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Abstract. The purpose of this paper is to study strong and A - convergence of a newly defined
iteration to a common fixed point of two asymptotically nonexpansive self mappings in a hyperbolic

space framework. We provide an example and a comparison table to support our assertions.

1. Introduction

Globel and Kirk [1] introduced the concept of asymptotically nonexpansive mappings and proved
that every asymptotically nonexpansive self mapping on a non empty closed subset K of a uniformly
convex Banach space X posseses a fixed point. Ever since, many authors (see, [2], [3], [4] and [5])
have established strong and weak convergence theorems for asymptotically nonexpansive mappings
based on the modified Mann [6] and Ishikawa [7] iterations. Tan and Xu [8] studied the modified

Ishikawa iteration scheme:

X1 eK
Xpp1 = (L —ap)xp +apT" "y, (1.1)
Yn = (1 _.Bn)xn +BnT"%y, n>1

where {a,} and {B,} are sequences in (0, 1) bounded away from 0 and 1.
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Aggarwal et al [9] in an attempt to obtain a faster rate of convergence, modified the above iteration

process (1.1) as following:

X1 eK
Xn+1 = (1 - O4n)Tan +apT"y, (1-2)
Yn = (1 _,Bn)xn +6nT"xy, n=>1

This iteration is called the modified S-iteration process. For further results on Ishikawa iteration
process, (refer, [10], [11], [12] and [13]). Recently, iterative approximations are defined and inves-
tigated in the framework of hyperbolic spaces. Several authors (refer, [14], [15] and [16]) have put
forward different notions of hyperbolic spaces in order to blend convexity and metric structure. The

following definition given by Kohlenbach [17] is widely used.

Definition 1.1. [17] A hyperbolic space is a triplet (X, d, W), where (X, d) is a metric space and
W : X2 — [0, 1] is a mapping that satisfies the following conditions:

(1) d(u,W(x,y,a)) < (1 —a)d(u,x)+ ad(u,y)

(2) dW(x,y,a), W(x,y,B)) =l —pBld(x,y)

(3) Wix,y. a) =W(y x,(1 -a))

(4) dW(x,z,a),W(y,v,a)) < (1—-a)d(x,y)+ad(z,v)
for all x,y,z,u,ve X and o, B € [0, 1].

2. Preliminaries

We recall some definitions and basic concepts which will be useful for our work.

Definition 2.1. [1] Let (X, d) be a metric space and let K be a closed convex subset of X. A

mapping T : K — K is said to be asymptotically nonexpansive, if there is a sequence of real numbers

{kn} € [1, 00) such that lim k, =1 and d(T"x,T"y) < ky,d(x,y) forallx,y € X and¥ n € N.
n—oo

The concept of an asymptotically nonexpansive mapping is a natural generalization of a nonexpan-
sive mapping (d(Tx,Ty) < d(x,y)). Theset F(T) = {Tx = x : x € K} shall denote the set of all
fixed points of any mapping T.

Definition 2.2. [23] A subset K of a hyperbolic space (X, d, W) is convex if W(x,y,a) € K for all
x,ye KandV a € |0,1].

Definition 2.3. [24] A hyperbolic space (X, d, W) is said to be uniformly convex if for any x,y,z € X,
r>0ande € (0,2], there is a § € (0,1] so that d(W(x,y,3),z) < (1 —8)r whenever d(x,z) <r,
d(y,z) <randd(x,y)>er.

Definition 2.4. [25], [26] Consider a bounded sequence {x,} in a hyperbolic space (X,d,W). For
any x € X, define, r(x,{xp}) = Ii_)m supd(xn, x) and r({x,}) = inf{r(x,{xp})/x € X}. The
n—oo
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asymptotic center A({xn}) of a bounded sequence {x,} is defined as A({xp}) = {x € X/r(x, {xn}) <
r(y. {xa}).Vy € X}.

It is well known that in uniformly convex Banach spaces, bounded sequences have unique asymptotic
centers. The following Lemma proved by Leustean [27] guarantees that complete uniformly convex

hyperbolic spaces also enjoy this property.

Lemma 2.1. [27] Let (X,d,W) be a complete uniformly convex hyperbolic space. Then every

bounded sequence {x,} in X has a unique asymptotic center.

Definition 2.5. [28] A sequence {x,} in a hyperbolic space (X, d, W) is said to A-converge to a point

x € X, if every subsequence {z,} of {x,} has x as its unique asymptotic center.

Lemma 2.2. [29] Let K be a nonempty closed convex subset of a uniformly convex hyperbolic space
(X, d,W) and let {x,} be a bounded sequence in K such that A({x,}) = {z} and r({x,}) = w. If

{zm} is a sequence in K such that lim r(zm, {x,}) = w, then lim z, = z.
m—o0 m—o0

Lemma 2.3. [29] Let (X, d,W) be a uniformly convex hyperbolic space. Let x € X and let {t,} be

a sequence in (0,1) such that 6 < t, <1 —¢ for all n € N and for some § > 0. If {x,} and {yn} are

sequences in X such that lim sup d(x,, x) < ¢, lim supd(yn, x) < c and lim d(W(xn, yn, tn), x) =
n—oo n—oo n—oo

c for some c > 0, then nIme d(Xn, yn) = 0.

Lemma 2.4. [3] Let {a,}, {Bn} and {05} be sequences of nonnegative numbers such that
Ont1 < opndn+06n V neN.

Ifap,>1 ¥V neNand) 72 (an—1) < oo andf, < oo, then nli_)moo 5, exists.

Uniformly convex Banach spaces and CAT(0) spaces are some of the known examples of hyperbolic
spaces. Sahin and Basarir [18] studied the following iterative process in a hyperbolic space setting and

established some convergence results under suitable conditions:

X1 eK
Xn+1 = W(T”Xn, T"yn, an) (2-1)
Yn =W(Xn, T"%n,Bn), n>1

Ishikawa type iteration is also employed to study the convergence of common fixed points of two
asymptotically nonexpansive mappings. In a Banach space framework, Das and Debata [19] initiated
the study of two mapping iterative procedure. The authors in [20] and [21] have studied the following

iteration for the convergence of common fixed points:
X1 eK
Xpt1 = W(xn, S"yn, p) (2.2)
Yoo =W T"%0.6n), n=1
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where S and T are asymptotically nonexpansive mappings with atleast one common fixed point and
{an} and {B,} are sequences in (0,1).
Recently, Saluja [22] modified the iterative procedure introduced by Khan et al [13] in hyperbolic

spaces to obtain a faster iterative procedure:

X1 eK
Xn+1 = W(Tan, Sy, an) (2'3)
Yn = W(Xn: Tan,ﬁn)v n>1

where S and T are asymptotically nonexpansive mappings with atleast one common fixed point and
{an} and {B,} are sequences in (0, 1).

The purpose of this paper is to introduce and study a new iterative procedure (3.1) even in Banach
spaces to approximate the common fixed points of two asymptotically nonexpansive mappings. We
prove strong and A - convergence of such an iteration in the general nonlinear framework of hyperbolic

spaces.

3. Main Results

In this section, we introduce and study a new iterative scheme to approximate common fixed points
of two asymptotically nonexpansive mappings in a hyperbolic space.
Let (X, d, W) be a uniformly convex hyperbolic space. Let K be a non-empty subset of X. Let S and
T be two asymptotically nonexpansive self mappings on K. Let {a,} and {8,} be sequences in (0, 1)
such that, d < ap, B, <1 -9, for all n € N and for some § > 0.

We define the following iteration:

X1 =xeK
Xn+1 = W(San, T"n, an) (3-1)
Vn =W(x,, S"(T"xy),B,), n=>1

Lemma 3.1. Let K be a non-empty subset of a uniformly convex hyperbolic space X. Let S and T
be asymptotically nonexpansive self mappings on K with a common sequence of real numbers k, > 1
satisfying >_(k2 — 1) < oco. Let F denote the set of all common fixed points of S and T. ie.,
F=F(S)NF(T). Letpe F. If{x,} and {y,} are sequences as defined in (3.1), then nli_}moo d(xn, p)
and nli_}moo d(yn, p) exist and

lim d(xq, p) = lim d(yn, p).
Proof. Since p € F(S)N F(T),

d(Xps1, p) = d(W(S"%n, TV, ap), p)
< (1= an)d(S %y, p) + and(T vy, p)
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< (1 *an)knd(xnyp)+anknd()/nyp) (3'2)

d(yn, p) = d(W(xn, S"(T"xn), Bn). P)
< (1= Bn)d(xn, p) + Bnd(S"(T"xn). p)
= (1 = Bn)d(Xn, p) + Bnd(S"(T"xn), S"(T"p))
< (1= Bn)d(xn, p) + Bnknd (T x5, T"p)
< (1= B1)d(xn, p) + Bnk; d(xn, p)
= d(xp, p)[(1 = By) + Bnk7] (3:3)

By substituting (3.3) in (3.2), we get,

d(Xnt1,P) < (1 = ap)knd(Xn, p) + atnkn [(1 = Bn) + Bnky] d(xn, p)
= [(1 = an)kn + ctnkn((1 = Bn) + Bnk?)] d(xn. p)
= [kn — ctnknBn + ctaBrk3] d(xp, p)
= [1+ (kn — 1) — @nBnkn + anBnky] d(xn, p)
= [1+ (kn = 1) + (kj = 1)anBnkn] d(xn, p) (3.4)

Hence, d(xpy1.p) < [1 + (kn — 1) + (kr% - 1)anﬁnkn] d(xn, p)

By Lemma 2.4, Ii_>m d(xp, p) exists.
n—,oo
Let lim d(x,, p)=c. (3.5)
n—oo
From (3.2), we have,
d(yn, p) < [(1 —Bn) +ﬁnk§] d(xn, p)
Hence, lim sup d(yn, p) < lim sup d(xy, p)
n—oo n—oo
i.e., lim supd(yn p) < c. (3.6)
n—oo
Now consider,

d(Xpe1, p) = dW(S5" 0, Ty, atp), P)
< (1 — ap)knd(xn, p) + anknd(yn, p)

= [1+ (ko — 1) + (k7 — 1)atnBnkn] d(xn, p)
By (3.5), we have, Ii_)m sup d(xp+1, p) = € and Ii_)m sup d(xp, p) = c. Hence, from (3.2) and (3.4),
n—oo n—oo

n|i_>moo sup [(1 — ap)knd(Xn, p) + apnknd(yn, p)] =cC.
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n“—>moo sup [knd(xnv P) — knotnd(Xn, P) + ctnknd(yn, p)} =c.

Since, lim sup k, = 1, we have,
n—oo

¢+ lim supankn[d(yn, p) = d(xa, )] = c == lim supankn[d(ya, p) = d(xn, p)] = 0.
Since, Ii_)m sup apk, > 0, this will imply that,
n—oo
lim_sup [d(yn, p) — d(xs, p)| = 0.
Therefore,
lim sup d(yn, p) = c.
n—oo

Similarly, we can show that, lim inf d(y,, p) = c.
n—oo

Hence,
nli_}moo d(yn,p)=c (3.7)
O

Lemma 3.2. Let K be a non-empty subset of a uniformly convex hyperbolic space X. Let S and T
be asymptotically nonexpansive self mappings on K with a common sequence of real numbers k, > 1
satisfying > (k2 — 1) < co. If {x,} Is a sequence as defined in (3.1) and d(xp, Xp+1) — 0 as n — oo,

then lim d(x,, Sx,) =0 and lim d(x,, Tx,) = 0.
n—o0 n—oo

Proof. Let F denote the set of all common fixed points of S and T.

e, F=F(S)NF(T). Let p € F. Now since, ILm kn =1, from (3.5), we have,
n—oo
lim sup d(T"y,, p) < lim supd(x,, p) = c.
n—oo n—oo
Similarly,

lim sup d(S"x,, p) < c. (3.8)

n—oo
Now, d(xpt1,p) = d(W(S"xn, T"yn, an), p)
< [1+ (ko = 1) + (k3 = D)anBaknld(xn, ).

From (3.5), we have, dW(S"xy, T"yn, ap), p) = C.

By Lemma 2.3, we have,

lim d(S"xn, T"ya) = 0. (3.9)
n—oo



Int. J. Anal. Appl. (2023), 21:62 7
Now consider,
d(yn, p) = d(W(xp, S"(T"xn). Bn). P)
< (1 =Bn)d(xn, p) + Bnd(S"(T"xn). P)
= d(xn, p)[(1 = Bn) + Bnky].
Since, nli_}moo sup d(yn, p) = ¢ and nli_)moo sup d(xn, p) = ¢, we have,
d(W(xn, S"(T"xn),Bn), p) — ¢
Further, nIi_)moo sup d(S"(T"xn), p) < c. (3.10)
So, using Lemma 2.3, we conclude that,
nli_)moo d(xn, S"(T"x,)) = 0. (3.11)
Now, d(yn, Xn) = d(W(xn, S"(T"x1), Bn). Xn)
< (1 =Bn)d(xn, Xn) + Bnd(S"(T"xn), Xn).
Using (3.11), nIi_)moo d(Xn, yn) = 0. (3.12)
From d(yn, S"(T"xa)) < d(¥n, xn) + d(xa, S"(T"Xn)),
we have, nlmm d(yn, S"(T"xs)) = 0. (3.13)
Now,
d(Xps1, S"xn) = dW(S"Xn, T"yn, ap), S"xp)
< (1= an)d(5"xp, S"xa) + and(T"yp, S"x5)
< (1= an)knd(Xn, Xn) + atnd(T"yn, S"Xp).
So, nIi_}moo d(Xpt+1, S"xy) = 0. (3.14)
Further,
d(Xnt1, T"Yn) = d(W(S"Xn, T"Yn, an), T"¥n)
< (1= 0n)d(S"%n, T"yn) + and(T"yn, T"yn)
< (1= 0n)d(S"%n, T"yn) + cnknd(yn, ¥n)
yields, nli_>moo d(Xp+1, T"yn) = 0. (3.15)
Now, d(xn, S"xp) < d(xpn, Xp+1) + d(Xp+1, S"xn)
So, nli_}moo d(xn, S"xp) = 0. (3.16)
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Now consider,
d(Xn, Sxn) < d(Xn, Xn11) + d(Xnt1, ™ x41) + d(S" X011, STTX)
+ d(S™1x,, Sxp)
< d(Xp, Xn1) + d(Xnr1, ST Xn11) + kg1 d (Xns1, Xn) + k1 d(S"xa, Xn).
Thus, we conclude that, nIme d(xn, Sxn) = 0. (3.17)

And from,

d(Xn. Tn)/n) < d(Xn: Xn+1) + d(Xn—i-l: Tn)/n)

we obtain, Ii_>m d(xp, T"yn) =0 (3.18)
n—oo
and therefore, |i_>m d(Yn, T"yn) = 0. (3.19)
n—oo

Also, d(yn, Ynt1) < d(Vn. Xn) + d(Xn, Xny1) + d(Xng1, Yor1)-
Thus, lim d(¥n, Yn+1) = 0. (3.20)
n—o0

Now consider,

d(Yn, Tyn) < d(¥n Yns1) + (o1, T"  yng)

+d(T™ i1, T yn) + d(T™ yn, Tyn)
< d(yn Yor1) + AWt T yn1) + kns1d(Vasn, Vo) + kad(T"Yn, yn).

Therefore, lim d(Yn, Tyn) = 0. (3.21)

By the asymptotic nonexpansive property of T, d(Tx,, Tyn) < kid(Xn, Yn)-
Hence, nIme d(Txn, Tyn) =0. (3.22)

From,

d(xn, Txn) < d(Xn, Yn) + d(Vn, Tyn) + d(Tyn, TXn),

we conclude that, lim : d(Xn, Txp) = 0. This completes the proof. (3.23)

n—oo

0

Theorem 3.1. Let K be a non-empty closed convex subset of a uniformly convex hyperbolic space
(X, d,W). LetT : K —= K and S : K — K be asymptotically nonexpansive mappings with F(T) # ¢
and F(S) # ¢ and k, > 1 satisfying fozl(k?, — 1) < oco. For any initial point x; € K, define the
sequence {x,} iteratively by (3.1). Suppose d(xp, xp+1) — 0 as n — oo, then, {x,} A-converges to
an element of F(T) N F(S).
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Proof. From Lemma 3.2, d(x,, Tx,) — 0 and d(x,, Sx,) — 0 as n — oo.

Lemma 2.1 ensures that any bounded sequence has a unique asymptotic center.

Let {z,} be a subsequence of {x,}. Since {x,} is bounded, {z,} is also bounded and suppose that
A({xn}) = x and A({zn}) = z.

Using the asymptotic nonexpansive property of T, we have,nli_>mOo d(T¥z, T¥1z,) = 0, where k =
1,2,3, ...

Our purpose is to show that, z=xand z € F(T) N F(S).

Let m and n be positive integers.

Now, d(T"z,z,) < d(T"z, T"z,) + d(T™z,, T" Yz,) + ... + d(T zy, z,)
m—1
< kmd(z,27) + Y d(Tkz,, TF¥1z,).
k=0

Taking limsup as n — oo, for any fixed m, we have,
r(T"z {zp}) = Ii_>m supd(T"z,{zy})
n—oo
< km lim supd(z,{z,})
n—oo

= kmr(z,{zn}).

Now, taking limsup as m — oo, we obtain, mlinOO supr(Tmz,{zp}) < r(z,{zn}).

Since A({z,}) = z, we have, r(z,{z,}) < r(T"z,{z,}), for any fixed m € N, which implies that,
mli_rpoo r(T"z,{zy}) = r(z,{zs}). Using Lemma 2.2, we conclude that, T"z — z and z € F(T). By
a similar argument, we can show that z € F(S).

We now claim that, z is the unique asymptotic center for each subsequence {z,} of {x,}.

Suppose x # z. Since z € F(T)N F(S), by Lemma 3.1, nli_)moo d(xn, z) exists and therefore by the

uniqueness of asymptotic centers, we have,

lim sup d(z,, z) < lim supd(z,, x)
n—oo n—oo

IN

lim sup d(xp, x)
n—oo

A

lim sup d(x,, 2)
n—oo
= lim supd(z, 2).
n—oo
This contradiction proves that z must be equal to x. Since the choice of the subsequence {z,} is

arbitrary, we have, A({z,}) = {x}, for all subsequences {z,} of {x,}. Thus, we conclude that, {x,}

A-converges to a common fixed point of T and S. O

Theorem 3.2. Let K be a non-empty subset of a uniformly convex hyperbolic space X. Let S and

T be asymptotically nonexpansive self mappings on K. Let {x,} and {y,} be sequences as defined in
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(3.1) and d(xp, xn+1) — 0 as n — oo. If either of the mappings T or S is demi-compact, then {x,}

and {yn} converge strongly to an element of F(T) N F(S).

Proof. Assume T is demi-compact. By Theorem 3.1, we have, d(x,, Tx,) — 0 as n — oo. Then,
there exists a subsequence {x,,} of {x,} such that Tx,, — z*.

Now, d(Xnp, 2*) < d(Xpp, TXnp) + d(T Xnp, 2*) —+ 0 as p — oco. Since, lim d(x,, Tx,) — 0, we have

n—oo
z* € F(T). Also, lim d(x,, z*) exists. Hence, x, — z* and d(x,, yn) — 0 implies that lim d(y,, z*)
n—oo n—oo

exists. Further, d(x,, Sx,) — O implies that z* € F(S).

Hence, {x,} and {y,} converges strongly to z* € F(T) N F(S). 0

As an illusration, we consider the following example in a Banach space setting.

Example 3.1. Consider K = B(0;0.9) , the ball centred at 0 and radius 0.9 in R?. Let S and T be

self mappings on K defined by S(x1,x2) = (x2,x3) and T(x1, x2) = (sinxy,sinxp). Let x,y € K, so

that x = (x1,x2) and y = (y1, y2).
Assume that y; < xq3 and y» < xo.
Now, d(S"x,S"y) = [|S"x — S"y||

= [[(".3") = (v" 2" |
= 6@ = 2" + (8" - 3")]

_ _ _112
= [le—y1|2{><12” Dby 4yt

N

1
_ _ _172|?2
+ o — P "+ Ly ]

1
< [m — i P{2737 1Y 4 [ — y2|2{2”x§”1}2] 2

Take I, = max {1,2°x2""1} and m, = max {1,2"x3""*}. Let k, = max{/,, my}. Then clearly k, — 1

as n — oo.

NI

So, d(S"x,S"y) < kn[|X1 — P+ —Y2|2]
= knllx = y|.

Hence S is an asymptotically nonexpansive mapping on K. Also T is a nonexpansive mapping on K
and (0,0) is a common fixed point of T and S.

The following table shows that our new iterative scheme has a comparitively better rate of
convergence than some of the existing iterative schemes. Here, we take x3 = <%%) and
an=0n=3VYneN.
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Iterations

new iteration defined as in (3.1)

iteration defined as in (2.3)

iteration defined as in (2.2)

/

y1 = (0.607316,0.607316)
x> = (0.566583, 0.566583)

y1 = (0.715819, 0.715819)
x> = (0.597018, 0.597018)

y1 = (0.715819, 0.715819)
x> = (0.631199, 0.631199)

11

v, = (0.286736, 0.286736)
xs = (0.091520, 0.091520)

v> = (0.456532, 0.456532)
x3 = (0.179742,0.179742)

v> = (0.489716, 0.489716)
x3 = (0.344357, 0.344357)

11

ys = (0.045760, 0.045760)
x4 = (0.000048, 0.000048)

y3 = (0.092728, 0.092728)
x4 = (0.002857, 0.002857)

y3 = (0.191416,0.191416)
xs = (0.172179,0.172179)

v

ya = (0.000024, 0.000024)
xs = (0.000000, 0.000000)

ya = (0.001428,0.001428)
x5 = (0.000000, 0.000000)

ya = (0.086520, 0.086520)
x5 = (0.086090, 0.086090)

ys = (0.000000, 0.000000)
Xs = (0.000000, 0.000000)

ys = (0.000000, 0.000000)
Xs = (0.000000, 0.000000)

ys = (0.043047,0.043047)
X6 = (0.043045, 0.043045)

Vi

e = (0.021522, 0.021522)
x; = (0.021522, 0.021522)

Vil

v, = (0.010761, 0.010761)
xs = (0.010761,0.010761)

Vil

ys = (0.005381, 0.005381)
X9 = (0.005381, 0.005381)

vo = (0.002690, 0.002690)
x10 = (0.002690, 0.002690)

10 = (0.001345,0.001345)
x11 = (0.001345,0.001345)

X

y11 = (0.000673,0.000673)
x12 = (0.000673, 0.000673)

X1

y12 = (0.000336, 0.000336)
x13 = (0.000336, 0.000336)

X111

13 = (0.000168, 0.000168)
x14 = (0.000168, 0.000168)

XIV

y14 = (0.000084, 0.000084)
x15 = (0.000084, 0.000084)

XV

y1s = (0.000042, 0.000042)
x16 = (0.000042, 0.000042)

XV

y16 = (0.000021, 0.000021)
x17 = (0.000021, 0.000021)

XV

y17 = (0.000011, 0.000011)
x1s = (0.000011,0.000011)

XVII

y1s = (0.000005, 0.000005)
19 = (0.000005, 0.000005)

XIX

y19 = (0.000003, 0.000003)
X20 = (0.000003, 0.000003)

XX

y20 = (0.000001, 0.000001)
x21 = (0.000001, 0.000001)

XXI

y»1 = (0.000001, 0.000001)
x22 = (0.000001, 0.000001

XXI1

( )
y22 = (0.000000, 0.000000)
( )

X23 = (0.000000, 0.000000
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