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Abstract. Let (X, Z) be a bivariate random vector. A predictor of X based on Z is just a Borel function
g(Z). The problem of "least squares prediction" of X given the observation Z is to find the global
minimum point of the functional E[(X — g(Z))?] with respect to all random variables g(Z), where g is a
Borel function. It is well known that the solution of this problem is the conditional expectation E(X|Z2).
We also know that, if for a nonnegative smooth function F : RxR — R, arg mingz E[F(X, 9(Z))] =
E[X]|Z], for all X and Z, then F(x,y) is a Bregmann loss function. It is also of interest, for a fixed ¢
to find F(x, y), satisfying, arg mingz E[F (X, 9(Z))] = ¢(E[X|Z]), for all X and Z. In more general
setting, a stronger problem is to find F(x,y) satisfying arg min,cr E[F(X,y)] = @(E[X]), VX. We
study this problem and develop a partial differential equation (PDE) approach to solution of these

problems.

1. Introduction and Preliminary Facts

Best approximation problems in Mathematics have long history of study. It is known that for
every given x in a Hilbert space H and every given closed subspace L of H there is a unique best
approximation to x out of L (namely, y = Px, where P is the orthogonal projection of H onto L)
(see [8] and [11]). Theorem 1.1 below, regarding the optimality of conditional expectations with

respect to L, loss function F(x,y) = (x — y)? follows from this result.

Theorem 1.1. (see [1], [9], [13] ) Let (X, Z) be a bivariate random vector and Lz = {g(2)|9(Z) €
L2(Q), g is a Borel function}. Let E[X?] < oco. Then there exists a Borel function go : R — R
with E[(go(Z)?] < oo, such that E[(X — go(Z2))?] = inf{E[(X — g(2))?|9(Z) € Lz}. Moreover,
90(2) = E[X|Z].
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This theorem means that the distance function || X —Y'||3 attains its minimum value at Y = ¢(Z) =
E[X|Z]. Thus,

arg minyeL,|IX = Y5 = E[X|Z]. (1.1)

We recall some basic notions and facts from probability theory in the form we use in this paper
( [1]. [9]. [13]).

Expectation. Let (2, 7,P) be a probability space and X : Q — R be a random variable. By

the definition, a random variable is measurable, i.e., X~*(o0g) C F, where og is the Borel algebra,

consisting of all Borel sets in R. The expectation of a random variable X is defined by the following

integral, which is Lebesgue integral with respect to the probability measure.
E[X] = / X dP.
Q

Particularly, for a simple random variable X(w) = >"7 1 ajxa,(w),

E[X] Zzn:aiP(A/)- (1.2)
i—1

L2(Q) = {X| /Q|X|2dIP’<oo}.

1
The norm in Lo(R) is defined by [|X||> = (fQ X2 dIP)Q.
Conditional Expectation. Let (X, Z) be a bivariate random vector. The conditional expectation

of X given Z is denoted by E[X|Z], which is a random variable, defined by
Y(Z2)(w) = p(Z(w)) = E[X[Z = Z(w)].Vw € Q.

The following problem is a natural generalization of the problem (1.1), which has very important
applications (see [2] and references therein); find a loss function F(x,y) satisfying the following
condition

arg minyer E[F (X, y)] = @(E[X]), VX, (1.3)

where ¢ is a Borel function. In this paper our main concern will be the problem (1.3). Such problems
arise in different contexts of statistics and probability theory (see [4]). In the case of ¢p(x) = x;
F(x,y) = C(x—y) and F(x, y) = (x—y)? the optimality of conditional expectations have been studied
by many authors (see [1], [9], [10], [13]). For ¢(x) = x and arbitrary function F(x, y) the Bregman
loss functions play an important role ( [5], [6], [7]). Particularly, it was proved in [2] (see Theorem
1.2 below) that if for a nonnegative smooth function F : R x R — R, arg mingz)E[F (X, g(Z))] =
E[X]|Z], for all X and Z, then F(x,y) is a Bregmann loss function.

Definition 1.1. Let f : R — R be a strictly convex differentiable function. Then the Bregman Loss
Function (BLF) D¢ : R x R — R is defined as

Df(x,y) = f(x) = f(y) = f'(y)(x — y)
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In general, Bregman loss functions are defined by using strictly convex differentiable functions
f : R” — R. In this paper, for convenience we consider the case n = 1. All results can easily be
extended to the case n > 1. For more information on Bregman loss functions see [3] and [12].

The following theorem contains the most general result, regarding problem 1.3 in the case of
p(x) = x.
Theorem 1.2. ( [2]) Let Df : R x R — R be a BLF. Then,
arg minye; ,E[Df(X,Y)] = E[X|Z].
Moreover, if F : R xR — R, F >0, F(x,x) =0, F and Fx are continuous functions and for all X

and Z, arg minyc; ,E[D¢(X,Y)] = E[X|Z] then F is a BLF.

The rest of this paper will be organized as follows. In Section 2 we present a theorem about
optimality of expectations. Section 3 consists of two subsections. In subsection 3.1 we develop a
partial differential equation approach for critical points of E[F(X,y)]. The main problem studied
in this subsection is: when y = @(E[X]) is a critical point of the function E[F(X,y)] for every
X € L1(€2)? We present a partial differential equation approach for solving this problem and give a
necessary and sufficient condition. In subsection 3.2 we study extreme problems. Our main goal is
to find the class of all F such that y = @(E[X]) is a unique extremum point for E[F (X, y)], for all
X € L1(Q).

2. On the Optimality of Expectations
We start with a slightly stronger version of Theorem 1.2.

Theorem 2.1. Let F : R xR = R, F >0, F(x,x) =0, Fx and F, are continuous. Suppose that
there exists a function ¢ : R — R such that @(E[X]) is a unique minimizer for E[F (X, y)] in R for all
X eLi(Q),ie.,

arg minyerE[F (X, y)] = @(E[X]), VX € L1(%),

provided that F(X,y) € L1(Q). Then F(x,y) is a BLF if and only if o(x) = x.
Proof. let F(x,y) be a BLF. Then,

Fx,y) =f(x) = fy) = f'(¥)(x = y).
We can write

F(X.y)=f(X)=f(y) = F(y)(X=y)

and
F(X, E[X]) = £(X) = f(E[X]) — F/(E[X])(X = E[X]).

Hence,

F(X.y) = F(X, EIX]) = F(EIX]) = f(y) + F(EIXD)(X = E[X]) = F/(y)(X = y).
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Obviously,
E[f'(EIXD)(X = E[X])] = 0 and E[f'(y)(X = y)] = F'(¥)(E[X] = y).

Then,
E[F(X,y) = F(X, EIXD] = F(E[X]) = f(y) = FF(V)(EX] - y).

Consequently,

E[F(X,y) ~ F(X, E[X])] = D¢(E[X],y) > 0. (2.1)
Since F(x,y) = D¢(x,y) is a BLF, Df(E[X],y) = 0« y = E[X]. Thus y = E[X] is a minimum
point of E[F(X,y)]. By the condition @(E[X]) is a unique minimizer. Then, it follows immediately
that o(x) = x.

Now let ¢(x) = x. and

arg miny,erE[F(X,y)] = E[X],VX € L1(R2).

Then it follows from this condition that F is a BLF. This case was proved in [2] (see Theorem 3). [

3. A PDE Approach to Optimality Problems

3.1. Critical Points. In this section we develop a partial differential equation (PDE) approach for
critical points of E[F(X,y)]. More precisely, the main question is: when y = @(E[X]) is a critical
point of the function E[F(X, y)] for every X? We give a necessary and sufficient condition for this
question.

The following assumption will be needed throughout this section.
F:RxR—=R, F(x,x) =0, and the function F has first and second derivatives. Now we prove a

critical point theorem.

Theorem 3.1. Let ¢ : R — R be an invertible function. Then, y = @(E[X]) is a critical point of the
function E[F(X,y)] for all X € L1(2), if and only if F(x,y) is a solution of the following PDE

Fay(@ 1 (y) = x)+ F, = 0. (3.1)

Proof. Let y = @(E[X]) be a critical point of the function E[F (X, y)] for all X € L1(£2). Consider a
simple random variable X such that P(X =a) =p, P(X=b)=qgand p+qg=1.
By (1.2)

E[F(X.y)] = pF(a.y)+ qF (b y).
and
@(E[X]) = w(pa+ qb).
Then
pFy(a, p(pa-+ qgb)) + pFy (b, ¢(pa+ gb)) = 0.
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[t means that
Fy(a w(patqb)) _ Fy(bolpatab))
q p

Fy(a, p(pa+qb)) _  Fy(b p(pa+ qb))
q(b—a) p(b—a)
y =@(E[X]) = y = o(pa+ gb) = pa+ gb = ¢ 1(y). Note that

(3.2)

pa+qgb—a=q(b—a)and pa+gb— b= —p(b— a).
Hence,

o ' (y)—a=q(b—a)and "' (y) — b= —p(b—a).
It follows from equation (3.2) that

Fy(ayJ/) _ Fy(b:)/)
e l(y)—a @ y)—-b

Therefore, the function ;{(();‘)}’EX does not depend on x. Then
2[ Fy(XxY) _
Ox Lp=t(y) — x)

nd
i Fo(@ () =) +F _
(0 1(y) — x)? '

Consequently,
Fy(07Hy) = x) + F, =0.
To finish the proof of this theorem, we need to show that the (3.1) implies y = @(E[X]) is a critical
point of the function E[F(X, y)] for all X € L1(R2). Thus, by (3.1)

ny((Pil(J/) —X) + Fy =0.

Multiplying, this equation by the integrating factor u(x, y) = @—1(% we get

¥)—x)

1 1
- Fyt+t - F,=0.
e Hy)—x " (e (y)—x)2 7

Then,

1 Fy B o
(mﬁ)x =0 and o) —x Cly)=F, = (o ' (y) —x)C(y).

Setting y = @(E[X]) we get
Fy (X, o(E[X])) = (E[X] = X)C(e(E[X]))

and
E[F (X, 0(E[X])] = (E[X] - E[X])C(w(E[X])) = 0.
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We next give an application of this theorem.

Example 3.1. Let us find a general solution of the following problem
ny(<p*1(y) -x)+F, =0, F(x,x)=0
in the case of (y) =y.

Solution. We can write the equation in the form
Fyy + L F, =0
v Ty y :

Multiplying, this equation by the integrating factor u(x,y) = y%x we get

1 1
—F ——F,=0.
y—x T2 0
Then,
1 Fy
(y_XFy)X—Oandy_X—C(y).

Let C(y) = f”(y). By using integration by parts we obtain that

/y Fy(x, t) dt = /y ()t )t = [F(0)(E -] /y £(t) dt.

Consequently,
F(x,y)=f(x)=f(y) = f'(y)(x—y).

The following corollary immediately follows from this example and Theorem 3.1.

Corollary 3.1. If F(x,x) = 0 and y = E[X] is a critical point of the function E[F(X,y)] for all
X € L1(Q2), then F(x,y) can be written in the form F(x,y) = f(x) — f(y) — f'(y)(x — y) for a

differentiable function f.

Not. By imposing additional conditions: F(x,y) > 0 and E[X] is the unique minimizer, it was
proved in [2] that F is a BLF.

3.2. Extreme Points. Let ¢ : R — R be an invertible function. In this subsection the main problem
is to find the class of all F such that y = @(E[X]) is a unique extremum point for E[F (X, y)], for all
X € L1(€2). We first prove the following theorem.

Theorem 3.2. Let
arg minyer E[F (X, y)] = 0(E[X]), VX € L1(Q).
then

Fx,y) = (o7 (y¥) = x)f'(y) = (0 1(x) = x) f'(x) — /y F(t) (0~ 1(t)) dt, (3.3)

X
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where f is a differentiable function satisfying the following condition

(x)
(™ * ) = x)f'(y) + /w F/(t) (01 (t)) dt > 0, Yy # @(x), (3.4)

y

Proof. By Theorem 3.1
ny(tp’l(y) -x)+F, =0, F(x,x)=0.
Then,

vy _ Kk
(Gpy =), =0 gy == = <)

Setting C(y) = f"(y) we can write
Fy= (07 () = x)f"(v). (3.5)

Using integration by parts in (3.5) we obtain that

[ Bnae= [ i@ - e = [row o -]~ - [ o)

Consequently,

Fixy) = (07 ) = x) ' (v) = (071 (x) = x)f'(x) — /y F(8) (o' (1)) dt

X

and (3.3) holds.

Now we use the condition
arg minyer E[F (X, y)] = p(E[X]).
This condition means that
E[F(X,y) ~ F(X, (p(E[X])} >0,
provided that y # @(E[X]). Using (3.3) we obtain that

P (EIX]) /
E[F(X.) - FX0(EXD)] = (07 )~ EXDFD) + [ Fo(e(0) de> o
y

Thus,
p(x) ,
(0 (y) = x)f'(¥) +/ /(1) (0 1(2)) dt > 0, Wy # ().

y

Note. In case of p(x) = x,

(x)

(' (y) = x)f'(y) + ’ () (9 (t)) dt > 0, Yy # o(x) =

S~

F(x)—fy) = f'(y)(x—y) >0, x#y.

and
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y
Flay) = (070) = )F0) = (0700 = x)F 00 = [ o0 H(0) de =
X
Fx,y) =f(x) = fy) = f'(¥)(x = y).
Therefore, in case of p(x) = x, the condition (3.4) means that f is a is strictly convex function and

(3.3) means simply that F(x,y) is a Bregman loss function.

Corollary 3.2. Let
arg maxyer E[F(X,y)] = 0(E[X]), VX € L1(£2).
Then y
Fixy) = (071 0) =) (v) = (971 (x) = x)f'(x) —/X F(8) (o' (1)) dt
and

p(x) ,
(07 (y) = X)F'(y) + / F(6) (02 (1) dt < 0, ¥y £ o(x).
y

Finally, we discus the condition (3.4), which is a generalization of the strictly convexity condition.

The main question is: are there functions satisfying the following inequality

p(x) ,
(07 (y) = X)F'(y) + / P8 (™2 (8) dt > 0, Vy # @(x).
y

Regarding this question, we prove the following theorem.

Theorem 3.3. /f ¢(x) is an increasing function and f”(x) > 0,V¥x € R. Then

p(x) ,
(07 () — X)F'(y) + / F(8) (072 (8) dt > 0, Yy # @(x).
y

Proof. Let us define

»(x) ,
G(xy) = (07 () = X)F'(y) + / F(6) (01 (1)) dt.

y
Then,

Gy (x,y) = (07 2() F () + (02 (y) = x)F"(y) — (02 (W)) F'(y) =

Gy(x,¥) = (¢ 1 (y) = x) " ().
We have
y>p(x) & ol (y) —x>0&Gy(x,y) >0,

y<o(x) e e Hy)—x<0eG,(x,y) <0

and G, (x, ¢(x)) = 0. Consequently,

(x)
6tx.) = (67 0) )+ [ () (07 () dt > 0, Yy # ().
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Corollary 3.3. If (x) is a decreasing function and f”(x) > 0,Vx € R. Then

p(x) ,
() = x)f'(¥) +/ /(1) (@ 1(1)) dt <0, Wy # o(x).

y
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