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Abstract. The purpose of this paper is to study strong and ∆ - convergence of a newly defined

iteration to a common fixed point of two asymptotically nonexpansive self mappings in a hyperbolic

space framework. We provide an example and a comparison table to support our assertions.

1. Introduction

Globel and Kirk [1] introduced the concept of asymptotically nonexpansive mappings and proved

that every asymptotically nonexpansive self mapping on a non empty closed subset K of a uniformly

convex Banach space X posseses a fixed point. Ever since, many authors (see, [2], [3], [4] and [5])

have established strong and weak convergence theorems for asymptotically nonexpansive mappings

based on the modified Mann [6] and Ishikawa [7] iterations. Tan and Xu [8] studied the modified

Ishikawa iteration scheme: 
x1 ∈ K

xn+1 = (1− αn)xn + αnT
nyn

yn = (1− βn)xn + βnT
nxn, n ≥ 1

(1.1)

where {αn} and {βn} are sequences in (0, 1) bounded away from 0 and 1.
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Aggarwal et al [9] in an attempt to obtain a faster rate of convergence, modified the above iteration

process (1.1) as following: 
x1 ∈ K

xn+1 = (1− αn)T nxn + αnT
nyn

yn = (1− βn)xn + βnT
nxn, n ≥ 1

(1.2)

This iteration is called the modified S-iteration process. For further results on Ishikawa iteration

process, (refer, [10], [11], [12] and [13]). Recently, iterative approximations are defined and inves-

tigated in the framework of hyperbolic spaces. Several authors (refer, [14], [15] and [16]) have put

forward different notions of hyperbolic spaces in order to blend convexity and metric structure. The

following definition given by Kohlenbach [17] is widely used.

Definition 1.1. [17] A hyperbolic space is a triplet (X, d,W ), where (X, d) is a metric space and

W : X2 → [0, 1] is a mapping that satisfies the following conditions:

(1) d(u,W (x, y , α)) ≤ (1− α)d(u, x) + αd(u, y)

(2) d(W (x, y , α),W (x, y , β)) = |α− β|d(x, y)

(3) W (x, y , α) = W (y , x, (1− α))

(4) d(W (x, z, α),W (y , v , α)) ≤ (1− α)d(x, y) + αd(z, v)

for all x, y , z, u, v ∈ X and α, β ∈ [0, 1].

2. Preliminaries

We recall some definitions and basic concepts which will be useful for our work.

Definition 2.1. [1] Let (X, d) be a metric space and let K be a closed convex subset of X. A

mapping T : K → K is said to be asymptotically nonexpansive, if there is a sequence of real numbers

{kn} ∈ [1,∞) such that lim
n→∞

kn = 1 and d(T nx, T ny) ≤ knd(x, y) for all x, y ∈ X and ∀ n ∈ N.

The concept of an asymptotically nonexpansive mapping is a natural generalization of a nonexpan-

sive mapping (d(Tx, T y) ≤ d(x, y)). The set F (T ) = {Tx = x : x ∈ K} shall denote the set of all

fixed points of any mapping T.

Definition 2.2. [23] A subset K of a hyperbolic space (X, d,W ) is convex if W (x, y , α) ∈ K for all

x, y ∈ K and ∀ α ∈ [0, 1].

Definition 2.3. [24] A hyperbolic space (X, d,W ) is said to be uniformly convex if for any x, y , z ∈ X,
r > 0 and ε ∈ (0, 2], there is a δ ∈ (0, 1] so that d(W (x, y , 12), z) ≤ (1 − δ)r whenever d(x, z) ≤ r ,
d(y , z) ≤ r and d(x, y) ≥ εr .

Definition 2.4. [25], [26] Consider a bounded sequence {xn} in a hyperbolic space (X, d,W ). For

any x ∈ X, define, r(x, {xn}) = lim
n→∞

sup d(xn, x) and r({xn}) = inf{r(x, {xn})/x ∈ X}. The
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asymptotic center A({xn}) of a bounded sequence {xn} is defined as A({xn}) = {x ∈ X/r(x, {xn}) ≤
r(y , {xn}),∀ y ∈ X}.

It is well known that in uniformly convex Banach spaces, bounded sequences have unique asymptotic

centers. The following Lemma proved by Leustean [27] guarantees that complete uniformly convex

hyperbolic spaces also enjoy this property.

Lemma 2.1. [27] Let (X, d,W ) be a complete uniformly convex hyperbolic space. Then every

bounded sequence {xn} in X has a unique asymptotic center.

Definition 2.5. [28] A sequence {xn} in a hyperbolic space (X, d,W ) is said to ∆-converge to a point

x ∈ X, if every subsequence {zn} of {xn} has x as its unique asymptotic center.

Lemma 2.2. [29] Let K be a nonempty closed convex subset of a uniformly convex hyperbolic space

(X, d,W ) and let {xn} be a bounded sequence in K such that A({xn}) = {z} and r({xn}) = ω. If

{zm} is a sequence in K such that lim
m→∞

r(zm, {xn}) = ω, then lim
m→∞

zm = z .

Lemma 2.3. [29] Let (X, d,W ) be a uniformly convex hyperbolic space. Let x ∈ X and let {tn} be
a sequence in (0, 1) such that δ ≤ tn ≤ 1− δ for all n ∈ N and for some δ > 0. If {xn} and {yn} are
sequences in X such that lim

n→∞
sup d(xn, x) ≤ c , lim

n→∞
sup d(yn, x) ≤ c and lim

n→∞
d(W (xn, yn, tn), x) =

c for some c ≥ 0, then lim
n→∞

d(xn, yn) = 0.

Lemma 2.4. [3] Let {αn}, {βn} and {δn} be sequences of nonnegative numbers such that

δn+1 ≤ αnδn + βn ∀ n ∈ N.

If αn ≥ 1 ∀ n ∈ N and
∑∞
n=1(αn − 1) <∞ and βn <∞, then lim

n→∞
δn exists.

Uniformly convex Banach spaces and CAT(0) spaces are some of the known examples of hyperbolic

spaces. Sahin and Basarir [18] studied the following iterative process in a hyperbolic space setting and

established some convergence results under suitable conditions:
x1 ∈ K

xn+1 = W (T nxn, T
nyn, αn)

yn = W (xn, T
nxn, βn), n ≥ 1

(2.1)

Ishikawa type iteration is also employed to study the convergence of common fixed points of two

asymptotically nonexpansive mappings. In a Banach space framework, Das and Debata [19] initiated

the study of two mapping iterative procedure. The authors in [20] and [21] have studied the following

iteration for the convergence of common fixed points:
x1 ∈ K

xn+1 = W (xn, S
nyn, αn)

yn = W (xn, T
nxn, βn), n ≥ 1

(2.2)
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where S and T are asymptotically nonexpansive mappings with atleast one common fixed point and

{αn} and {βn} are sequences in (0, 1).

Recently, Saluja [22] modified the iterative procedure introduced by Khan et al [13] in hyperbolic

spaces to obtain a faster iterative procedure:
x1 ∈ K

xn+1 = W (T nxn, S
nyn, αn)

yn = W (xn, T
nxn, βn), n ≥ 1

(2.3)

where S and T are asymptotically nonexpansive mappings with atleast one common fixed point and

{αn} and {βn} are sequences in (0, 1).

The purpose of this paper is to introduce and study a new iterative procedure (3.1) even in Banach

spaces to approximate the common fixed points of two asymptotically nonexpansive mappings. We

prove strong and ∆ - convergence of such an iteration in the general nonlinear framework of hyperbolic

spaces.

3. Main Results

In this section, we introduce and study a new iterative scheme to approximate common fixed points

of two asymptotically nonexpansive mappings in a hyperbolic space.

Let (X, d,W ) be a uniformly convex hyperbolic space. Let K be a non-empty subset of X. Let S and

T be two asymptotically nonexpansive self mappings on K. Let {αn} and {βn} be sequences in (0, 1)

such that, δ ≤ αn, βn ≤ 1− δ, for all n ∈ N and for some δ > 0.

We define the following iteration:
x1 = x ∈ K

xn+1 = W (Snxn, T
nyn, αn)

yn = W (xn, S
n(T nxn), βn), n ≥ 1

(3.1)

Lemma 3.1. Let K be a non-empty subset of a uniformly convex hyperbolic space X. Let S and T

be asymptotically nonexpansive self mappings on K with a common sequence of real numbers kn ≥ 1

satisfying
∑

(k2n − 1) < ∞. Let F denote the set of all common fixed points of S and T . i.e.,

F = F (S) ∩ F (T ). Let p ∈ F . If {xn} and {yn} are sequences as defined in (3.1), then lim
n→∞

d(xn, p)

and lim
n→∞

d(yn, p) exist and

lim
n→∞

d(xn, p) = lim
n→∞

d(yn, p).

Proof. Since p ∈ F (S) ∩ F (T ),

d(xn+1, p) = d(W (Snxn, T
nyn, αn), p)

≤ (1− αn)d(Snxn, p) + αnd(T nyn, p)
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≤ (1− αn)knd(xn, p) + αnknd(yn, p) (3.2)

d(yn, p) = d(W (xn, S
n(T nxn), βn), p)

≤ (1− βn)d(xn, p) + βnd(Sn(T nxn), p)

= (1− βn)d(xn, p) + βnd(Sn(T nxn), Sn(T np))

≤ (1− βn)d(xn, p) + βnknd(T nxn, T
np)

≤ (1− βn)d(xn, p) + βnk
2
nd(xn, p)

= d(xn, p)
[
(1− βn) + βnk

2
n

]
(3.3)

By substituting (3.3) in (3.2), we get,

d(xn+1, p) ≤ (1− αn)knd(xn, p) + αnkn
[
(1− βn) + βnk

2
n

]
d(xn, p)

=
[
(1− αn)kn + αnkn((1− βn) + βnk

2
n )
]
d(xn, p)

=
[
kn − αnknβn + αnβnk

3
n

]
d(xn, p)

=
[
1 + (kn − 1)− αnβnkn + αnβnk

3
n

]
d(xn, p)

=
[
1 + (kn − 1) + (k2n − 1)αnβnkn

]
d(xn, p) (3.4)

Hence, d(xn+1, p) ≤
[
1 + (kn − 1) + (k2n − 1)αnβnkn

]
d(xn, p)

By Lemma 2.4, lim
n→∞

d(xn, p) exists.

Let lim
n→∞

d(xn, p) = c. (3.5)

From (3.2), we have,

d(yn, p) ≤
[
(1− βn) + βnk

2
n

]
d(xn, p)

Hence, lim
n→∞

sup d(yn, p) ≤ lim
n→∞

sup d(xn, p)

i.e., lim
n→∞

sup d(yn, p) ≤ c. (3.6)

Now consider,

d(xn+1, p) = d(W (Snxn, T
nyn, αn), p)

≤ (1− αn)knd(xn, p) + αnknd(yn, p)

=
[
1 + (kn − 1) + (k2n − 1)αnβnkn

]
d(xn, p)

By (3.5), we have, lim
n→∞

sup d(xn+1, p) = c and lim
n→∞

sup d(xn, p) = c. Hence, from (3.2) and (3.4),

lim
n→∞

sup
[
(1− αn)knd(xn, p) + αnknd(yn, p)

]
= c.
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i.e,

lim
n→∞

sup
[
knd(xn, p)− knαnd(xn, p) + αnknd(yn, p)

]
= c.

Since, lim
n→∞

sup kn = 1, we have,

c + lim
n→∞

supαnkn
[
d(yn, p)− d(xn, p)

]
= c =⇒ lim

n→∞
supαnkn

[
d(yn, p)− d(xn, p)

]
= 0.

Since, lim
n→∞

supαnkn > 0, this will imply that,

lim
n→∞

sup
[
d(yn, p)− d(xn, p)

]
= 0.

Therefore,

lim
n→∞

sup d(yn, p) = c.

Similarly, we can show that, lim
n→∞

inf d(yn, p) = c.

Hence,

lim
n→∞

d(yn, p) = c (3.7)

�

Lemma 3.2. Let K be a non-empty subset of a uniformly convex hyperbolic space X. Let S and T

be asymptotically nonexpansive self mappings on K with a common sequence of real numbers kn ≥ 1

satisfying
∑

(k2n − 1) <∞. If {xn} is a sequence as defined in (3.1) and d(xn, xn+1)→ 0 as n →∞,

then lim
n→∞

d(xn, Sxn) = 0 and lim
n→∞

d(xn, T xn) = 0.

Proof. Let F denote the set of all common fixed points of S and T .

i.e., F = F (S) ∩ F (T ). Let p ∈ F . Now since, lim
n→∞

kn = 1, from (3.5), we have,

lim
n→∞

sup d(T nyn, p) ≤ lim
n→∞

sup d(xn, p) = c.

Similarly,

lim
n→∞

sup d(Snxn, p) ≤ c. (3.8)

Now, d(xn+1, p) = d(W (Snxn, T
nyn, αn), p)

≤ [1 + (kn − 1) + (k2n − 1)αnβnkn]d(xn, p).

From (3.5), we have, d(W (Snxn, T
nyn, αn), p) = c.

By Lemma 2.3, we have,

lim
n→∞

d(Snxn, T
nyn) = 0. (3.9)
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Now consider,

d(yn, p) = d(W (xn, S
n(T nxn), βn), p)

≤ (1− βn)d(xn, p) + βnd(Sn(T nxn), p)

= d(xn, p)
[
(1− βn) + βnk

2
n

]
.

Since, lim
n→∞

sup d(yn, p) = c and lim
n→∞

sup d(xn, p) = c , we have,

d(W (xn, S
n(T nxn), βn), p)→ c

Further, lim
n→∞

sup d(Sn(T nxn), p) ≤ c. (3.10)

So, using Lemma 2.3, we conclude that,

lim
n→∞

d(xn, S
n(T nxn)) = 0. (3.11)

Now, d(yn, xn) = d(W (xn, S
n(T nxn), βn), xn)

≤ (1− βn)d(xn, xn) + βnd(Sn(T nxn), xn).

Using (3.11), lim
n→∞

d(xn, yn) = 0. (3.12)

From d(yn, S
n(T nxn)) ≤ d(yn, xn) + d(xn, S

n(T nxn)),

we have, lim
n→∞

d(yn, S
n(T nxn)) = 0. (3.13)

Now,

d(xn+1, S
nxn) = d(W (Snxn, T

nyn, αn), Snxn)

≤ (1− αn)d(Snxn, S
nxn) + αnd(T nyn, S

nxn)

≤ (1− αn)knd(xn, xn) + αnd(T nyn, S
nxn).

So, lim
n→∞

d(xn+1, S
nxn) = 0. (3.14)

Further,

d(xn+1, T
nyn) = d(W (Snxn, T

nyn, αn), T nyn)

≤ (1− αn)d(Snxn, T
nyn) + αnd(T nyn, T

nyn)

≤ (1− αn)d(Snxn, T
nyn) + αnknd(yn, yn)

yields, lim
n→∞

d(xn+1, T
nyn) = 0. (3.15)

Now, d(xn, S
nxn) ≤ d(xn, xn+1) + d(xn+1, S

nxn)

So, lim
n→∞

d(xn, S
nxn) = 0. (3.16)
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Now consider,

d(xn, Sxn) ≤ d(xn, xn+1) + d(xn+1, S
n+1xn+1) + d(Sn+1xn+1, S

n+1xn)

+ d(Sn+1xn, Sxn)

≤ d(xn, xn+1) + d(xn+1, S
n+1xn+1) + kn+1d(xn+1, xn) + k1d(Snxn, xn).

Thus, we conclude that, lim
n→∞

d(xn, Sxn) = 0. (3.17)

And from,

d(xn, T
nyn) ≤ d(xn, xn+1) + d(xn+1, T

nyn)

we obtain, lim
n→∞

d(xn, T
nyn) = 0 (3.18)

and therefore, lim
n→∞

d(yn, T
nyn) = 0. (3.19)

Also, d(yn, yn+1) ≤ d(yn, xn) + d(xn, xn+1) + d(xn+1, yn+1).

Thus, lim
n→∞

d(yn, yn+1) = 0. (3.20)

Now consider,

d(yn, T yn) ≤ d(yn, yn+1) + d(yn+1, T
n+1yn+1)

+ d(T n+1yn+1, T
n+1yn) + d(T n+1yn, T yn)

≤ d(yn, yn+1) + d(yn+1, T
n+1yn+1) + kn+1d(yn+1, yn) + k1d(T nyn, yn).

Therefore, lim
n→∞

d(yn, T yn) = 0. (3.21)

By the asymptotic nonexpansive property of T, d(Txn, T yn) ≤ k1d(xn, yn).

Hence, lim
n→∞

d(Txn, T yn) = 0. (3.22)

From,

d(xn, T xn) ≤ d(xn, yn) + d(yn, T yn) + d(Tyn, T xn),

we conclude that, lim
n→∞)

d(xn, T xn) = 0. This completes the proof. (3.23)

�

Theorem 3.1. Let K be a non-empty closed convex subset of a uniformly convex hyperbolic space

(X, d,W ). Let T : K → K and S : K → K be asymptotically nonexpansive mappings with F (T ) 6= φ

and F (S) 6= φ and kn ≥ 1 satisfying
∑∞
n=1(k

2
n − 1) < ∞. For any initial point x1 ∈ K, define the

sequence {xn} iteratively by (3.1). Suppose d(xn, xn+1) → 0 as n → ∞, then, {xn} ∆-converges to

an element of F (T ) ∩ F (S).
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Proof. From Lemma 3.2, d(xn, T xn)→ 0 and d(xn, Sxn)→ 0 as n →∞.

Lemma 2.1 ensures that any bounded sequence has a unique asymptotic center.

Let {zn} be a subsequence of {xn}. Since {xn} is bounded, {zn} is also bounded and suppose that

A({xn}) = x and A({zn}) = z .

Using the asymptotic nonexpansive property of T , we have, lim
n→∞

d(T kzn, T
k+1zn) = 0, where k =

1, 2, 3, ...

Our purpose is to show that, z = x and z ∈ F (T ) ∩ F (S).

Let m and n be positive integers.

Now, d(Tmz, zn) ≤ d(Tmz, Tmzn) + d(Tmzn, T
m−1zn) + ...+ d(Tzn, zn)

≤ kmd(z, zn) +

m−1∑
k=0

d(T kzn, T
k+1zn).

Taking lim sup as n →∞, for any fixed m, we have,

r(Tmz, {zn}) = lim
n→∞

sup d(Tmz, {zn})

≤ km lim
n→∞

sup d(z, {zn})

= kmr(z, {zn}).

Now, taking lim sup as m →∞, we obtain, lim
m→∞

sup r(Tmz, {zn}) ≤ r(z, {zn}).
Since A({zn}) = z , we have, r(z, {zn}) ≤ r(Tmz, {zn}), for any fixed m ∈ N, which implies that,

lim
m→∞

r(Tmz, {zn}) = r(z, {zn}). Using Lemma 2.2, we conclude that, Tmz → z and z ∈ F (T ). By

a similar argument, we can show that z ∈ F (S).

We now claim that, z is the unique asymptotic center for each subsequence {zn} of {xn}.
Suppose x 6= z . Since z ∈ F (T ) ∩ F (S), by Lemma 3.1, lim

n→∞
d(xn, z) exists and therefore by the

uniqueness of asymptotic centers, we have,

lim
n→∞

sup d(zn, z) < lim
n→∞

sup d(zn, x)

≤ lim
n→∞

sup d(xn, x)

< lim
n→∞

sup d(xn, z)

= lim
n→∞

sup d(zn, z).

This contradiction proves that z must be equal to x . Since the choice of the subsequence {zn} is
arbitrary, we have, A({zn}) = {x}, for all subsequences {zn} of {xn}. Thus, we conclude that, {xn}
∆-converges to a common fixed point of T and S. �

Theorem 3.2. Let K be a non-empty subset of a uniformly convex hyperbolic space X. Let S and

T be asymptotically nonexpansive self mappings on K. Let {xn} and {yn} be sequences as defined in
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(3.1) and d(xn, xn+1) → 0 as n → ∞. If either of the mappings T or S is demi-compact, then {xn}
and {yn} converge strongly to an element of F (T ) ∩ F (S).

Proof. Assume T is demi-compact. By Theorem 3.1, we have, d(xn, T xn) → 0 as n → ∞. Then,

there exists a subsequence {xnp} of {xn} such that Txnp → z∗.

Now, d(xnp, z
∗) ≤ d(xnp, T xnp) + d(Txnp, z

∗)→ 0 as p →∞. Since, lim
n→∞

d(xn, T xn)→ 0, we have

z∗ ∈ F (T ). Also, lim
n→∞

d(xn, z
∗) exists. Hence, xn → z∗ and d(xn, yn)→ 0 implies that lim

n→∞
d(yn, z

∗)

exists. Further, d(xn, Sxn)→ 0 implies that z∗ ∈ F (S).

Hence, {xn} and {yn} converges strongly to z∗ ∈ F (T ) ∩ F (S). �

As an illusration, we consider the following example in a Banach space setting.

Example 3.1. Consider K = B(0; 0.9) , the ball centred at 0 and radius 0.9 in R2. Let S and T be

self mappings on K defined by S(x1, x2) = (x21 , x
2
2 ) and T (x1, x2) = (sin x1, sin x2). Let x, y ∈ K, so

that x = (x1, x2) and y = (y1, y2).

Assume that y1 < x1 and y2 < x2.

Now, d(Snx, Sny) = ‖Snx − Sny‖

=
∥∥(x2n1 , x2n2 )− (y2n1 , y2n2 )∥∥

=
[(
x2n1 − y2n1

)2
+
(
x2n2 − y2n2

)2] 12
=

[
|x1 − y1|2

{
x2n−11 + y1x

2n−2
1 + ...+ y2n−11

}2
+ |x2 − y2|2

{
x2n−12 + y2x

2n−2
2 + ...+ y2n−12

}2] 12
≤
[
|x1 − y1|2

{
2nx2n−11

}2
+ |x2 − y2|2

{
2nx2n−12

}2] 12
Take ln = max

{
1, 2nx2n−11

}
and mn = max

{
1, 2nx2n−12

}
. Let kn = max{ln, mn}. Then clearly kn → 1

as n →∞.

So, d(Snx, Sny) ≤ kn
[
|x1 − y1|2 + |x2 − y2|2

] 1
2

= kn‖x − y‖.

Hence S is an asymptotically nonexpansive mapping on K. Also T is a nonexpansive mapping on K

and (0, 0) is a common fixed point of T and S.

The following table shows that our new iterative scheme has a comparitively better rate of

convergence than some of the existing iterative schemes. Here, we take x1 =
(
3
4 ,
3
4

)
and

αn = βn = 1
2 ,∀n ∈ N.
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Iterations new iteration defined as in (3.1) iteration defined as in (2.3) iteration defined as in (2.2)

I y1 = (0.607316, 0.607316) y1 = (0.715819, 0.715819) y1 = (0.715819, 0.715819)

x2 = (0.566583, 0.566583) x2 = (0.597018, 0.597018) x2 = (0.631199, 0.631199)

II y2 = (0.286736, 0.286736) y2 = (0.456532, 0.456532) y2 = (0.489716, 0.489716)

x3 = (0.091520, 0.091520) x3 = (0.179742, 0.179742) x3 = (0.344357, 0.344357)

III y3 = (0.045760, 0.045760) y3 = (0.092728, 0.092728) y3 = (0.191416, 0.191416)

x4 = (0.000048, 0.000048) x4 = (0.002857, 0.002857) x4 = (0.172179, 0.172179)

IV y4 = (0.000024, 0.000024) y4 = (0.001428, 0.001428) y4 = (0.086520, 0.086520)

x5 = (0.000000, 0.000000) x5 = (0.000000, 0.000000) x5 = (0.086090, 0.086090)

V y5 = (0.000000, 0.000000) y5 = (0.000000, 0.000000) y5 = (0.043047, 0.043047)

x6 = (0.000000, 0.000000) x6 = (0.000000, 0.000000) x6 = (0.043045, 0.043045)

V I y6 = (0.021522, 0.021522)

x7 = (0.021522, 0.021522)

V II y7 = (0.010761, 0.010761)

x8 = (0.010761, 0.010761)

V III y8 = (0.005381, 0.005381)

x9 = (0.005381, 0.005381)

IX y9 = (0.002690, 0.002690)

x10 = (0.002690, 0.002690)

X y10 = (0.001345, 0.001345)

x11 = (0.001345, 0.001345)

XI y11 = (0.000673, 0.000673)

x12 = (0.000673, 0.000673)

XII y12 = (0.000336, 0.000336)

x13 = (0.000336, 0.000336)

XIII y13 = (0.000168, 0.000168)

x14 = (0.000168, 0.000168)

XIV y14 = (0.000084, 0.000084)

x15 = (0.000084, 0.000084)

XV y15 = (0.000042, 0.000042)

x16 = (0.000042, 0.000042)

XV I y16 = (0.000021, 0.000021)

x17 = (0.000021, 0.000021)

XV II y17 = (0.000011, 0.000011)

x18 = (0.000011, 0.000011)

XV III y18 = (0.000005, 0.000005)

x19 = (0.000005, 0.000005)

XIX y19 = (0.000003, 0.000003)

x20 = (0.000003, 0.000003)

XX y20 = (0.000001, 0.000001)

x21 = (0.000001, 0.000001)

XXI y21 = (0.000001, 0.000001)

x22 = (0.000001, 0.000001)

XXII y22 = (0.000000, 0.000000)

x23 = (0.000000, 0.000000)
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