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Abstract. The aim of this paper is to consider a general non-stationary optimization problem whose

objective function need not be smooth in general and only approximation sequences are known instead

of exact values of the functions. We apply a two-step technique where approximate solutions of a

sequence of a generalized mixed variational inequality problem (GMVIP) are inserted in the iterative

method of a selective coordinate-wise decomposition descent method. Its convergence is achieved

under coercivity-type assumptions.

1. Introduction

This paper presents a systematic approach to non-stationary optimization problems for a class of

non-stationary variational inequalities. The theoretical results are delivered in the general framework

of abstract inequalities in an abstract space. The main feature of such general non-stationary opti-

mizations lies in the fact that they are governed by a target function that cannot be smooth in general

and only approximation sequences are known instead of exact values of the functions.

The variational inequalities appear in a variety of mathematical, physical and mechanical problems,

for example, the unilateral contact problems in nonlinear elasticity, the problems describing the adhesive

and friction effects, the nonconvex semi permeability problems, the nonlinear optimization problems,

the masonry structures, and the delamination problems in multi-layered compositions. Variational

inequalities have been introduced by G. Stampacchia [1] in 1968 as the variational formulation of

important classes of unilateral, boundary-valued problems and inequality problems in mathematical
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mechanics. The notion of optimization problem is a generalization of variational inequality for a case

where the function involved is nonconvex, nonsmoothed and nonstationary. They cover optimization

problems for partial differential equations with nonmonotone, possibly multivalued and nonconvex

nonlinearities. In the last few years, many kinds of optimization problems and variational inequalities

have been investigated see, [2] and the study of optimization and variational inequalities has emerged

today as a new and interesting branch of mathematics.

Various models in applied sciences can be conveniently formulated as optimization problems involv-

ing certain constraints/parameters. These constraints/parameters are either known are unknown but

they often characterize some physical properties of the underlying model. In this context, the direct

problem consists in solving the optimization problem. In recent years, the field of optimization and

variational inequalities emerged as one of the most vibrant and developing branches of applied and

industrial mathematics because of their wide applications, see [3, 4]. Rather recently, the decom-

position approach was suggested for variational inequalities with binding constraints in [5]. Within

this approach, the initial problem is treated as a two-level one using a share allocation procedure,

leading to a set-valued variational inequality as a master problem. Further, a decomposable dual

regularization (penalty) method that deals with a single-valued approximation of the master prob-

lem for each fixed share allocation was suggested. However, the optimization problem of identifying

constraints/parameters in optimization and variational inequalities is still an untreated topic in the

literature, which is the motivation of the present work.

The general optimization problem consists of finding the minimal value of some goal function p

over the corresponding feasible set X . For brevity, we write this problem as

min
x∈X

p(x), (1.1)

its solution set is denoted by X ? and the optimal value of the function by p?, defined by

p? = inf
x∈X

p(x).

We denote Rs by the real s-dimensional Euclidean space, all elements of such spaces being column

vectors represented by boldface, e.g. x. For any vectors x and y of Rs , we denote by 〈x, y〉 their scalar
product, i.e.

〈x, y〉 = x>y =

s∑
i=1

xiyi ,

and by ‖x‖ the Euclidean norm of x, i.e.

‖x‖ =
√
〈x, x〉.

We define for brevity M = {1, · · · , n}, | A | will denote the cardinality of a finite set A. As usual, R
will denote the set of real numbers, R̄ = R

⋃
{+∞}.
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Let us consider a partition of the N-dimensional space

RN = RN1 × · · · × RNn , (1.2)

i.e.

N =

n⋃
i=1

Ni ,

where N = {1, · · · , N}, N =| N |, Ni =| Ni |, and

Ni
⋂
Nj = ∅, if i 6= j.

This means that any point x = (x1, · · · , xN)> ∈ RN is represented by x = (x1, · · · , xn)> where

xi = (xj)j∈Ni ∈ RNi for i ∈M. The simplest case, where ni = 1 for all i ∈M and n = N corresponds

to the scalar coordinate partition.

Assume that f1, f2 : RN → R̄ are two functions, which are continuous on X and f1+ f2 = f : RN → R̄
is a continuous function on X . The partially decomposable optimization problems played a significant

role in various data type applications; see, e.g. [6–9]. In these problems, the cost function and feasible

set are specialized as follows:

p(x) = f (x) + h(x), (1.3)

h(x) =

n∑
i=1

hi(xi), (1.4)

X = X1 × · · · × Xn =

n∏
i=1

Xi , (1.5)

where hi : RNi → R̄ is a convex function, and Xi is a convex set in RNi for i = 1, · · · , n. Note
that the function f : RN → R̄ is not supposed to be convex in general. That is, we have to solve

a non-convex non-differentiable optimization problem, which appears too difficult to solve with usual

subgradient-type methods. One can develop efficient coordinate-wise decent decomposition methods

for finding stationary points problem (1.1), (1.3)-(1.5) for a smooth f ; see, e.g. [7,10–12]. Then the

stationary points can be defined as a solution to the following generalized mixed variational inequality

problems (GMVIP): Find a point x? ∈ X such that

〈f ′(x?), y − x?〉+

n∑
i=1

[hi(yi)− hi(x?i )] ≥ 0, ∀yi ∈ Xi for i = 1, · · · , n (1.6)

where f ′(x?) = f ′1(x?) + f ′2(x?) and y = (y1, · · · , yn)>.

In this paper, we intend to suggest a coordinate-wise decomposition descent method for the following

problem: Find a point x? ∈ X such that

∃g? ∈ G(x?),q? ∈ Q(x?), 〈g? + q? , y − x?〉+

n∑
i=1

[hi(yi)− hi(x?i )] ≥ 0, ∀yi ∈ Xi , (1.7)
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for i = 1, · · · , n, where G,Q : X → Π(RN) are point to set mappings whose values are considered as

generalized gradient sets of the functions f1, f2 respectively, i.e. f ; cf (1.6). Here Π(A) denotes the

family of all nonempty subsets of a set A. For instance, if f is a locally Lipschitz function, we can set

G and Q to be its Clarke subdifferential mapping. If f is a convex function, simply set G(x) and Q(x)

to be the usual subdifferential

∂f (x) = ∂f1(x) + ∂f2(x)

of f at x, then each solution of (1.7) exactly solves (1.1), (1.3)-(1.5). Next, we suppose that only

sequences of approximations are known instead of the exact values of G, Q and h.

2. Preliminaries

Let us consider a partially partitionable optimization problem of the form

min
x∈X

ϕ(x) = {µ(x) + η(x)}, (2.1)

where the function µ : RN → R̄ is smooth on X , but not necessary convex. This problem will serve

as an approximation of the basic problem (1.1), (1.3)-(1.5). We use the same partition (1.2) of the

space RN and fix the assumption on the feasible set.

(A1) It holds that (1.5) where Xi are non-empty, convex and closed sets in RNi for i = 1, · · · , n.
We suppose that

η(x) =

n∑
i=1

ηi(xi), (2.2)

where ηi : RNi → R̄ is convex and has the non-empty subdifferential ∂ηi(xi) at each point xi ∈ Xi ,
for i ∈ M. Then each function ηi is lower semi-continuous, hence the function η is also lower semi-

continuous, and

∂η(x) = ∂η1(x1)× · · · × ∂ηn(xn).

Therefore, problems (2.1) and (2.2) are rewritten as

min
x∈X1×···×Xn

ϕ(x) =

{
µ(x) +

n∑
i=1

ηi(xi)

}
. (2.3)

Set g(x) + q(x) = µ′1(x) + µ′2(x) = µ′(x), then

g(x) + q(x) = (g1(x) + q1(x), · · · ,gn(x) + qn(x))>,

where

gi(x) + qi(x) =

{
∂µ1(x)

∂xj
+
∂µ2(x)

∂xj

}
j∈Ni

=

{
∂µ(x)

∂xj

}
j∈Ni
∈ RNi , i = 1, · · · , n.
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Given a point x ∈ X , we say that a vector d is feasible for x if x +αd ∈ X for some α > 0. From the

above assumptions, it follows that the function ϕ is directionally differentiable at each point x ∈ X ,
that is, its directional derivative concerning any feasible vector d is defined by the formula:

ϕ′(x; d) = 〈g(x) + q(x),d〉+ η′(x; d), with η′(x; d) =

n∑
i=1

max
bi∈∂ηi (xi )

〈bi ,di〉;

see, e.g. [14].

Recall a function f : Rs → R̄ is said to be coercive on a set D ⊂ Rs if {f (uκ)} → +∞ for any

sequence {uκ} ⊂ D, ‖uκ‖ → ∞. Suppose that the function ϕ : RN → R̄ is coercive on X , then
problem (2.1) and (2.2) (or (2.3)) has a solution.

Lemma 2.1. [15]

(a) Each solution of problem (2.3) is a solution of the following GMVIP: Find a point x? ∈ X =

X1 × · · · × Xn such that
n∑
i=1

〈gi(x?) + qi(x?), yi − x?i 〉+

n∑
i=1

[ηi(yi)− ηi(x?i )] ≥ 0,∀y ∈ X . (2.4)

(b) If µ is convex, then each solution of GMVIP (2.4) solves problem (2.3).

Now, we denote by X̃ 0 the solution set of GMVIP (2.4) and call it the set of stationary points of

problem (2.3); cf(1.6).

Fix α > 0. For each point x ∈ X we can define y(x) = (y1(x), · · · , yn(x))> ∈ X such that
n∑
i=1

〈gi(x) + qi(x) + α(yi(x)− xi), yi − yi(x)〉+

n∑
i=1

[ηi(yi)− ηi(yi(x))] ≥ 0,∀y ∈ X . (2.5)

This GMVIP gives a necessary and sufficient optimality condition for the optimization problem:

min
y∈X1×···×Xn

n∑
i=1

Φi(x, yi), (2.6)

Φi(x, yi) = 〈gi(x) + qi(x), yi〉+ 0.5α‖xi − yi‖2 + ηi(yi), for i = 1, · · · , n. (2.7)

From the above assumptions each Φi(x, ·) is strongly convex then problem (2.6) and (2.7) (or (2.5))

has the unique solution y(x), thus defining the single valued mapping x 7→ y(x). Observe that all the

components of y(x) can be found independently, i.e. (2.6) and (2.7) is equivalent to n independent

optimization problems of form

min
yi∈Xi

Φi(x, yi), (2.8)

for i = 1, · · · , n and yi(x) just solves (2.8).

Lemma 2.2. [15]

(a) x = y(x)⇔ x ∈ X̃ 0;
(b) The mapping x 7→ y(x) is continuous on X .
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Set

M(x) = ‖x− y(x)‖,

then

M2(x) =

n∑
i=1

M2i (x)

where Mi(x) = ‖xi − yi(x)‖.
From Lemma 2.2, we see that the value M(x) can serve as an accuracy measure for GMVIP (2.4).

Lemma 2.3. [15] Take any point x ∈ X and index i ∈ M. If

ds =

yi(x)− xi if s = i ,

0 if s 6= i ,

then

ϕ′(x; d) ≤ −α‖yi(x)− xi‖2.

Denote by Z+ the set of non-negative integers. From [15], we describe the basic algorithm for

GMVIP (2.4) as follows

Algorithm 2.1. (Decomposition Descent Schemes (DDS.))

Input: A point x0 ∈ X .
Output: A point z.

Parameters: Numbers α > 0, δ > 0, β ∈ (0, α), θ ∈ (0, 1).

At the κ-th iteration, κ = 0, 1, · · · , we have a point xκ ∈ X .
Step 1: Choose an index i ∈M such that Mi(xκ) ≥ δ, set iκ = i ,

dκs =

ys(xκ)− xκs if s = iκ,

0 if s 6= iκ,

and go to Step 3.

Otherwise (i.e., when Ms(xκ) < δ for all s ∈M) go to Step 2.

Step 2: Set z = xκ and stop.

Step 3: Determine m as the smallest number in Z+ such that

ϕ(xκ + θmdκ) ≤ ϕ(xκ)− βθmM2i (xκ), (2.9)

set λκ = θm, xκ+1 = xκ + λκdκ, and κ = κ+ 1. The iteration is complete.

Lemma 2.4. The line search procedure in Step 3 is always finite.

Proof. We assume that, if the line search procedure is infinite, then

θ−m(ϕ(xκ + θmdκ)− ϕ(xκ)) > −βM2i (xκ), for m →∞,
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hence, by taking the limit, we get

ϕ′(xκ; dκ) ≥ −βM2i (xκ),

but Lemma 2.3 gives

ϕ′(xκ; dκ) ≤ −αM2i (xκ),

hence α ≤ β, a contradiction. �

Proposition 2.1. The number of iterations in Algorithm DDS is finite.

Proof. By construction, we have

−∞ < ϕ? ≤ ϕ(xκ)

and

ϕ(xκ+1) ≤ ϕ(xκ)− βδ2λκ,

hence the sequence {xκ} is bounded and has limits points, besides,

lim
κ→∞

λκ = 0.

Assume that the sequence {xκ} is infinite. Since the set M is finite, there is an index iκ = i , which

is repeated infinitely. Take the corresponding subsequence {κs}, then, without loss of generality, we
can assume that the subsequence {xκs} converges to a point x̄, besides,

Miκs (xκs ) = ‖dκsi ‖,

and we have (
λκs
θ

)−1(
ϕ

(
xκs +

(
λκs
θ

)
dκs
)
− ϕ (xκs )

)
> −β‖dκsi ‖

2.

Using the mean value theorem (see e.g. [14]), we obtain

〈gκsi + qκsi + tκsi ,d
κs
i 〉 = 〈gκs + qκs + tκs ,dκs 〉 > −β‖dκsi ‖

2,

for some gκs + qκs = µ′(xκs +
(
λκs
θ

)
ξκsd

κs ), tκs ∈ ∂η(xκs +
(
λκs
θ

)
ξκsd

κs ), ξκs ∈ (0, 1). By taking

the limit s →∞, we have

〈µ′(x̄) + t̄, d̄〉 = 〈gi(x̄) + qi(x̄), d̄i〉 ≥ −β‖d̄i‖2,

for some t̄ ∈ ∂η(x̄), where

d̄s =

yi(x̄)− x̄i if s = i ,

0 if s 6= i .

On the other hand, using Lemma 2.3 gives

〈µ′(x̄) + t̄, d̄〉 ≤ ϕ′(x̄, d̄) ≤ −α‖d̄i‖2,

besides, by construction, we have

‖dκsi ‖ ≥ δ,
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hence

‖d̄i‖ ≥ δ > 0

and

α ≤ β,

which is a contradiction. �

3. Main Results

We now intend to describe a general iterative method for the non-stationary (or limit) general-

ized mixed variational inequality problems (GMVIP) (1.7). First, we introduce the approximation

assumptions.

(A2) There exists a sequence of continuous mappings G`, Q` : X → RN , which are the gradients of

functions f1,` + f2,` = f` : RN → R̄, ` = 1, · · · , such that the relations {y`} → ȳ and y` ∈ X
imply {G`(y`)} → ḡ ∈ G(ȳ), {Q`(y`)} → q̄ ∈ Q(ȳ).

(A3) For each i = 1, · · · , n, there exists a sequence of convex functions h`,i : RNi → R̄, such that

each of them is subdifferentiable on Xi and that the relations {u`} → ū and u` ∈ Xi imply

{h`,i(u`)} → hi(ū).

Under condition (A2), the limit set valued mappings G and Q at any point is approximated by a

sequence of gradients {G`} and {Q`}. In fact, if G,Q are the Clarke subdifferential of a locally

Lipschitz functions f1 + f2 = f , it can be always approximated by a sequence of gradients within

condition (A2); see [16, 17]. Also, observe that if there is a subsequence y`s ∈ X with {y`s} → ȳ,

then (A2) implies {G`s (y`s )} → ḡ ∈ G(ȳ), {Q`s (y`s )} → q̄ ∈ Q(ȳ) and the same is true for (A3). At

the same time, the non-differentiability of the functions f1 + f2 = f or h is not obligatory, the main

property is the existence of the approximation sequences indicated in (A2) and (A3).

We replace GMVIP (1.7) with a sequence of GMVIPs: Find a point z̄` ∈ X = X1 × · · · × Xn such

that
n∑
i=1

〈G`,i(z̄`) + Q`,i(z̄`), yi − z̄`i 〉+

n∑
i=1

[h`,i(yi)− h`,i(z̄`i )] ≥ 0, ∀ yi ∈ Xi , for i = 1, · · · , n; (3.1)

where we use the partition of G` and Q` which corresponds to that of the space RN , i.e.

G`(x) + Q`(x) = (G`,1(x) + Q`,1(x), · · · ,G`,n(x) + Q`,n(x))>,

where G`,i(x) ∈ RNi and Q`,i(x) ∈ RNi , i = 1, · · · , n.
Similarly, we set

h`(x) =

n∑
i=1

h`,i(xi).

Since the feasible set X may be unbounded, we introduce coercivity conditions.
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(C1) For each fixed ` = 1, 2, · · · , the function f`(x) + h`(x) is coercive on the set X , that is

{f`(wκ) + h`(wκ)} → +∞ if {wκ} ⊂ X , ‖wκ‖ → ∞ as κ→∞.
(C2) There exists a number σ > 0 and a point v̄ ∈ X such that for any sequences {u`} and {d`}

satisfying the conditions:

u` ∈ X , {‖u`‖} → +∞, {d`} → 0;

it holds that

lim inf
`→∞

{〈G`(u`) + Q`(u`) + τd` , v̄ − u` − d`〉+ [h`(v̄)− h`(u` − d`)]} ≤ −σ, if τ > 0.

Clearly, (C1) gives a custom coercivity condition for each function f`(x) + h`(x), which provides

existence of solutions of each particular problem (3.1). Obvious, (C1) holds if X is bounded. At

the same time, (C2) gives a similar coercivity condition for the whole sequence of these problems

approximation the limit GMVIP (1.7). It also holds if X is bounded. In the unbounded case (C2) is

weaker than the following coercivity condition:

‖v̄ − u` − d`‖−1{〈G`(u`) + Q`(u`) + τd` , v̄ − u` − d`〉+ [h`(v̄)− h`(u` − d`)]} → −∞ as `→∞.

Therefore, we conclude that the conditions C1 and C2 are not restrictive. The whole decomposition

descent method for the non-stationary GMVIP (1.7) has a two-level iteration scheme where each

stage of the upper level invokes Algorithm (DDS) with different parameters.

Decomposition Non-Stationary Method (DNS) Choose a point z0 ∈ X and a sequence {δ`} → +0.

At the `-th stage, ` = 1, 2, · · · , we have a point z`−1 ∈ X and a number δ`.

Set

µ(x) = f`(x), η(x) = h`(x),

apply Algorithm (DDS) with x0 = z`−1, δ = δ` and obtain a z` = z as its output.

Now, we establish the main convergence result.

Theorem 3.1. Assume that the assumptions (A1)-(A3) and (C1)-(C2) hold, besides, {δ`} → +0.

Then

(i) problem (3.1) has a solution;

(ii) the number of iterations at each stage of Method (DNS) is finite;

(iii) the sequence {z`} generated by Method (DNS) has limit points and all these limit points are

solutions of GMVIP (1.7);

(iv) if f is convex, then all the limit points of {z`} belong to X ?.

Proof. We see that (C1) implies that each problem (3.1) has a solution. Since the cost function

µ(x) = f`(x) + h`(x)

is coercive, hence the set

X`(x0) =
{

y ∈ X | µ(y) ≤ µ(x0)
}
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is bounded. It follows that the optimization problem

min
x∈X

µ(x)

has a solution and so is GMVIP (3.1). Hence, assertion (i) is true. Next, from Proposition 2.1, the

assertion (ii) is also true.

By (ii), the sequence {z`} is well-defined and (2.5) implies

〈G`(z`) + Q`(z`) + α(y`(z`))− z`) , y − y`(z`)〉+ [h`(y)− h`(y`(z`))] ≥ 0,∀y ∈ X . (3.2)

Besides, the stopping rule in Algorithm (DDS) gives

αδ`
√
n ≥ α‖z` − y`(z`)‖. (3.3)

Now, we proceed to show that {z`} is bounded. Conversely, assume that {‖z`‖} → +∞. Applying
(3.2) with y = v̄, we have

0 ≤ 〈g` + q` + d` , v̄ − z̃`〉+ [h`(v̄)− h`(z̃`)].

Here and below, for brevity we set g` = G`(z`), q` = Q`(z`), z̃` = y`(z`), and d` = α(y(z`)− z`).

Take a subsequence {`s} such that

lim
s→∞

{
〈g`s + q`s + d`s , v̄ − z̃`s 〉+ [h`s (v̄)− h`s (z̃`s )]

}
= lim inf

`→∞

{
〈g` + q` + d` , v̄ − z̃`〉+ [h`(v̄)− h`(z̃`)]

}
,

then, from (C2), we have

0 ≤ lim
s→∞

{
〈g`s + q`s + d`s , v̄ − z̃`s 〉+ [h`s (v̄)− h`s (z̃`s )]

}
≤ −σ < 0,

a contradiction. Therefore, the sequence {z`} is bounded and has limit points. Let z̄ be an arbitrary

limit point for {z`}, i.e.

z̄ = lim
s→∞

z`s .

Since z` ∈ X , we have z̄ ∈ X . It follows from (A2) that

lim
s→∞

g`s = ḡ ∈ G(z̄)

and

lim
s→∞

q`s = q̄ ∈ Q(z̄).

Fix an arbitrary point y ∈ X , then, using (3.2) and (3.3) and (A3), we have

〈ḡ + q̄ , y − z̄〉+ [h(y)− h(z̄)] = lim
s→∞

{
〈g`s + q`s , y − z`s 〉+ [h`s (y)− h`s (z`s )]

}
= lim
s→∞

{
〈g`s + q`s + d`s , y − z̃`s 〉+ [h`s (y)− h`s (z̃`s )]

}
≥ 0.

Therefore, z̄ solves GMVIP (1.7) and assertion (iii) holds.

Next, if f is convex, then so is p (a goal function defined on a feasible set X )and each limit point of
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{z`} belongs to X ?, which gives assertion (iv), and GMVIP (1.7) has a solution.

�

4. Examples

We can take the exact one-dimensional minimization rule instead of the current Armijo line-search

(2.9) in Algorithm (DDS), then the assertions of Theorem 3.1 remain true. Next, if the function µ

each function f`) is convex, we can replace (2.9) with the following:

〈gi(xκ + θmdκ) + qi(xκ + θmdκ) + dκi 〉+ θ−m {ηi(xκi + θmdκi )− ηi(xκi )} ≤ −βα−1M2i (xκ).

Moreover, if the gradient of the function µ is Lipschitz continuous, we have an explicit lower bound

for the step size and utilize the fixed step-size version of the Algorithm (DDS), which leads to further

reduction of computational expenses.

Now, we give only two instances to illustrate possible applications.

The first instance is the linear inverse problem that arises very often in signal and image processing,

see [18]. The problem consists of solving a linear system of equations

Ax = b,

where A is a m×n matrix, b is a vector in Rm, whose exact values may be unknown or admit some noise

perturbations. If A>A is ill-conditioned, the custom approach based on the least square minimization

problem

min
x
‖Ax− b‖2

may give very inexact approximations. To enhance its properties, one can utilize a family of regularized

problems of the form

min
x
‖Ax− b‖2 + εh(x), (4.1)

where h(x) = ‖x‖2 or

h(x) = ‖x‖1 ,
n∑
i=1

| xi |,

ε > 0 is a parameter. Note that the non-smooth regularization term yields additionally sparse solutions

with rather small number of non-zero components; see, e.g. [6, 19].

The second instance is the basic machine learning problem, which is called the linear support vector

machine. It consists in finding the optimal partition of the feature space Rn by using some given

training sequence xi , i = 1, · · · , ` where each point xi has a binary label yi ∈ {−1,+1} indicating the

class. We have to find a separating hyperplane. Usually, its parameters are found in the solution of

the optimization problem

min
w∈Rn

(
1

p

)
‖w‖pp + C

∑̀
i=1

L(〈w, xi〉; yi), (4.2)
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where L is a loss function and C > 0 is a penalty parameter. The usual choice is

L(z ; y) = max{0; 1− yz}

and p is either 1 or 2. We observe that the data of the observation points xi can be inexact or even

non-stationary.

Next, taking p = 2, we can rewrite this problem as

min
w,ξ

0.5‖w‖2 + C
∑̀
i=1

ξi ,

subject to

1− yi〈w, xi〉 ≤ ξi , ξi ≥ 0, i = 1, · · · , `.

Its dual has the quadratic programming format:

max
0≤αi≤C,i=1,··· ,`

∑̀
i=1

αi − 0.5
∑̀
s=1

∑̀
t=1

(αsys)(αtyt)〈xs , xt〉. (4.3)

We see that all these problems fall into format (1.1), (1.3)-(1.5) has a solution.

5. Conclusions

We discussed a new class of selective coordinate-wise descent splitting methods for non-stationary

decomposable composite optimization problems and proved the convergence of the problems involving

the non-smooth set-valued functions where all coordinate variations together change the tolerance

parameters corresponding to the sequence of GMVIP.
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