-class functions, which started a lot of work in this field (See. [11],
[12], [13], [14], [15], [16], [17])

The idea of coupled fixed point was first developed by Guo and Lakshmikantham [18] in 1987 .
Later, employing a weak contractivity type assumption, Bhaskar and Lakshmikantham [19] developed
a novel fixed point theorem for a mixed monotone mapping in a metric space driven with partial
ordering. See study results in ( [20], [21], [22], [23], [24]) and related references for additional results
on coupled fixed point outcomes.

In the framework of Ap-metric spaces, the goal of the current study is to establish original common
coupled fixed point theorems using C-class functions. Additionally, we may provide relevant applications
for homotopy, integral equations, and appropriate examples.

First we recall some basic results.

2. Preliminaries

Definition 2.1. ( [1]) Let & be a non-empty set and b > 1 be given real number. A mapping
Ap : §" = [0,00) is called an Ap-metric on S if and only if for all T;,a € S i =1,2,3,..n; the

following conditions hold :

(Apl) Ap(T1, Vo, e, Tho1.Ts) 20,
(Ap2) Ap(T1, Vo, oo, Tht, T) =0 Ty ="To= - =T =T,
Ap (T, Ty, (T1)p_1, a)
(Ap3) Ap(T1, T2y oo, Tho1,Th) < b FAp (T2, T2, (T2)n-1.2)
E A (Toets Tocts e, (Th1)n_1, )
+Ap (T, Thyo, (Th)n-1. )

Then the pair (3, Ap) is called an Ap-metric space.

Remark 2.1. ( [1]) The class of Ap,-metric spaces is actually larger than that of A-metric spaces, it
should be emphasised. Each A-metric space is, in fact, a Ap-metric space with b = 1. The opposite
isn't always true, though. A n-dimensional Sp-metric space is also a Ap-metric space. As a result, a

Ap-metric with n = 3 is a particular instance of a Sp-metric.
The example below demonstrates that an Ap-metric on & need not be an A-metric on <.

Example 2.1. ( [1]) Let & = [0, +00), define Ap : " — [0, +00)
as Ap (T1, Vo, ., Tho1, Vo) = >0, Z/q |7 — T2 forall T; € S,i=1,2,---. Then (S, Ap)

Is an Ap-metric space with b =2 > 1.
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Definition 2.2. ([1]) Let (3, Ap) be a Ap-metric space. Then, for T € &, r > 0 we defined the open
ball Ba,(T, r) and closed ball Ba,[Y, r] with center T and radius r as follows respectively:

BA[,(T: I’) = {U eg: Ab(U, O, (U)n—ly T) < I’},
and

B . rl={0eS: Ap(B. T, (B)ner, T) < 1}

Lemma 2.1. ( [1]) In a Ap-metric space, we have
(1) Ap(T, T, (T)n—1,0) < bA(G. G, -+, (O)n-1, T),
(2) Ap(T. Ty (T)n=1,08) < b(n = DAY, T, (T)p-1,8) + b2 Ap(8, 5, -+, () -1, 9).

Definition 2.3. ( [1]) If (3, Ap) be a Ap-metric space. A sequence { T} in & is said to be:

(1) Ap-Cauchy sequence if, for each € > 0, there exists ng € N such that

Ap(Ti, Theyveeeee (T)n—1, Tm) < € for each m, k > ng.
(2) Ap-convergent to a point T €  if, for each € > 0, there exists a positive integer ng such that
Ap(Tp, Tgyemeene (Tx)n-1, ) <€ for all n > ng and we denote by klim Te="T.
—00

(3) If every Ap-Cauchy sequence is Ap-convergent in S, then the Ap-metric space (¥, Ap) Is said

to be complete.

Definition 2.4. [10] A continuous mapping " : [0, +00) x [0. + c0) — R is called a C-class function
if for all s*, t* € [0, 00),

(a) T(s",t") <s;

(b) T(s* t*) =s* implies that either s* =0 or t*=0.

The family of all C-class functions is denoted by C.

Example 2.2. [10] Each of the functions T : [0, +00) x [0. + c0) — R defined below are elements of
C.
(a) T(s*, t*) =s" —t~,
(b) T(s*, t*) = ms* where m € (0,1).
(c) T(s* t") = ﬁ where r € (0, 00).
(d) T(s*, t*) =s*n(s*) wheren: [0,00) — [0, 00) is continuous function.
(e) T(s* t*) =s" —(s*) for all s*, t* € [0, +00) where, the continuous function
© : [0,00) = [0, 0) such that p(s*) =0« s* =0.
(F) T(s*, t*) =sQ(s*, t*) for all s*, t* € [0, +00) where, the continuous function
Q:[0,00)? = [0, 00) such that Q(s*, t*) < 1.

Definition 2.5. [9] A function 6, : [0,00) — [0, 00) is called an altering distance function if the

following properties are satisfied:

(a) B, is nondecreasing and continuous;
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(b) 6,(t) =0 if and only if t = 0.

Here © represents the family of all altering distance functions.

We must take the following into consideration in order to get our outcomes.

3. Main Results

Definition 3.1. Let (3, Ay) be a Ap-metric spaces and suppose Q2 : I° — & be a mapping. If

Q(p,w)=p, Q(w, p) =w for p,w € S then (p, w) is called a coupled fixed point of Q.

Definition 3.2. Let (3, Ap) be a Ap-metric spaces and suppose Q : 3% — S and A+ S — § be two
mappings. An element (g, w) is said to be a coupled coincident point of Q2 and N if
F(p,w)=Np, Q(w,p)=\w

Definition 3.3. Let (3, Ap) be a Ap-metric spaces and suppose 2 : %2 — I, A 1 S — & be two
mappings. An element (g, w) is said to be a coupled common point of Q2 and N if

Qpw) =N =p, Qw, p)=Nw=muw,

Definition 3.4. Let (S, Ap) be a Ap-metric space.

(a) A pair (2, N) is called weakly compatible if N(Q2(gp, w)) = Q2(Ag, Nw) whenever for all
©, w € S such that F (p, w) = Np, Q(w,p) =\w
(b) A pair (2, \) is called compatible if

pIi_}mc>O Ap(NQ2(ip, Jp)  NQ21p, Jp) -+ Q2(Nip, Njp)) = pIi_)moo Ab(NQUp, 1), NQ2Up, 1p) =+ . 2(NJp, Nip)) =0
wherever {i,}, {Jp} are sequences in , such that
plemQ(/p,Jp) =N, =1and plemQQp, Ip) =Np =J.

Lemma 3.1. /f the pair (2, \) of mappings on the Ap-metric space (S, Ap) is compatible, then it is

weakly compatible. The converse does not hold.

Proof. Let Q(i,j) = Ai and Q(j, 1) = \j for some /,j € . we have to prove that AQ(/, ) = Q(Ai, \j)
and AQ(J, 1) = Q(Nj,\i). Put 1, =i and j, = j for every p € N. we have Q(ip, jp) = Nip = Ai and
QUp, 1p) = Njp = Nj. Since (2, A\) is compatible

pleOO Ap(NQ2(1p, 4p) N2(1p, Jp) -+ . QNI Njp)) = plmm Ap(NQUp, 1p), N2Up, 1p) =+ QUNp, Nip)) =0

Therefore, AQ(7, ) = Q(Ai, \j) and AQ(J, i) = Q(N\Jj, Ai) and hence the pair (2, A) is weakly compat-
ible. However, the opposite need not be the case.

For example, Let & = [0, +00), define Ap : " — [0, +00) as

Ap (Y1, Ty, Tho1, Vo) = >0, i1 Ti = T,|? forall T, € S,i =1,2,---. Then (S, Ap) is
an Ap-metric space with b=2 > 1.
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_ _ ) . 634603 for 1 je[0,1)
Define two mappings €2 : &< — & by Q(/,)) = o and A3 = S
7 for ije€[5, 00)
_ AHO-0 for j€[0,3)
by A(7) = g
7 for €[5 00)
. 24+6n—6
Now we define the two sequences {i,}, {Jp} as 1, = % and j, = 1+ %, then Q(ip, jp) = "+6§ — =1
246n—6 1 5+6n+3 2n+1

as p — oo and A(lp) = 24— %= as p — 00, also Qp, Ip) = >—4,— — 5= as p — oo and

9
=+6n+3
/\(_/ ) = PT_> 21;-:7_1 as p — o0. But

p“_>moo Ap(N1p, Jp), N21p, Jp) =+ QLN Np))

2T 1+ 36n% + 180 — 54 2L 4 36n% + 18n — 54 2L 13617 — 45

= lim A.(-"
oim_ Aol 3612 ’ 3612 T 36m
= (n—1)] 172 |“#0, if n=2.

and

p'me Ap(NQ2Up, 1p), N2Up, 1p) - -+ 2(NJp, Nip))

i 2L 4+36n*+18n+27 2 +36n°+18n+27 2L +36n° 436
= i Al 3612 | 3612 BT
2n—1

4n?

= (n—1)| 2#0, if n=2.

Thus the pair (22, A) is not compatible. Also, Then for any /,j € [% o), (7. 7)is a coupled coincidence

point of  and A it is namely that i = j = 7, Q(i,j) = % =N and Q(, 1) = % =/ for n = 2 and
AQi, j) = QNI N), A, 1) = Q(N, \i), showing that Q, A are weakly compatible maps on S.

Theorem 3.1. Let (3, Ap) be a complete A,-metric space. Suppose T : 3° — S and f : S — S be

a two mappings satisfying the following:
Ne 62 Ap(T (12), T(1,0), -+, T(8,0))) <T (n. (Ap(f1, f1, -+, £8)), 6, (Ap(fy, 1, -+, FO))) (3.1)

forall1,7,0,0 € &, wheren,, 0, € © and I € C
a) T(3%) C £(S),

b) pair (T, f) is compatible;

c) f is continuous.

Then there is a unique common coupled fixed point of T and f in .
Proof. Let 1y, jo € S be arbitrary, and from (a), we construct the sequences {i,},{)p}, in & as

T (pJp) =Fipx1 =Np, T Up,Ip) = fJpy1 = Tp, where p=0,1,2,....
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Now from (3.1), we have

N (262 Ap(R1, Ry, -+, R2)) = mu (262 Ap(T (1, 1) T (1), T (12, 12)))

< T (Ap(frn, frn, o f2)) 0 (Ap(Fun, fin, - F2)))
< N (Ap(fin, fr, - o))
< M (Ap(Rg, Ro, --+ , Ny))

By the definition of n,, we have that
1
Ap(R, Ny, -+ Ny) < szAb(No,No,--- ,Np).
Also

n. (262Ap(Ro, o, -+, R3)) = mu (26%Ap(T (12,02), T (2, 12), -+, T(13.13)))

< T (Ap(fro fio, oo f13)) 0 (Ap(Fra, Fr2, -+ F13)))
< N (Ap(fi, fro, -+ f13))
S 77* (Ab(vava YNQ))

By the definition of 7, we have that

1
Ab(Nz,Nz,--- ,Ng) < @Ab(Nl,Nl,---,Ng)
1
< mAb(NO,NO,'“ Np)

Continuing this process, we can conclude that
1
Ab(Np, Np, s ,Np+1) < WA[,(NQ, No, s ,Nl) — 0 as p — Q.
that is
p||_>moo Ab(Np, Np, ctt Ner]_) — 0
Similarly, we can prove that
mem Ap(Tp, Tp, -+ Tpy1) = 0.

Now for g > p, by use of (Ap3), we have

Ap (vava --------- (Np)nflprJrl)
+AL (N, Ny, o, Np)p—1, N
Ab(prpr.” ,anlqu) S b b( P P ( P)n 1 P+1)
+ """ +Ab (NP’NP’ ......... (Np)n,]_,Np+1)

+Ap (Nq-qu --------- (NQ)nfl.Nerl)
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< b(n=1)As (R R oo (o)1, Ry
+bA, (Rg, Rg, ooy (Ng)n—1,Npt1)
b(n—1)Ap (Rp, Rp, ..o, (Rp)n—1,Np+1)
+5%Ap (Rpt1, Rp1, v, (Npr1)n-1.Rqg)
b(n — 1)As (Np Rp oo (Rp)no1, Rpi1)
+b3(n = 1)Ap Npr1, Rpi1, oo, (Rps1)n-1, Npi2)
+b*Ap (Npi2, Rpi2, v, (Rp42)n—1. Rg)

IN

IN

< b(n—=1)Ap (Rp, Np, .oy (Rp)n—1,Rp+1)
+b3(n = 1)Ap Rpy1, Rpi1, oo, (Rpi1)n_1, Rpio)
+5°(n = 1)Ap (Rpi2, Rpp2, oo, (Rp12)n-1, Rp43)
+b"(n = 1)Ap (Rpr3, Vo3, oo (Rp4+3)n—1, Rpt4)
+o BT (0~ 1A, (Rgo2, N2, e, (Rg—2)n_1,Rg_1)

+b7972P 3 AL (Rgo1, Rg—1, e, (Rg—1)n—1,Rq)

1 1 1

IA

... b29T2P2

1

2qg—2p—3
+b AT

Ap (Ro, R, -+, Xp)

L
22

IN

1 > 1 4, L o 2g—2p—4

1

2q—2p—3/_~
+b (2b2

)9 P AL (Ro, R, -+, Ry)

1 1 1 1

IN

< 2(n-1) b (Ng, Ng,--+,N1) = 0 as p, g — oo.

— A
SeTaL

1
(n—1) <b(2b2)p + b (2p2)p+1 +b° (2b2)P+2 (2b2)q2> Ab (Ro, Ro, -+~

)qp2> Ap (Ro, Ng, -+, V)

N1)

Hence {X,} is a Cauchy sequence in & . We can also demonstrate that {1}, is Cauchy sequence

in & Therefore,
lim  Ap(Rp, Ry, -+, Ry) =0, and “L” Ap(Tp, Tp, -+, Tq) = 0.
p.q—oc0

p.g—00

Since (S, Ap) is complete, there exist R, T € < such that

p—ro0

Since f : & — & is continuous

. ) o : —
pI|_>moo feip+1 = R and pI|_>mOO fT (1p,Jp) = R

lim N, = pIme T (Ip,Jp) = pIme flpr1 =N pILmOO Tp= pImeT Up, Ip) = pILmOO flpr1="T.
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Jim )41 = T and Jim T (p. 1p) = £7
Since {T, f} is compatible, we have F(fi,, fjp) = fX and F(f)p, fi,) = fT

p“—>moo Ap(T(Fip, f1p), T(Fip, fsp) -+ FT(p,Jp)) = 0. (3.2)

pIL\moo Ap(T(fyp, fip), T(Fip. f1p) -+, FT(Up, 1p)) = 0. (3.3)

Now, we prove that fR = T(X,T) and fT =T(7T,RN).

For all p > 0, we have

Ap (FR R, - (FR) 1, T(F1p, fhp))

, ( (n—1)Ap (FR, R, ..., (FR) 1, FT(1p,Jp)) )
+Ap (FT (py Jp), T T (lpudp)y vy (FT(pugp))n—1, T(fip, f1p))
< (n—=1)bAp (fN, X, ..., (FR) =1, FT(p, Jp))
+b%Ap (T(Fip, fp), T(Fip, FUp), v, (T(Fip, f1p))n—1. F T (Ip. Jp))

On taking limits as p — oo and from (3.2 ) we get
Ab (fN, fN, R (fN)nfl, T(N, T)) = O

Similarly it is easy to see that A, (f YV, fT, -+, (FT)p—1, T(T,R)) =0,

Thus, T(N,T) = fR and T(T,R) = fT. Hence (X, T) is a coupled coincidence point of T and f.
Now we prove that fx =R and fT = T. Now consider

N (20%Ap (AR, R, -+ (FR),-1,Rp)) = 1. (20°A, (TR, T), TR, ), -+ (TR, M) 1, T (1, Jp)
C (M (Ap(FR IR, o Fp)) 0. (Ap(FY T, £)))

IN

A

Ne (Ap(FX, R, -+ fip))

By the definition of n,, we have

1
2b2
Letting p — oo , we get Ap (FX, R, -+, (fR),_1,N) < ﬁAb(fN, R, .-+ N) which implies that
fRX = N. Similarly, we can prove fT = T. Therefore, T(R,T) = fRx =X and T(T,X) =fT =T,

Thus, (X, T) is a common coupled point of T and f. In order to demonstrate uniqueness, we first

Ap (FR R, - (FR) 1, Rp) < Ap(FR, R, - fi1p)

assume that (X*, T*) is a another coupled common fixed point of T and f.

Now

M (267Ap (RUR, -+ (R)p—1, X)) = 1 (26%Ap (T(RT), TR, T), -+ (TR, )t T(RY, T7)))

< T (Ap(FR R, -+ FRY)) 0, (Ap(FT,FT, -+ FT)))
< m (Ap(FR, AR, -+ X))
< (AR, - RY))
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By the definition of n,, we have Ap(X, R, -+ /W) < 2b2 Ap(R, R, -+ [ RF)
Therefore, Ap(X, R, -+, X*) = 0 implies X = R*. Similarly, we can shows that T = T*. Thus,(R, T)

is a unique common coupled point of T and f. Finally, we will show X = T,
e (202A, (R R, (R)pm1, 1)) = 7 (26240 (TR T), TR T, (TR, 1)), T(TLR)))
< T (M (Ap(FR R - FT)), 0, (Ap(FYTL T, -+ X))

IN

N (Ap(FR, R, -+ [ FT))
< un (Ab(Nva ,T))

By the definition of n,, we have Ap(N, N, -+, T) < 2b2Ab(N N, -, T,
Therefore, Ap,(R, R, -+, T) =0 implies X =7T. Thus,(X, X) is a common fixed point of T and f.

Theorem 3.2. Let (3, Ap) be a complete A,-metric space. Suppose T : 3° — S and f : S — S be

a two mappings satisfying the following:
e (202 Ap(T (1), T(1,0), -+ T(8,0))) <T (n. (Ap(F1, f1,---, FB)), 0, (Ap(Ffy, f1, -+, FO))) (3.4)

forall1,7,0,0 € S, wheren,,0, € © and Tl € C
a) T(3?) C (),

b) pair (T, f) is weakly compatible;

c) f(S) is closed in &

Then there is a unique common coupled fixed point of T and f in &

Proof. Let I, jo € & and from Theorem 3.1, we construct the sequences {X,}, {1} in & are Cauchy

sequences. Since (, Ap) is complete, {X,},{T,} are convergent as follows

lim N, = I|m T (Ip,Jp) = I|m flor1 =N Iim Tp=Ilim T (p, 1p) = Ilm flpr1="T.

p—o0 p—o0 p—00
Since () is closed in (3, Ap), so {Xy}, {T,} € f(J) are converges in the complete Ap- metric

spaces (S, Ap), therefore, there exist X, T € (<) with

lim N =N lim T =T
p—00 p+1 p—00 p+1—

Since f : ¥ = F and N, T € (), there exist U, p € I such that fO =R and fp =T. We claim
that T(0,p) =R and T(p, 8) = T. By using (3.4), we have

M (26%Ap (T (19 Jp), T (1 dp), =+ (T (g Jp))n-1, T(T, 0)))

(0. (Ap(Fip, Fip, -+ F8)) 0. (Ap(TUp, Fip, -+ F0)))

< N (Ap(Fip, fip, -, FO))

IN

A

By the definition of 7,
Ap (T Cposp), TUpdp)s =+ (T Updp))n—1, T(5, p)) < ﬁAb(ﬂP' flp, -+ fO)
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Letting p — oo, it yields that
. . 1
meoo Ap (T Upydp), T(pidp) -+ (T(p,Jp))n—1, T (0, p)) < pIme @Ab(f/p, fip,--+,fO)=0.

It follows that Ap (N, R, -+, (W),_1, T(U, p)) = 0 implies that T(5, p) = N. Similarly, we can
prove T (p,0) =T.
Hence, T(O,p) =R =fOand T(p,0) =T = fp.

Since {T, f} is weakly compatible pair, we have T(X, T) = fX and T(T,X) = fT. Now we shall
prove that fX =N and fT =7T. By using (3.4), we have

N (20%Ap (FR, R, -+ (FR) 1, X)) = me (26%Ap (TR, T), TR, ), -+ (TR, 1)) 1, T(posp)))

IN

(e (Ap(FR, IR - 1)), 0, (Ap(FT FY, - Fhp)))

< N (Ap(FR IR - f1p))
By the definition of m., Ap (FR, R, -+ (FR)p_1,Rp) < 5 Ap(FR, FR, -+, f1p)
Letting p — oo, it yields that A, (fX, X, -+ (fR),_1,N) < Tszb(fN, R, .-+, N), which possible

holds only, Ap (fX, fX, -+ (fX),_1,R) = 0 implies that fX = X. Similarly, we shall show fT =7T. It
follows that T(R, T) = fR =R

and T(T,R) = fT =7T. Therefore, the common coupled fixed point of T and f is (X, T).

It is simple to demonstrate the connected fixed point's uniqueness and the common fixed point’s

uniqueness of T and f, just like in the proof of Theorem 3.1. [l

Corollary 3.1. Let (3, Ap) be a complete Ay-metric space. Suppose a mapping T : 3° — S be

satisfies:

N (262 Ap(T(1,0), T(12), -+ T(B,0))) < T (M (Ap(1, 1, -+, 8)) 0. (Ap( s+ . 1))

forall1,7,0,0 € 3, wheren,,0, € © and " € C. Then T has a unique coupled fixed point in .

Example 3.1. Let S = [0, +00), define Ap : " — [0, +00)
as Ap (01, 02, ..., ©n—1,0n) = D11 ZKJ- lo; — @j|2 for all p; € S,i=1,2,---. Then (S, Ap) Is
an complete Ap-metric space with b = 2.

LetT : 32— Sandf: ¥ — S be given by T(p, w) = sin (£=22132=2) and f(p) = 2££2=2 and

M(s*, t") = 1+ST Vs* tr €[0,00). Let n.(t*) = % and 6,(t*) = t*2 Then obviously, T(3?2) C ()
and the pair (T, f) are w-compatible and clearly for all 1,7,0,0 € S, wheren,,0, € © and [ € C, we

have

[ (n. (Ap(F1, 1, £8)), 6, (Ap(f), 1, -+, FO))) = mu (26°Ap(T (1,2). T(1.4), -+, T(3,0)))

N« (Ap(F1, f1,--- f8)) 2b2Ab(T(/,J),T(/,J),"' . T(8,.0))
1420, (Ap(fi, fi1,---, fO)) 4

3As(F1, f1,--+ , D) 41— 27+ 32n — 2) B Sm(45 —205+432n—2
1+ 3Ap(F1, f1, -+, D) 32n 32n

)2

b? :
- E(H — 1)|sin(
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2/ |2
= A4 2p%(n—1)|cos(
1 + §|2I4n |2

125222
2(2+1252812) ~
Then we have
N (202 Ap(T(1,4), T(1,4), -+, T(8,0))) < T (e (Ap(f1, f1,-++, £B)), 0. (Ap(Fy, fy, -+, fO))). Thus,
all assumptions of Theorem 3.1 are satisfied and (1,1) is unique common coupled fixed point of T
and f.

YO 4 AT L A=y~ 45420
64n >N 64n

)2

4. APPLICATION TO INTEGRAL EQUATIONS

In this part, we examine the existence of a singular initial value solution with reference to Corollary
3.1

Theorem 4.1. Consider the initial value problem

e (1) =T(t. (p.w)(1), t€l=[01], (p.@)(0) = (po, wo) (4.1)
where T : | x [£2,00) — [£2, 00) and po € R Then there exists unique solution in C (1, [£*, o0)) for

the initial value problem (4.1).

Proof. The integral equation for the initial value problem (4.1) is
t
o(t) = o + 262/n— 1 / T(s. (. w)(s))ds.
0

Let = C (/,[52, 00)) and Ap (01,02, -.ocvv.os o1, n) = 20 Yl — il for all pr € S
i =12, define n.,0, : [0,00) = [0,00) as M(t) = t, 6.(t) = 3L and [ : [0, 00) — [0, 0) as
[(s*, t*) = ms* where m€ (0,1) R: 3% — S by

Rlp@)(t) = 5ot [T 0 @)e)es
0

Now for all p, w € &, we have

n. (26%Ap (R(p, @)(t), R(p, @)(t), -+, R(3,V)(1)))
= 2b%(n—1)|R(p, w)(t) — (5 O)(t)?

= 2b%(n—1)] (p, w)(s))ds — U)(s))ds|?

m / bzﬁiﬁ+0/“

B %'K’(t) —3(0)F° < 5(” —1)|p(t) — B(H)? < =Ap(p. .-+ D)
C(ne (Ap(1,1,-++,0)), 0. (Ap(,g, -+, O)))

It follows from Corollary 3.1, we conclude that R has a unique solution in <. Il

IN
N =
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5. Application to Homotopy

In this part, we examine the possibility that homotopy theory has a single solution.

Theorem 5.1. Let (3, Ay) be complete Ap-metric space, V. and V' be an open and closed subset of
& such that V. C V. Suppose Hyp V2 x [0,1] — & be an operator with following conditions are
satisfying,

To) © # Hp(p, w,s), w # Hp(w, p,s), for each p,w € TV and s € [0, 1] (Here TV is boundary of
Viin ),

11) for all p,w, 1,y €V, s€[0,1] and n,,0, € ©, I € C such that

n. (26 Ap(Hp(p, @, 5), Hp(p, @, 5), - Hp(1,1.5))) < T (M (Ap(g. 0.+ . 1)), 0. (Ap(w, @, ,J))) .

T2) 3 M > 03 Ap(Hp(, @,5), Hp(o, @, 5), -, Hp(po, @, 1)) < M|s — ¢
for every p,w € Vand s, t € [0, 1].
Then Hp(.,0) has a coupled fixed point <= Hp(.,1) has a coupled fixed point.

Proof. Let the set

x

\s:{ s€[0,1] : Hp(p, w,s) = o, Hp(w, p,s) = w for some p, w €V }

We have that (0,0) in 32 if Hp(.,0) has a coupled fixed point in V2. Therefore, the set & is not
empty. We now demonstrate that & is both closed and open in [0, 1] and that & = [0, 1] is the result
of this connectivity.

As a result, V2 has a coupled fixed point for Hy(., 1). We begin by demonstrating that & closed in
[0,1]. Observing this, Let {sp} 2, C I with s, — k € [0,1] as p — co. We must show that s € .
Since s, € & for p =0,1,2,3,---, there exists sequences {g,}, {wp} with g, = Hp(pp, @p, Sp).
wp = Hp(Wp, ©p. Sp)-

Consider

Ab(@pv Op, - (@p)n—l: @p+1)
= As(Ho(0p @p, Sp), Holkp, @p. Sp). -+ (Ho(gp, @p, Sp))n—1, Hp(Op+1, @p+1, Sp+1))
b(n—1)Ap < Ho(0p, @p, Sp), Ho(0p @p, Sp). -+ Hp(0p+1, Wp+1. Sp) )

+b2Ab( Hp(Op+1, Tp+1.5p), Ho(0p+1: @p+1, ), Hp(Op+1, Tp+1, Spt1) )

b(n—1)Ap ( Ho(p, @p, Sp), Ho(0p @p, Sp), -+ Hp(0p+1, Wp+1, Sp) )
+b>M|sp — sp1]

Letting p — oo, we get

p“_>moo Ab([@p: Opr (@P)n—lv @P+1)

< pli_>moo b(n—1)Ap (Hp(p. @p, Sp), Ho(wp, Wp, Sp), -+ Ho(@p+1, Wp+1,5p)) + 0



Int. J. Anal. Appl. (2023), 21:55 13

Since 74, 0, are continuous and non-decreasing, we obtain

. 2b
lim 7. <n —1A(0p 0p - ()01, @p+1)>

p—ro0
< pimm Mk (2b2Ab (Ho(gp @p, Sp) Ho(kop, @p, Sp). -+, Ho(Op+1, Wpt1, 5p)))
< pimm T (M (Ap(gp, 0p, -+ 0p+1))  Ox (Ap(Tp, @p, - -+, Wpt1)))
< pimm Ne (Ap(0p. 0p. "+ Pp+1)) -

By the definition of 7, it follows that

. 2b
Jm (7 = DAsBp 05, (90)0-1, 9p11) <0
So that

Pli—>moo Ap(8p. 0p. -+ (0p)n-1. p+1) = 0

Now for g > p, by use of (Ap3), we have

Ap (0 0p, -+ 0n-1.0q) < b(n—1)Ap(0p, 0p, ..., (9p)n—1, Op+1)
+5°Ap (1, Opits oo, (9p+1)n-1. 0q)
< b(n—1)Ap (0p, ©pr v (©p)n—1, ©p+1)
+5>(n = 1)Ap (©p+1. ©p+1r-oveens (©p+1)n—1. ©p+2)
+b* Ap (Op12, Op+2, vveveey (Pp+2)n—1. 0q)
< b(n—1)As(0p. 0p, ---ee-e (0p)n—1. ©p+1)
+52(n = 1)Ap (©p41, Opt1sceeenns (Pp+1)n—1. ©p+2)
+b°(n = 1)Ap (0p+2, Op42, weeee (©p+2)n—1, ©p+3)
+b"(n = 1)Ab (0p+3, ©p+3s oeeveee (©p+3)n—1. Pp+4)
+ o BP0 — 1) A (0g—2, 0g—2 e (0g—2)n—1. 9q-1)
+b2972P3 AL (g1, ©g—1, v (9g-1)n-1,0q) — 0 as p, g — oo.

Hence {g,} is a Cauchy sequence in A, metric spaces (3, Ap).Similarly, we may demonstrate that
the Cauchy sequence in (3, Ap) is {wp,} and by the fact that (3, Ap) is complete, there exist u, v €
with

pILmOO Ppt+1 = upli%mC>O ©p pILmOO Wpr1 =V = pILmOO wWp
We have
n. (20%Ap (u,u, -+, Hp(u,v,5))) = plem n. (26%°Ap (Hbp(0p, @p. S), Hi(0p, @p, S), -+, Hp(u, v, 5)))
< lim T(n. (As(@p. 0p, -, 1)), 05 (Ap(@p, @), -+, V)))
< lim 7. (Ap(pp 0p, -+ 1)) =0
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It follows that Hp(u, v, s) = u. Similarly, we can prove Hp(v, u,s) = v. Thus s € &. Hence is closed
in [0,1]. Let so € B, then there exist go, wo € V with o = Hp (0, @0, S0), Wo = Hp(wWo, £0, 50)-
Since V is open, then there exist r > 0 such that Ba,(gq, r) € V. Choose s € (sp—¢, sp+¢€) such that

|s — ol < 5 < 5. then for p € Ba,(po.r) = {p € I/As(p. 0.+ . 00) < r+ Ap(0, 90, . £0)}.
Now we have

Ap (Hp(p, @, s), Hp(p, @, 5),  , 0)
= Ap(Hp(p. @, s), Hp(p, @, 5), -, Hp(g0, @0, 50))

< (n=1)bAy, (Hp(p, @, 5), Hp(p. @,5), -, Hp(g0, @, S0))

+b*Ap (Hp(o. @, 50), Hp(, @, S0), - -+, Hp(0, W0, %))
< b(n—1)Ms — so| + b*Ap (Hp(0. @, 50), Hu(, @, S0). - - . Hu(g0. W0, S0))
< b(n— 1)Mi_1 + b?Ap (Ho(p. @, 50), Hp(p, @, S0), -+ . Hp(0, @0, 50))

Letting p — oo, we obtain
A (Hp(p. @, 5), Ho(p, @, 5), -+, 0) < b*Ap (Hp(, @, 50), Hp(o, @, 0), -+, Hp(0, @0, 50))
Since 7., 8, are continuous and non-decreasing, we obtain

N« (Ap (Hp(g0, @, 5), Hp(p, @,5), -+, 90))

< . (20°Ap (Hp(. @, 50), Ho(9, @, 0), -+ . Hu(g0, @0, 50)))
< T ((Ap(p. 0, . ©0)), 0+(Ap(w, @, -+, @0)))
< n(Ap(p. 0. . $0))

Since 7, is non-decreasing, we have

IN

Ap (Hp(p. @, 5), Hp(, @, 5), -+, ©0) Ap(g. 0. -+ 90)

IN

r+ Ap(0. 00, -, ©0).

Similarly, we can prove,

Ap (”Hb(w, p,s),?—lb(w,p, S),"' ,wo) < I’—f—Ab('ZDo,’wO,"' ,wo).

Thus for each fixed s € (sp — €, 50 +€), Hp(..s) : Ba,(90.r) = Ba,($0.1),

Hp(.,s) : Ba,(wo,r) = Ba,(wo, r). All of the Theorem 5.1's requirements are then met. Accord-
ingly, we deduce that Hy(.,s) has a coupled fixed point in V. But it has to be in V2. Since (T0) is
true. The result is that s € & for any s € (sop — €, Sp + €). Because of this, (sp —€,50+€) C 3. In

[0, 1], & is obviously open. We follow the same approach for the opposite inference. O

Conclusion: This paper wraps up a few applications to integral equations and homotopy theory using

coupled fixed point theorems for C-class functions in the framework of Ap-metric spaces.
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