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INTEGRAL BOUNDARY VALUE PROBLEMS FOR
FRACTIONAL IMPULSIVE INTEGRO DIFFERENTIAL
EQUATIONS IN BANACH SPACES

A. ANGURAJ!, M. KASTHURI2 AND P. KARTHIKEYAN 3:*

ABSTRACT. We study in this paper,the existence of solutions for fractional
integro differential equations with impulsive and integral conditions by using
fixed point method. We establish the Sufficient conditions and unique solution
for given problem. An Example is also explained to the main results.

1. INTRODUCTION

In the seventeenth century, Fractional calculus was originated and it has gained
much attention in recent years by many researchers. Fractional differential equa-
tions appears in a large number of fields of science and engineering, thermodynam-
ics, elasticity, wave propagation, electric railway systems, telecommunication lines
and also in chemistry, analysing kinetical reaction problems (see [1, 5, 6, 13, 15, 16]).

Integral and anti-periodic boundary value conditions can be seen in models of a
variety of physical, economic and biological processes, and they have been studied
extensively in recent years (see [8, 9, 10, 11] ) and related references therein for
boundary value problems with integral boundary conditions [1, 2, 3, 6].

In [14], the authors have studied the impulsive problems for fractional differential
equations with boundary value conditions. J.R. Wang et al. in [7] discussed the ex-
istence results for the boundary value problems for impulsive fractional differential
equations. The authors in [17] proved the existence of solutions for multi-point non-
linear differential equations of fractional orders with integral boundary conditions
without impulsive conditions.

Inspired by the above works, we consider the existence and uniqueness of solu-
tions for impulsive fractional differential equations with integral boundary condi-
tions

(1.1) Dg,u(t) = f(t,u(t), Bu(s)), 1<a<2,
teJ =JI\{t1,...tm},J:=[0,T], T >0,
(1.2) utf) =ulty) +ye, k=1,2,...m y, € X,
(1.3) Bru(t)li=o =0, D§7*u(T) =Y adgi u(&),
i=1
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where Bu(s fo (t,s,u(s))ds, 0 < & < T, T >0,a; € X, m > 2, D, and
Iy are the standard Rlemann Liouville fractional derivative and fractional integral
respectively, f: J x J x X = X, k:J xJ x X — X are jointly continuous and
t satisfy 0 = tg < t1 < .. < by < typy1 = T, u(tzr) = lim._g+ u(ty + €) and
u(t, ) = lim._,o- u(tx + €) represent the right and left limits of u(t) at t = ¢;.

In Section 2, we give definitions of fractional integral and derivative operators,
lemma and some fixed point theorems. The main results discussed in section 3.
Finally, in section 4, the example is also illustrated.

2. PRELIMINARIES

Let E = PC(J,X) ={u:J — X :ue C((tg,tg+1], X)} k = 0,...m,be a Ba-
nach space with norm ||u||pc = supies||u(t)||. and there exist u(t}) and u(t;,), k =
1,2, oym with u(t]) = u(ty ), Set J = [0, T\ {t1,t2, ....tm }-

Theorem 2.1 ([12]). (Schaefer’s fized point theorem) Let X be a Banach space.
Assume that T : X — X is a completely continuous operator and the set V.= {u €
X|u=pTu,0 < p < 1} is bounded. Then T has a fized point in X .

Theorem 2.2. (PC-Type Ascoli-Arzela Theorem) Let X be a Banach space and
W C PC(J,X). If the following conditions are satisfied:

(1): W is uniformly bounded subset of PC(J, X)
(ii): W is equicontinuous in (tg,tg+1), k=0,1,2,...,m where tg =0, tyy1 =
T;
(iii): W(t) = {u()u € W, t € J\{t1,....tm}}, W(t{ = {u(t])lue W} and
W (t;, = {u(ty)|lu € W} is a relatively compact subsets of X.
Then W is a relatively compact subsets of PC(J, X).
Definition 2.3. The fractional integral of order o > 0 of a function y : (0,00) = R
is given by
1 .
I§y(t) = — [ (t—5)*y(s)d
o) = i [ =9 ws)as

provided the right side is pointwise defined on (0,00), where I'(:) is the Gamma
function.
Definition 2.4. The fractional derivative of order a > 0 of a function y : (0, 00) —
R is given by
L do [T y(s)
Deyt)= —(Zyn [ Iy
) = ey ()" s

where n = [a] 4+ 1, provided the right side is pointwise defined on (0, c0).

Lemma 2.5. Let a > 0 and u € C(0,1) N L*(0,1). Then fractional differential
equation D§, u(t) =0 has

ut) = et P p et 24 eyt g €R, N=a]+1,
as unique solution.

Lemma 2.6. Assume that u € C(0,1) N LY(0,1) with a fractional derivative of
order a > 0 that belongs to C'(0,1) N L'(0,1). Then

I8, Dy u(t) = u(t) + et + et 2 4 ent™ N,

for some ¢; € Rji = 1,2,..., N, where N 1is the smallest integer grater than or
equal to a.
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Lemma 2.7 ([8]). Let « > 0, n = [a] + 1. Assume that u € L'(0,1) with a
fractional integration of order n — « that belongs to AC™[0,1]. Then the equality

— (g “u) (£)" " le=o0

(IO+DO+U)( ) = 'LL Z (a —— 1) et

holds almost everywhere on [0, 1].
Lemma 2.8 ([8]). (i) Let k € N,a > 0. If D& y(t) and (Df*y)(t) exist,
then
(D*Dg )y (t) = (Dt Fy)(1);
(ii)) Ifa>0,8>0,a+ B> 1, then
(I Ig () = (I Py) (1)

satisfies at any point on [a,b] for y € Ly(a,b) and 1 < p < oco;
(ili) Let a >0 and y € Cla,b]. Then (D 13, )y(t) = y(t) holds on [a,b];
(iv) Note that for A > =1, #a—1,a—2,...,a —n, we have
F()\+ 1) t)\fa
F'A—a+1) ’
DYt =0,i=1,2,...,n

DatA —

Lemma 2.9. For any y(t) € PC(J,X), the linear impulsive fractional boundary-
value problem

Dg,u(t) =y(t), 1<a<2,tel0,T],

wtD) =u(t)+yr, k=1,2,..m yp€X
2.1) (% ()

Ig;”‘u(t)\tzo =0, Dgy u E:CLJOJr u(§;),

has unique solution

t (t—s)* !
o 55 y(s)ds
ta 1

a; i a— T ]
RN r(éal 1 Jo' (& —5)**2y(s)ds — [o (T — S)Zl(s)ds_ , forte€[0,t)
yﬁ-ft(t s) ()ds

o 1 a; ) a— T 1
+F(Of)(T ) r(éal i) fo (& — 5)22y(s)ds — fo (T — s)y(s)ds|, fort e (t1,t2)
—_3g)™ 1 -
(4 +y2+f0 % (s)ds
u(t) = PR

a; l a— T ]
+F(a)(T A) F(éal 1) fo gz 2 2y(8)d8 - fo (T - S)y(s)ds_ ) fO?“ te (tz,t;;)

=1 ™ a; A a— T
+F(a)(T A [rz(:ézl_l) fo (fz - 3)2 2y(8)d5 - f() (T - S)Q(S)ds , forte (tmaT]

where A =3"1" 1 ;6772 /T (20— 1) and T # A.



INTEGRAL BOUNDARY VALUE PROBLEMS 59

Step:1 For ¢ € [0,t1] we have
By Lemma 2.6. the solution of (2.1) can be written as

1 t
_ a—1 a—2 _ a—1
u(t) = 1t F ot 4 () /0 (t— )% y(s)ds.

From Ig;"‘u(t)h:o =0, and by Lemmas 2.7 and 2.8, we know that co = 0, and
Dg‘g2u(t) =tl'(a) + Ig+y(t),

r
I3 ) = e g I ),
from Dy w(T) = S0 a; 1§ u(é;), we have
_ 1 Dy G . ) 20—2 g
o = i et [ 6= s [ = s,

where A =" a;67* 2 /T (20— 1) and T # A, so
t _ Na-—1
u(t) = /0 %y(s)ds

ol moap 6 S T
F(af(T—A) [r%@_ 1) /O (& — )™ "y(s)ds — /O (T—s)y(s)ds]

+

Step:2 If t € (t1,ts],with u(t] = u(t]) + y1 then we have

u(t) = et oot 4 u(tf) - F(la)/o 1(tl — s)afly(s)ds + 1“(104)/0 (t— s)o‘*ly(s)ds,

_ a—1 a—2 — _ 1 /tl _ a—1 1 /t _ a—1
=ttt Hu(ty) +un T /. (t1 —s) y(s)ds—i—r(a) O(t $)* " y(s)ds,

1 t
=t et oy —— / (t —8)* ty(s)ds.
0

I(c)
Then,

a—1

u(t) = +/0 (t}(sa))y(s)ds

e Yiia (¢ 202 _ ' _
+F(a)(T—A)[F(2a—1)/O (& — )™ "y(s)ds /O(T 5)y(s)ds|.

Preceding in this way,

Step:3 For ¢ € (t,,, T], we have

u(t) =it P et Ty g / (t — s)* y(s)ds.
; ") Jo

Then

)

u(t)zzyri—/o “}8?3/(8”8
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a1 m a; & B T

The proof is complete.

3. MAIN RESULTS

In this section, we prove the existence and uniqueness results of the problem
(1.1)-(1.3) by using the following assumptions:

(H1) There exist positive functions L , such that
|f(t7x,u)—f(t,y,v)|SL[|x—y|—|—|u—vH, VtE[OaT]a z,y,u,v € X,
(H2) The function L satisfies

T Ta—l Zz az£2a 1 T2
2L = [F(a—i— ) =24 ( ﬁ(za) - *ﬂ + Zyl

(H3) There exists a positive constant Ly such that
|f(t,u,v)| < Ly for t€[0,T], u,ve X.

Theorem 3.1. Assume that (H1), (H2)are satisfied, then the problem (1.1)—(1.3)
has a unique solution.

Proof:
Choose

Na+1) T(a)|T — A I'(2a)

Then we show that 6Br C Br, where Br = {u € E : |lu]| < r}. Let us set

supiepo, ) | f (¢, 8,0)] = M,
Step :1 For ¢ € [0,t1], we have

I R Y T R LN
r > 2M, n ( —2)}+;yi

[[(0u) (@)
(t=s)!
‘/ F(a) s, u(s), Bu(s))ds
- Zﬁlai N — )22 f(s,u(s), Bu(s))ds
+F(a)(TfA)(F(2a71)/O (& —5)™* " f(s,u(s), Bu(s))d

T
B / (T = 5)f (s, u(s), Bu(s))ds )|

0

< [ [l 1wt BuGs s

- Zﬁlai N — )22 f(s,u(s), Bu(s))|ds
+F(0‘)(T*A)(F(2a71)/0 (& — )™ 71 f (s, uls), Bu(s))|d

T
- / (T = 5)|f (s, u(s), Bu(s))|ds ) |

t(t— )(x—l _
<[] SR suts). But) ~ £(o.5.0)| 4 1 5,0))ds
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a1 S a &i C_g)20-2(1£(c a(s). Bu(s) — f(o.s 0,8 ]
+rmWT_m(wa4)A (G o o) Bule) = T D s, 0D

= [T =1 su(s). Buts) = 0,500 + .00 )|

< [(2Lr n M1)</ot (t F(ijlds

a—1 Tril a; & o T
+ F(a§|T—A| (NZQ;_ 1)/0 (& =) Qd‘“/o (7 = s)ds) )|

T Ta—l Z:Z aié-iZoz 1 T2
= (2LT+M1)[F(Q+1) + F(a)|T—A|( T'(20) )] =

Taking the maximum over the interval [0,¢1], we obtain ||0(u)(t)|| < r.
In view of (Hl) for every ¢ € [0,t1], we have

1) (t) — (6 )( )||

’ / — f(t,y)ds
ta

1 m a; &i B
+ F(O[)(T — A) (F%za—l_ 1) /0 (67, - S)Za 2(f(t,.’b,u) - f(t,y,’l]))ds

T
- [ @ =0t - seyonas)
0

t (t _ S)afl
< |:/0 F(Oé) |(f(t,x,u)ff(t,y,v))|ds

a1 ™ g i _
F(Oj‘T — A| (F%la_l— 1) /O (gz - 3)2a 2|(f(t7x7u) - f(t,y,v))|ds

+

T
- [ @)~ sty )ias)]
§ [L[Hx—yH N ||“_v|”(/0 (t—s) ds

I(a)
a—1 Z?il a; & o T
+ r(oj\T Y (F(2a —1) /0 (i —s)*Pds - /0 (T~ s)ds))]
o a—1 7_711 a; 2_20171 2
< Lllle =yl + Jlw = vl {r(i nt P(oj|T Y (Zz_r(zj) - T?”
= All|lz = yll + [[u — v|l],
where
“ ot Y e T
A= L[F(01;+ nt F(aj)ﬂ|T7 Al ( T(20) T?)}

which depends only on the parameters involved in the problem. As A < 1, 0 is
contraction mapping for the interval ¢ € [0, ¢1].
Step :2 For ¢ € (t1,t2], we have

IGu)o)
= | [ st Buts s
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gt Siiai [ i — 5)272f(s,u(s), Bu(s))ds
n (B [ 6= 925, Bu)a

(o) (T — A) \T'(2
_ /OT(T —s)f(s,u(s), Bu(«S))dS) + yl‘

< [eLr+ Ml)(/ot (=)

I'(a)
a—1 7711 a; & o T
+ F(a§|T — A (F(Z{a_ 1) /0 (& —s)*2ds ’/0 (T - 5)d5)> + yl}
e a—1 7‘711 a; i2a—1 T2
S (2Lr+My) {r(aT+ o F(o§|T ] (ZZ_F(Qof) - 7)} tysr

Taking the maximum over the interval (¢1,ts], we obtain ||6(u)(¢)|| < r.
In view of (H1), for every ¢ € (t1,t2], we have

1(6)(t) — (Gy)()H

‘/ ,x) — f(t,y)ds
F(oz)t:lT1 A) (F%%ai) /ogi (& = )2 (f(t,w,u) = f(t,y,0))ds
- /O = () f(t.y.v))ds) +y1\

< [elle ol + ol ([ C5oi s

+

ta—l

i . 2a—2 r
T =4 (F%a_ ) /0 (& — )™ "ds — /0 (T - S)ds)) + yl}

7o T Y et T
< Ll =l + I =l o + Frar— (i — — 7))

= Alllz = yll + [lu —olf],

where

A:

T Ta—l ZZT; aigfafl T2
L[F(a+1)+F(a)|T—A\( r1(2a) _7)}““’

As A < 1, 6 is therefore a contraction in the interval ¢ € (1, to].
Preceding in this way, we got

Step:3 For t € (¢, T], we have

1(6u) 1))
= t (t_S)a_l S, uls u\s S
- | [ S s ute). Bu(s)a

o 2o : i — )22 f(s,u(s), Bu(s))ds
+ i (e | (6= 9 ul). But))a
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. ”
_ /O (T — 3)f(s, u(s), Bu(s))ds ) 2w

< {(2LT+M1)(/(: Mds

I'(a)
a—1 m a; i o T m
i (e e [ )+ 3]
o a—1 ﬁil a; 7:2&71 2 m
< (2Lr+ M) {F(oirJr o r(oj|T ] (Zl_r@j) - T?)} QWS

Taking the maximum over the interval (¢,,,T], we obtain ||6(u)(t)]| < r.
In view of (H1), for every ¢ € (t,,,T], we have

1(62)(2) — (By) (D)

_ bt —s) ! o) — .
et D ey i
D(a)(T - A) (I‘(?a -1

_ /0 (T - 3)(f(t,x7u) - f(t,y,v))dS) + Zyi

i
+ ) /0 (fz - 5) (f(t7 x,u) - f(t7yvv))d8

< [elle ol + ol ([ 2L
a—1 ’?il a; &i _— T m
+ I‘(ai\T — A (r%a_— 1) /0 (& — s ds _/0 (T - 5)d3>) + 2 yi}
< Llllz =yl + lu = vl {r(ji ot r(oj[;—l Al (Z%éga_l B T;” * iy

i=1

= Alllz =yl + [lu —[]],

where

T Ta—l Z"i ai€2a—1 T2 m
A=1 =1 [ - s
T(a+ 1) +F(a)|T—A\( T(2a) 7 )] +;y

which depends only on the parameters involved in the problem. Then by Banach
fixed point theorem, the operator 6 has fixed point in the interval ¢t € (¢,,, T].

(]

Theorem 3.2. Assume that (H1)-(H3) are satisfied. Then (1.1)-(1.3) has at least
one solution.

Proof:
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We define an operator P : PC(E) — PC(E), as

t — 3 a—1
(P = [ L s, ols)ds

(@)
et Simiai (% o202
(31) + = (P | (6= P2 o) olo)s

_/O (T = ) (¢, u(s), v(5))ds) +;y

To show that the operator P is completely continuous. Clearly, continuity of
the operator P follows from the continuity of f. Let 2 C E be bounded. Then,
Yu,v € Q together with (H3) we obtain

a0 < [T ) o)

a—1 a; & 200—2
T4 (r%;l_ 0 / (& — )7 £ (¢, u(s). (s))]ds

T

S GBI |ds)+2yz
t 75(171

<ul [ " r<ci> @

a—1 7_71 i & o T m
* F(ai\T — A (F%al_an /O (& —5)*%ds — /0 (T - S)d‘s)] * ;y
T T~

oaget -
<hfras * rar—a (e 2)) ¢ 2.0

_|_

which implies

70 Tl ST g T O
Pul <L o 2 ' '
1Pull < 1[r<a+1>+r<a>|T—A|( T(2a) M*Z,_Zly“”

Hence, P(f2) is uniformly bounded.
For any s1, s2 € [0,t1],u € Q, we have

[(Pu)(s1) = (Pu)(s2)|
51 —85)*" 1
= / (s,u(s),v(s))ds

1 Ez 1 @i & '*820‘72 s u(s) v(s .
(T - A)((a_l)/o(f )77 f (s, uls), v(s))d

T s —1 a—1
— —SfSUS S| — 2M S, uls),vis S—t27
| @ =/ sutsas) = [T s (s oo - ot

x (r%ifi“i) /Ofi(g 8§22 f(s u(s), (s ))dg_/OT(T—s)f(S,u(s),v(s))d3>‘

e
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to—1 _ ga—l Z:i a; & -
i Fl(a)(T —2A) (1"(2@1_ 1) /0 (& — 5)%°2ds

- / Y- s)ds) - / (s2 =) F_(Z)a_lds‘

s

5?—1 — Sg—l ;11 a; &i o T
@@= 4) (r(zza 1) /O (6 —s)*Pds /0 (T - S)ds)

—0 as 1 — S9.

}

Thus, by the PC-type Arzela-Ascoli theorem, P(Q) is equicontinuous. Consequent-
ly, the operator P is compact.

Next, we consider the set S = {u € E: u = pPu,0 < p < 1}, and show that it
is bounded. Let u € S; then w = pPu,0 < p < 1. For any ¢ € [0,T], we have

u(t):/o %f(t,u(s),v(s))ds

o Yilai ¢ 2a-2
[(a)(T - A) (F(za —1) /O (& =)™ 7 f(t,uls), v(s))ds

o ;
_/O (T = )£t u(s), v)ds) + 3 i

_|_

and
[u(®)] = ulPul
tw u(s),vis S
< [ EFh st u). o)
a-l ™ oa; & -
+F(a)t(T—A)(r%21_ 1>/0 (& — )™ 7| f(t,uls),v(s))|ds

m

T
S ACEDITEREITAES i

tozfl

™ oa; &i - T m
+F(a)|T—A|(P%a_1— 1)/0 (& =) ds—/o (T - s)ds) | +;|y¢|

a a—1 m g g20-1 2 m )
< max {L1 [F((ij+| 0 + F(cv|§|T|A| (Z’_Fl((;j) - T?)} +i:Z1 ‘yz|} =M*.

Thus, ||ul| < M*. So, the set S is bounded. Thus, by the conclusion of Theorem
3.1, the operator P has at least one fixed point, which implies that (1.1)-(1.2) has
at least one solution. [
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4. EXAMPLE

Consider the impulsive fractional integro differential equation

3 et|u(t)] te=(s=1)
4.1 ¢D2 t) = - d
(41) u) = e e+ L S el
1
(4.2) teJ=[02t# 3,
1t lu(z )
(4.3) y(g )= %,
3+ Ju(z )
(44) IZru(O)lico =0, DET2u(T) = S aili (o),
i=1
where f(t,u, Bu) = @—Fgﬁ + Bu(t),a1 = 2,a9 = 3,& =1/2,& =1/3,T =2

we have A = 37" a,67*7?/T(2a — 1) =1 # T = 1. Clearly, L = 1/10 as

[F(ts,) = $(6,9,0)| < 152 =yl + fu = o]

Further,
T Ta—l Z"il aif?ail T2 m
= - = .~ 0.01058612753 < 1.
F(a+1)+I‘(a)|T—A|( '2a) 5 )]Jr;y <

Thus, all the assumptions of Theorem 3.1 are satisfied and hence the problem
(4.1)-(4.4) has unique solution.
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