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Abstract. This paper presents a generalization of the Homotopy analysis method (HAM) for finding the solutions

of non-linear q-fractional differential equations (q-FDEs). This method shows that the series solution in the case of

generalized HAM is more likely to converge than that on HAM. In order that it is applicable to solve immensely

non-linear problems and also address a few issues, such as the impact of varying the auxiliary parameter, auxiliary

function, and auxiliary linear operator on the order of convergence of the method. The generalized HAM method is

more accurate than the HAM.

1. Introduction

Fractional calculus is concerned with generalizing integer order of integration and differentiation

to any order. For several decades, fractional differential equations have sparked much interest

because of their various applications in physics and engineering [11, 18, 20, 22]. In Particular,

fractional derivatives are a powerful tool for describing memory and inherited properties in a

wide variety of materials and processes and also proved half-order derivatives and integrals

to be more beneficial than classical models in formulating different types of problems. The q-

calculus [4,8–10,23] has a long history and can be traced back to Euler and Jacobi’s. The q-calculus

has many potential applications in various numerical methods, like orthogonal polynomials and

number theory. Moreover, connections between mathematics and physics appear in quantum

theory and general relativity theory.
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The fractional q-calculus or q-fractional calculus is an q-extension case of ordinary fractional

calculus. New interests are emerging on this subject. Agarwal [1]and Al-Salam [26] invented

the hypothesis and built various kinds of operators, like q–fractional integral derivatives. For

basics, refer to [2]. Due to the extensive study of this subject, an incredible interest showed up

from many authors in the study of (q-FDEs) and some applications [11, 16, 28]. During the past

decade, mathematicians and physicists have made immense efforts to determine the numerical and

analytical methods for solving FDEs and q-difference equations. As of late, semi-analytical methods

have been widely applied to determine fractional and q-differential models for non-linear and linear

cases. A few are the differential transformation method [32], successive approximation method

[25], variational iteration method, homotopic perturbation method [6, 13], operational matrix

method [24] and HAM for solving various FDEs and q-differential equations when calculating

in h-calculus and in q-calculus. Coming to semi-analytical methods for q-FDEs, in 2013, authors

Wu and Baleanu [30] invented the variational iteration method from the differential equation to

q-FDEs. In 2019, Pin Lyu and Seakweng Von [21] found an efficient finite difference numerical

method for q-FDEs. In 2021, B. Madhavi and G. Suresh Kumar [17] developed an operational

matrix method to find the solution of q-FDEs using the Laguerre polynomial. In the same year,

Ying Sheng and Zhang [31] provided some Results on the q-Calculus and q-FDEs.

Homotopy analysis method [3,19,27,33] is one of the most used semi-analytical techniques. Liao

first discussed this method in 1992 in his Ph.D. monograph [12–15]. In this technique, the solution

is entirely in series formation. It offers an easy way to ensure the solution’s convergence is in series

form, which is different from all other methods. It can be used to solve problems that are highly

nonlinear problems. The perturbation results are applicable only for small physical parameters.

However, homotopy has always been independent of any small or large parameters. This method

also makes changing and controlling the solution series converges simple. Furthermore, the HAM

provides excellent flexibility in terms of equation type and solution expressions of high-order

equations, making it simple to obtain approximations at rather than high order. Because of these

benefits, HAM attracts the attention of many researchers. It is used to solve various nonlinear

problems, including nonlinear Riccati fractional differential equations, the vakhnenko equation,

the glauert-jet problems, the KdV-burgers-kuramoto fractional equation, and the nonlinear heat

transfer, and so on. M. A. El-Tawil and S.N. Huseen [29] present a method called the q-homotopy

analysis method (q-HAM), a more popular HAM approach. The fundamental thought behind

this technique is to incorporate a homotopy parameter, say n, which changes from 0 to 1
n , and a

nonzero auxiliary parameter h. As n approaches 1, the system undergoes a series of deformations,

with each stage’s solution similar to the previous stage.

The construction of the paper is as follows. In section 2, the fundamentals of q-fractional

derivatives and integrals are provided. The HAM is presented. In section 3, for the solution of

q-FDEs. In section 4, we produce a numerical result to illustrate the efficiency of the method.

Finally, conclusions are presented in section 5.
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2. Preliminaries

Definition 2.1. [1] Let α > 0, The R-Liouville type definition of q-fractional integral of a function f (χ) is
defined as

Jαq f (ψ) =
1

Γq(α)

∫ ψ

0
(ψ− qt)α−1 f (t) dqt, (2.1)

J0
q f (ψ) = f (ψ).

Some properties of Jαq [1] are as follows

Jαq Jβq f (ψ) = Jα+βq f (ψ),

Jαq Jβq f (ψ) = Jβq Jαq f (ψ),

Dα
qψ

µ =
Γq(µ+ 1)

Γq(µ+ 1− α)
ψµ−α,

Iαqψ
µ =

Γq(µ+ 1)

Γq(µ+ 1 + α)
ψµ+α.

Definition 2.2. [1] Let α > 0, The Caputo type definition of q-fractional integral of a function f (ψ) is
defined as

Dα
q f (ψ) =

1
Γq(m− α)

∫ ψ

0
(ψ− qt)m−α−1

dm
q

dqχm f (ψ) dqt, (2.2)

(m− 1) < α < m, ψ > 0. The basic properties of the Caputo q-fractional derivatives are as follows:
Let f ∈ Cηµ, µ ≤ −1, η− 1 ≤ α ≤ η, η ∈ N, then

Jαq Dα
q f (ψ) = f (ψ) −

η−1∑
κ=0

f (κ)(0+)
ψκ

κq!
. (2.3)

Definition 2.3. [1] The q-Leibniz rule for a q-derivative of a product of two functions

Dm
q [ f (ψ)g(ψ)] =

m∑
κ=0

(
η
κ

)
q
Dm−κ

q f (qκψ)Dm
q g(ψ), (2.4)

and

Dm−κ
q f (qκψ)|ψ=0 = aκ,m−κ(q)Dm−κ

q f (ψ)|ψ=0, (2.5)

where

aκ,m−κ(q) =
κ∑

i=0

m−κ∑
j=0

iq!
(
κ
i

)
q

(
m− κ

j

)
q
q

i(i−1)
2 +i j. (2.6)

Theorem 2.1. [19] Suppose the homotopy series is ξ(ψ,ω) =
∞∑

i=0
νi(ψ)ωi, then

(i) Dm
q

[
ξ(ψ,ω)

]
= νm(ψ)ωm = 1

mq!
dm

q ξ

dqωm |ω=0.

(ii) Dm
q

[
ωξ(ψ,ω)

]
= νm−1(ψ).

(iii) If L is a linear operator independent of ω, then
Dm

q

[
L
(
ξ(ψ,ω)

)]
= L

[
Dm

q (ξ(ψ,ω))
]
.
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(iv) If ν0(ψ) is the initial solution, then
Dm

q

[
(1−ω)L

(
Υ(ψ,ω) − ν0

))]
= L

[
νm(ψ) − Υmνm−1(ψ)

]
.

(v) If the zeroth order deformation equation is given by
(1−ω)L

(
ξ(ψ,ω) − ν0

)
= hH(ψ,ω)N[ξ(ψ,ω)],

then the corresponding m’th order deformation equation for m ≥ 1 is given by
L
[
νm(ψ,ω) − Υmνm−1(ψ,ω)

]
= hH(ψ)Dm−1

q N
[
Υ(ψ,ω)

]
, where Υm is given by

Υm =

0, m ≤ 1,

1, m > 1.

(vi) Dm
q

[
ν2(ψ,ω)

]
=

∑m
κ=0 aκ,m−κ(q)νm−κνk, where aκ,m−κ(q) is specified by (2.6) and m ≥ 0 is positive

integer.

3. Generalization of homotopy analysis method for q-FDEs

Consider the q-fractional nonlinear differential equation as

N
[
ν(ψ)

]
= 0, (3.1)

where N is a nonlinear q-fractional differential operator, ν(χ) is treated as an unknown function

and χ indicates independent variable. Now, we establish the zero-order deformation equation as

follows:

(1− nω)L
[
ξ(ψ,ω) − ν0(ψ)

]
= ωhH(ψ)N

[
ξ(ψ,ω)

]
. (3.2)

Here ω ∈ (0, 1) and n ≥ 1 0 ≤ ω ≤ 1
n denotes the embedding parameter, h , 0 indicate as a control

parameter, H(ψ) considered as a non zero auxiliary function, ξ(ψ,ω) is unknown function and

also ν0 is consider as initial guess of ξ(ψ).

When ω = 0 and ω = 1
n , it is obvious that

ξ(ψ, 0) = ν0(ψ), ξ(ψ, 1) = ν(ψ). (3.3)

Which is similar to the given nonlinear q-fractional differential equation. So ξ(ψ,ω) is the solution

of the given problem. When ω varies from initial zero to end one, then the solution ξ(ψ,ω) also

varies from ν0(ψ) to ν(ψ).

Now expanding ξ(ψ,ω) in q-Taylor series [4] with respected to the embedding parameter ω = 1
n ,

then

ξ(ψ,ω) = ν0(ψ) +
∞∑

m=1

νm(ψ)ω
m, (3.4)

where

νm(ψ) =
1

mq!

∂m
q ξ(ψ,ω)

∂qωm |ω=0. (3.5)

By assuming the initial guess ν0(ψ), auxiliary linear operator L, the embedded parameter ω, and

the auxiliary function H(ψ), accordingly taken then the series is convergent atω = 1, as from (3.3),
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we get

ξ(ψ, 1) = ν(ψ) = ν0(ψ) +
∞∑

m=1

νm(ψ)(
1
n
)m, (3.6)

where νm(ψ) can be determined by the higher-order deformation as follows. Define the vector

form of νm(ψ) as
−−−−→
νm(ψ) = [ν0(ψ), ν1(ψ), . . . , νm(ψ)]. (3.7)

from(3.2), then

L

[
νm(ψ) − Υmνm−1(ψ)

]
= hH(ψ)

[
Λm(νm−1(ψ)

]
, (3.8)

where Υm is given by Theorem 2.1 and hence, the HAM series solution is

ν(ψ) = ν0(ψ) + ν1(ψ) + ν2(ψ) + ν3(ψ) + ν4(ψ) + . . . . (3.9)

4. Numerical results

Example 4.1. Let us take the q-fractional linear initial value problem

Dα
qν(ψ) + ν(ψ) = 0, 0 < α ≤ 2, (4.1)

and

ν(0) = 1, ν′(0) = 0. (4.2)

The second initial condition is applicable for α > 1. For q −→ 1, (4.1) becomes normal fractional problem.
Now, apply the homotopy technique to the above problem, take into consideration the auxiliary linear

operator L = Dα
q , and establish the zeroth-order deformation as

(1− nω)L
[
ξ(ψ,ω) − ν0(ψ)

]
= ωhH(ψ)

[
Dα

qν(ψ,ω) + ν(ψ,ω)
]
. (4.3)

By using the initial conditions choose the initial guess,

ν0(ψ) = 1. (4.4)

And let us also take H(ψ) = 1. Therefore, the mth-order deformation can be considered as

Dα
q

[
νm(ψ) − Υmνm−1(ψ)

]
= h

[
Dα

q (νm−1(ψ) + νm−1(ψ)

]
. (4.5)

Applying the Jαq operator, which is the contrary operator of Dα
q on two sides of the mth-order deformation

equation, we get

νm(ψ) = Υmνm−1(ψ) + hJαq

[
Λm(νm−1(ψ))

]
. (4.6)
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The initial terms of νm are as follows;

ν1(ψ) =
hψα

Γq(α+ 1)
,

ν2(ψ) =
h(h + 1)ψα

Γq(α+ 1)
+

h2ψ2α

Γq(2α+ 1)
,

ν3(ψ) =
h(h + 1)2ψα

Γq(α+ 1)
+

2h2(h + 1)ψ2α

Γq(2α+ 1)
+

h3ψ3α

Γq(3α+ 1)
,

ν4(ψ) =
h(h + 1)3ψα

Γq(α+ 1)
+

3h2(h + 1)2ψ2α

Γq(2α+ 1)
+

3h3(h + 1)ψ3α

Γq(3α+ 1)
+

h4ψ4α

Γq(4α+ 1)
,

ν5(ψ) =
h(h + 1)4ψα

Γq(α+ 1)
+

4h2(h + 1)3ψ2α

Γq(2α+ 1)
+

6h3(h + 1)2ψ3α

Γq(3α+ 1)
+

4h4(h + 1)χ4α

Γq(4α+ 1)

+
h5ψ5α

Γq(5α+ 1)
,

and so on. Hence the series solution of (4.1) and (4.2) is

ν(ψ) = ν0(ψ) +
ν1(ψ)

n
+
ν2(ψ)

n2 +
ν3(ψ)

n3 · · ·

= 1 +
h
n

[
1 +

(
n + h

n

)
+

(
n + h

n

)2

+ . . .

]
ψα

Γq(α+ 1)

+

(
h
n

)2[
1 + 2

(
n + h

n

)
+ 3

(
n + h

n

)2

+ · · ·

]
ψ2α

Γq(2α+ 1)

+

(
h
n

)3[
1 + 3

(
n + h

n

)
+ 6

(
n + h

n

)2

+ . . .

]
ψ3α

Γq(3α+ 1)
+ · · · .

(4.7)

First, analyze the effect of the additional parameter h on series convergence by plotting the assumed h-curves
for 5th-order approximation (4.7) at ψ = 0.5, when α = 2. We actually have the option of selecting the
additional parameter h. To analyze the effect of h on the solution series, first study the convergence of some
connected series, such as Dα

qν(ψ) for q = 0.25, 0.5, 0.75, 1 and α = 1.25, 1.5, 1.75, 2. These curves are made
up of a horizontal line segment, which represents the correct region of h that ensured the connected series’
convergence. It is noticed that the correct region for h is −3 < h < 1 as shown in Fig. 4.1. As a result, the
interval’s midpoint. Hence, h = −n is a proper choice for h where the numerical solution converges.
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Figure 1. The h-curves of Dα
qν(ψ) at ψ = 0.5 for 5th-order approximations.

Figure 2. The 5th-order approximate solution ν(ψ) in [0, 2].

For q = 1, (4.1) and (4.2) becomes fractional initial value problem as in problem 1 [5] and the results are
the same. If q = 1, α = 2, h = −n, and n = 1 then the solution of (4.1) and (4.2) is ν(ψ) = cos(ψ). The
5th-order approximations when h = −n, the solution ν is depicted in Fig. 4.1 for various values of q and α.

Example 4.2. Let us take the q-fractional nonlinear initial value problem

Dα
qν = ν2 + 1, p− 1 < α < p, p ∈ N, 0 < ψ < 1, (4.8)

with the initial condition
νk(0) = 0, where k = 0, 1, . . . , p− 1. (4.9)

The exact solution, when α = 1, q −→ 1 is ν = tan(ψ).
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Now, apply the HAM technique to the given problem, consider L = Dα
q is the auxiliary linear operator

and establish the zeroth-order deformation as

(1− nω)L
[
ξ(ψ,ω) − ν0(ψ)

]
= ωhH(ψ)

[
N
(
ξ(ψ,ω)

)]
. (4.10)

N
[
ξ(ψ,ω)

]
= Dα

qν(ψ,ω) + ν2(ψ,ω) − 1. (4.11)

choose the initial guess,

ν0 =
ψα

Γq(α+ 1)
. (4.12)

And also choose H(ψ) = 1. Hence the mth-order deformation can be given by

L[νm(ψ) − Υmνm−1(ψ)] = h[Λm(νm−1(ψ))], (4.13)

where

Λm(νm−1(ψ)) =
1

(m− 1)!

∂m−1
q N(ν(ψ,ω))

∂qωm−1
. (4.14)

From Theorem 2.1, we have

Λm(νm−1(ψ)) = Dm
q νm−1 −

m−1∑
j=0

ν jνm−1− j − (1− Υm). (4.15)

Applying the Jαq operator, which is the contrary operator of Dα
q on two side of the mth-order deformation

equation, we get

νm(ψ) = Υmνm−1(ψ) + hJαq [Λm(νm−1(ψ))]. (4.16)

The first 5 terms of the series solution of νm are given below;

ν0(ψ) = Θ0ψ
α,

ν1(ψ) = −hΘ1ψ
3α,

ν2(ψ) = −h(h + 1)Θ1ψ
3α + h2Θ2ψ

5α,

ν3(ψ) = −h(h + 1)2Θ1ψ
3α + 2h2(1 + h)Θ2ψ

5α
− h3Θ3ψ

7α,

ν4(ψ) = −h(h + 1)3Θ1ψ
3α + 3h2(1 + h)2Θ2ψ

5α
− 3h3(1 + h)Θ3ψ

7α + h4Θ4ψ
9α,

and so on, where

Θ0 =
1

Γq(α+ 1)
, Θ1 =

Γq(2α+ 1)

Γq(3α+ 1)
Θ0

2, Θ2 =
Γq(4α+ 1)

Γq(5α+ 1)
(2Θ0 Θ1),

Θ3 =
Γq(6α+ 1)

Γq(7α+ 1)
(2Θ0 Θ2 + Θ1

2), Θ4 =
Γq(8α+ 1)

Γq(9α+ 1)
(2Θ0 Θ3 + 2Θ1 Θ2).
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When q = 1, the same result will be appear in [5] the series solution of the q-FDE is given by

ν(ψ) = ν0(ψ) + ν1(ψ) + · · ·

= Θ0ψ
α
−

h
n

[
1 + (n + h) + (n + h)2 + · · ·

]
Θ1χ

3α

+

(
h
n

)2[
1 + 2(n + h) + 3(n + h)2 + · · ·

]
Θ2ψ

5α

−

(
h
n

)3[
1 + 3(n + h) + 3(n + h)2 + · · ·

]
Θ3ω

7α + · · · .

(4.17)

We get the exact solution if we take h = −n. First, analyze the effect of the additional parameter h on series
convergence by plotting the assumed h-curves for 5th-order approximation (4.17) at ψ = 0.5, when α = 1.
We actually have the option of selecting the additional parameter h. To analyze the effect of h on the solution
series, we first study the convergence of some connected series, such as Dα

qν(ψ) for q = 0.25, 0.5, 0.75, 1

and α = 1.25, 1.5, 1.75, 2. These curves are made up of a plane segment that represents the correct region
of h that ensured the connected series’ convergence. It is noticed that the correct region for h is −2 < h < 0

as shown in Fig. 4.2. As a result, the interval’s midpoint. Hence, h = −n is a proper choice for h where the
numerical solution converges.

Figure 3. The h-curves of Dα
qν(ψ) at ψ = 0.5 for 5th-order approximations.
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Figure 4. The 5th-order approximate solution ν(ψ) in [0, 2].

For q = 1, (4.8) and (4.9) becomes fractional initial value problem as in problem 1 [5] and the results
are the same. If q = 1, α = 1, h = −n, and n = 1 then the solution of (4.8) and (4.9) is ν(ψ) = tan(ψ).
For 5th-order approximations and h = −n, the approximate solution of ν is depicted in Fig. 4.2 for various
values of q and α.

5. Conclusions

The HAM was successfully applied to obtain both the exact and analytical solutions to non-linear

q-FDEs. The q-Taylor series expanded non-linear terms involving radical powers. The convergence

of the series solution was obtained from the h-curves of Dα
qν(χ) for a fixed value of χ and various

values of α and q. The dependability of HAM, as well as the reduction in computations, allow it

can be used for a wider range of applications.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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