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Abstract. The work reported in this article studies the equivalence relationship between fractional
integral equation and W-Hilfer Hybrid Langevin Differential Equations of fractional order with nonlocal
initial conditions, and then we use this relationship to establish the existence of the results by means
of Banach algebra and Schauder's fixed point theorem. We then demonstrate the uniform local

attractiveness of all the solutions.

1. Introduction

ODEs are extended to include fractional differential equations (FDEs), where the order of the
derivative can be any positive number. For this reason, approaching the problem as an FDE typically
allows us to model an experimental dynamic more effectively. Which fractional derivative (FD) is most
appropriate at this point? The solution to this question typically depends on the problem and hence on
the collected information. Consider using a definition of fractional operators that is more broad to get
around the multitude of definitions for FDs. For better and more accurate simulations, we use W-Hilfer
fractional derivative(W-HFD) and fixed point theory as an important tool to derive existence criterion
of solutions. Kilbas et al. [1] introduced the notion of FD with respect to another function in the
context of the RL FD. Similar to this, Almeida [15] proposed the W- Caputo FD and looked at a variety
of intriguing aspects of this operator. FD operator with two parameters was presented by Hilfer [16].
The Hilfer derivative unifies the RL FD and Caputo FD-based theories of FDEs. Sousa and Oliveira
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presented the Hilfer FD with respect to another function in [9]; known as the W-HFD. The W-HFD's
significance stems from the fact that it uses a number of well-known FD operators as its specific
cases, for example, RL [1], Caputo [1], Hadmard [1], Riesz [1], Erdeyl-Kober [1], W-Caputo [15],
Katugampola [21], Hilfer [16, 17] and so on. With this approach, it is possible to examine a wide
range of properties of FDE solutions that employ several FD operators using a single FD operator. A
number of researches have been conducted using W-HFD [6,7, 10, 12-14, 17-20].

“In 2021, Bachir et al. [8] proved the existence and attractivity of solutions for W-Hilfer hybrid
FDEs:

Dx,a;wv(;’(;)(t)) — w(t, u(t); ae teR,, (1.1)
(W(t) = W(0)) “u(t)] =0 = to; o €R, (1.2)

where Ry =[0,00),0<A<1,0<0<1,¢=X+0(l—X), DMV is the W-HFD of order A and
type o, v: Ry x R — R* and w : Ry x R — R are given functions."

“In 2022, Kucche et al. [11] established the existence of solutions in the weighted space for the
following W- Hilfer Hybrid FDE:

A .
D “’m =g(t,y(¥)); ae. t€(0,T], (1.3)
(W) = W(0) *y(t)]=0 = yo: Yo €R, (1.4)

where 0 < u <1, 0< v <1, € =pu+vl—p), DY is the W-HFD of order u and type v,
f e C(dxRR-{0})is bounded, 3 = [0,T] and g € C(J x R,R)={h|the map w — h(t,w) is
continuous for each t and the map t — h(t, w) is measurable for each w}."

Motivated by [11], [8], the following IVP of the W-Hilfer type fractional-order langevin equation

with nonlocal initial conditions is explored, and the existence and attractivity results are obtained:

Dy (Dgiﬁ%"’g(fszm T pnm) = F(t (1)) (15)
(O] = 0, (W(1) = W(0)) "5 (0) o = (1.6)

where DyiP™Y i = 1,2s the W-HFD of order v;, 0 < v; < land type 3, 0 < B < 1; 1 < vy + 10 < 2,
F 3 xR — R is a continuous function, p € R, t € [0,¢] and y; = v; + Bi(1 — v).
Special Cases:
(a) For B1,B> = 0,W(t) = t; we get nonlinear hybrid RL Langevin FDE for a.e. t € (0, €) of the
form
RLpw (RLD”2 7l + p%(t)) = F(t, x(t))
G(t, x(1))
#(t)]t=0 =0
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For v1 = 1,v5 = 1, we generate hybrid differential equations of integer order

dd (1)
m{mg@xm)

#(t)]i=0 =0

+pmo}:f@um)

(b) Forvy =0, Bo =0, p=0, V(t)=t, 39 =0 and for a.e. t € (0,€) we obtain the nonlocal
hybrid FDEs of the form

LT ]
e b@%mﬂ‘f“”m)
#(t)[¢=0 =0

the existence results for which are obtained in [24].
For v, = 1 and t € (0,€) a.e., the investigations of [4] regarding the hybrid differential

equation of integer order are incorporated into the results of the current work

d 7(t) B o
dimtmw]‘f“ )
#(t)][¢=0 = 0

(c) The outcomes are relevant to the below mentioned nonlinear W-HFD for t € (0,€) and G =1
Dy PV (Dgaﬁz;‘“ + p> () = F(t, (1))
7(8)|e=0 = 0, (W(t) = W(0))! "2 5¢(t) =0 = 20

When G is nothing but constant function with value equal to 1, 81,06, =0,v; =0, V() = t,
i.,e. 1 = 0 the investigation of nonlinear FDEs involving RL FD is among the obtained
outcomes of [22] for a.e. t € (0, ¢)
RLDY250(¢) = F(t, 2#(t))
17250 (4) |y, = 20 € R.
With 81 = 0,8, =1,v1 =0,V(t) = t, i.eyy = 0, G = 1 the investigation of nonlinear FDEs
utilising the Caputo FD is among the obtained outcomes [23] for a.e. t € (0, €)
CDY23¢(t) = F(t, (1))
#(t)|i=0 = 20
The following is how the paper is organised: Section 2 goes through a few crucial foundational
concepts from fractional calculus. Finding corresponding integral equations for the Hybrid-HFDE is

the main topic of Section 3, along with the existence of solutions to the IVP (1.5)-(1.6) using FPT

and uniform local attractiveness of the solution. Section 4 provides a summary of the results.
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2. Auxiliary results

Let L,([0, €], R) be the Banach space of all Lebesgue measurable functions from [0, €] to R with
11l 0.6 < oo. Consider a function which is differentiable and increasing for all t € [0,¢] = T, say
W € CY(TJ,R), where (0 < € < oo) and W'(t) # 0. We will be using, Pg(t,5) = (W(t) — W(s))°,
Wy (t,s) = W' (s)(W(t) — W(s)) and y1 + v» = o throughout this paper to reduce the length of the
equations. Here, we've listed some of the spaces used in this article:

(@) C1—6w([0,€],R), the weighted Banach Space of all partially ordered functions with

[l _, w0, defined as:

Ci—ow[0,€] = {h:(0,€] = R|Py(t,0)h(t) € C[0, €]} where,

e, utoa) = max [P (L O)AL

Let = = (C1_6w(T, R), ||'||Cl—a;w(3:R)> be a Banach algebra where (22y)(t) = #(t)y(t),t € J
is how the product of vectors is defined.

(b) Let Be = Be(R4) be the Banach space of all functions  : R4 to R which are bounded as
well as continuous.

(c) Bei—g = Bei_o(R4), denote  the  weighted  space  defined by
Bei o ={¢: Ry = R: Py 7(t,0)P(t) € Bc} of all bounded and continuous functions

with the norm
]__
[PllBe,_, = sup [Py, (£, 0)P(t)].
teR,
Let’s revisit some fractional calculus definitions and characteristics.

Definition 2.1. [I] “Let v > 0, v € R, and g € L*([0,€],R). The W-R-L fractional integral of a
function g with respect to V is defined by

1Y = oy [ VWO - W) as)ds

Definition 2.2. [9] “Let n—1 < v <n, n€ N and g € C"([0,€],R). The W-HFD "D“FV () of a
function g of order v and type 0 < 3B < 1 is defined by

n
HwBV o _ Bi—vyw (1 d " a-gyn—vyv .\
DIE¥ g0 = O (i) 18P et

Lemma 2.1. [9] “Letv >0 and § > 0. Then
() 15V 159 h(0) = 17 h();

(i) 15 (W) = W) = (WD) —w(a) ot

And we observe that HD:'P;W(\U(’() —W(a)-D =o.
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Lemma 2.2. [9] “Lletf € L(0,e),n—1<v<nneN0<B<1,vy=v+0(1-v), /S_m(”_”)f €
ACK[0,€]. Then

n _ y—k n
(osoge) 0 035 OV () ey

Also, note that Dgi'ﬁ;wlgi;wf(t) = [Z27f (L), if vy > w1 and DT E(4), if vy > o,

For the readers’ convenience, we have included some of the Fixed Point Theorems (FPTs) that

were utilised in this article.

Lemma 2.3. [3]Let S be a non-empty closed, convex and bounded subset of the Banach algebra =
andlet A: = — = and B : S — = be two operators such that
(i) A is Lipschitzian with a Lipschitz constant o,
(ii) B is completely continuous,
(i) y =AyBx = y €S forall x € S and
(iv) aM < 1 where M = sup{||Bx|| : » € S}.

Then, the operator equation y = AyBy has a solution in S."

Lemma 2.4. [8] “Solution of equation (K(2¢))(t) = t are locally attractive if there exists a ball
B(s, ) in the space Be such that, for any solutions y = y(t) and o = o(t) of above equations that

belong to B(s, ) N A, we can write

Jim (y(t) —o(t)) = 0. (2.1)

If the limit (2.1) is uniform with respect to B(sq, u) N\, where ¢ # N\ C Be, then the solutions are
said to be uniformly locally attractive (or, equivalently, that the solutions are locally asymptotically
stable)."

Lemma 2.5. [5] “Let M C Be. Then M is relatively compact in Be if the following conditions are
satistied:
(i) M is uniformly bounded in B¢,
(i) the functions belonging to M are almost equicontinuous in Ry, i.e., equicontinuous on every
compact set in Ry,

(iii) the functions from M are equiconvergent, i.e. given € > 0, there exists L(€) > 0 such that
|22(t) — lim 2(t)] <k,
t—o0
for any t > L(e) and % € M. "

Theorem 2.1. [2] (Schauder Fixed-Point Theorem). “Let F be a Banach space, let U be a nonempty
bounded convex and closed subset of F, and let K : U — U be a compact and continuous map. Then,

K has at least one fixed point in U."
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3. Main Results

Here, we develop an auxiliary lemma showing the relationship between the fractional IVP (1.5)-(1.6)

and a corresponding fractional IE.

Lemma 3.1. The hybrid fractional IVP (1.5)-(1.6) for t € [0, €] is equivalent to the hybrid fractional
IE
s (t gt%t{ PG 0) + 1Y F (e (t ”2"’%{} 3.1
() = G(t. x(1)) 10) (0))w( ) (t () - (t) (3.1)

and thus a function » € C1_¢(J,R) is a solution of (1.5)-(1.6) iff it is a solution of (3.1).

Proof. We shall establish that a solution of the IVP (1.5)-(1.6) is a solution of the fractional IE (3.1).
Using Lemma (2.2) and the W-R-L FI of order v; on equation (1.5), we obtain

V2,62,V %(t) Y
D s o) = ARG (3.2)
Using Lemma (2.2) and the W-R-L FI of order v» on equation (3.2), we get
Q(:Szt)) = Y E( (1) — pl Y ae(t) + %Pﬂ,_ r((;lz) “1(¢,0).  (3.3)
Using #(t)|t=0 = 0, we get ¢; = 0 for G(0, 2(0)) = 0 Thus,
(t) = G(t, %(t»{ S PY (L 0) Y F (L (1) - p/ga;‘“%a)}. (3.4)

Multiplying 73\1[‘7({, 0) on both sides of above equation, we get

Py (4, 0)3(t) == =G (t, (1)) + P (£, 0)G (¢, 2()) L2V F(t, (1))

e

(o)
— p G(t, 2(8)) Py 7 (£,0)152™ 5(1).

Applying initial condition (1.6) and substituting t = 0, we obtain

ol (o)
© 7 G(0,%(0))

Replacing cg in eqn. (3.4), we get
o

x(t) =G(t, » {
(V=604 50, (0))
Conversely, a solution of the fractional IE (3.1) is also a solution of the IVP (1.5)-(1.6). Then, The

PI(t,0) + /g}f"Q;wf(t,%(t))—p/(‘)’i;\u%(t)}.

aforementioned equation may be expressed as
(%) o
G(t, (1) — G(0,(0))
Operating the W-HD, D*2#2¥ on both sides and using the Lemma (2.2) , we obtain
7 (t) P2

D @)~ G000y Y (L0 H I F (L () = pre(0)

PG 0) + 1TV (L 5e(4) — plE2 Y e (b). (3.5)
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Again applying D*1P1¥ on above equation , we get

v1,B1;V U,Bo; W %(t)
o <D g(t.u(o)“’”“)) 300

Now, using the Lemma (2.1) D**AiVPI=1(,0) = 0, we get

— o DMPEVPI T 0) + F(t, 2 (1)),

pyiBLV (D”'ﬁ?;wﬂ + p%(t)) = F(t, x(t)).

t, (1))
At t = 0 and F(0, 2#(0)) = 0, the given equation simplifies to s(t)|<=o = 0 and from equation (3.5)
and Lemma 2.1(ii), we get Py 7 (t, 0)3¢(t)|i=0 = 5o O

In the next theorem, we utilise Banach algebra to demonstrate the existence of solution for (1.5)-

(1.6). We require the following hypotheses on G and F in order to establish our conclusion:

(A) G is a bounded function in C(J x R, R — {0}) such that:
(i) 2 — ﬁ for t € J a.e. is an increasing map in R ;
(ii) For all 5,y € R, t € 7, such that G satisfies Lipchitz condition for second variable.
(B) Forallsr e Rand t€ Ja.e. 3hy, hy € C(J,R), such that |F(t, 3¢)| < hi(t) and (1) < ha(t).

Theorem 3.1. If (A)-(B) holds. Then, 3 a solution » € C1_4w (3, R) of the hybrid FDE (1.5)-(1.6)
provided

(3.6)

[h1llePy "4 (e,0)  [IhallsPy ™ (€, 0)
L{‘Q(O,%(O))' Mv1+va+1) P Mo+ 1) } 1

Proof. Define,
S={we=:|xc_,wv(@ R) <R}

where

ok {' ‘ ImllsPy ™ 0) | lihellocPy " (L 0>}
Q(O, %(0)) r(ljl + U + 1) r(l/2 —+ 1)
and K is bound on G. It is evident that S is a bounded subset of = which is closed and convex. Define

A:=—==Zand B: S — = as

Ax(t) =G(t, x%(t)),te T

B(t) :m L, O)+(1/1+u/ Wit L(t,8)F(s, %(s))ds
1 .
pl_(uz)/o Wt 5)5(s)ds

Thus, equation (3.1) is nothing but 3¢ = AxBsx, 3 € =. We shall demonstrate that A and B meet
all of the criteria of Lemma(2.3):

Firstly, we shall prove that

[ Az — Aylle, o wor) < Ll = ylle, o wor) (3.7)



8 Int. J. Anal. Appl. (2023), 21:82

i.e. A is an operator satisfying Lipschitz condition.

From assumption (A)(ii), we observe that

[Py 7 (4 0)(Ae(t) — Ay(1)| =

PL(t,0) (g(t, () — gt y(o)) ]
< LIPL(4,0)(5e(t) — y(1))
<Ll = yle, s wiaw)

Next, we need to prove that B : S — = is completely continuous.
For this we shall prove that B is continuous, uniformly bounded and equicontinuous. For continuity of

BB, consider a sequence », — 3 in §. Then,
B0 = Botlle, oy = max [Py~ (8, 0) (Boen(t) — Bre(6))

{ PL(t,0)

< max
- M(v1 4 v2)

ted

/ WL (L 6)| F (s, 30(5)) — F(s, 2(s))|ds

N P&, a(t O)/ Wi~ 1(t,5)|%n(5)—%(5)|d5}-

As n — oo, ||Bs, — B%Hckw(m) — 0 by virtue of continuity of F and Lebesgue dominated conver-
gence theorem.

For any t € J and » € S, we shall exhibit that B(S) = {Bs : 3 € S} is uniformly bounded.

Py (¢, 0)

[Py (4, 0)Bx ()] < ‘g(o, 5(0)) ‘ T )

¢
W4, 5)| F (s, 5(s))|ds
0

Py (60) [t -
+p"’r(u2)/0 WE (4, 5)|5(s)|ds

731 ’Y1+I/1(t 0) p\lu—’h(t, O)

o
< by ) v AR
_‘Q(O,%(O))‘ Il P bl
Therefore,
731 ’Yl+u1( 0) Pl—’Yl(t’ O)
L o L R [ NS S

Now, for any 2z € S and 1, t, € J with t; < t, we shall prove the equicontinuity of B(S).

Making use of assumption (B), we have

1Py 7 (t2, 0)Bae(ta) — Py (t1, 0)Bre (1)
_ o Pl*g(tz,O) LS
Hg(o 2(0)) rl(uul ) W27 (1, 0)F (s, 5(s)) ds

’Pl a(t2 O) t //2
o2 [Py s>|%<s)|ds}

_{ 0 PL7(41,0)
G(0,2(0))  T(v1+12)

/ Wl (g 6) F (s, #(s))ds
0
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—pw Otl wgf—l(tl,s)y%(s)yds}
s‘mnhlnm / W (4, 0)ds mnmnw / W (4, ) ds
Py [Pt s + o D [P w0
_r(lﬁlﬂiz){# ML (1, 0) — Py " (11, 0) ) + p”rh(i';)o{P\lU’“(tl,O)—P&,'Yl(t2,0)}.

Thus, the continuity of W implies [Py 7 (t2, 0)B(t2) — Py 7 (t1, 0)Bae(t1)| — 0 as [t; — to| — 0.
Thus, Arzela-Ascoli theorem implies B(S) is relatively compact and hence a compact operator as a
result. It is completely continuous from the continuity and compactness of B: S — =.

Now, we shall show that for anyu e =, u= AuB»x — ue S forall » €8S.

Let any u € = and » € S such that u = AuBs. The function G being bounded and using the
hypothesis (B), for any t € J, we have

1P 7 (4 0)u(t)] = [Py 7 (£, 0).Au(t) B (1)]

<|PLo(t,0)G(+, Py (t,0)

u(t )){g(o x#(0))

r(u1+u2)/ W2, 8) F (s, 2(s)) ds — /W”2 1(t,5)%(5)d5}

r()

PLo(t,0) W\lj/}l-l—t/z—l(t’ 5)|F (s, 5(s))|ds

slg(t,u(t))l{ g(o (0))‘ M(v1+12) Jo
731 U(t 0) o 1

Py °(t,0)

{‘Q(O,%(o))’ it at 1) PL=(,0)

F(u2 + 1)

<Kk 1o PL 2 (1,0) + p Il PL(, 0)}.

l=yitvr oy pl-m
[ulley o (am) < K{‘g(o,ij(o))'*” 1||oop(+(+2)) ||h2||oo(f10))} %

= ues.
In the end, we shall show that for M = sup{||Bull¢, ,,r) : 4+ € S}, we have aM < 1. Utilising
inequality (3.8), we obtain

M = sup {HB%”ClU;w(J,R) CxE S}

- {‘ ’ [PllocPy ™™ (£,0) lIh2llocPy " (e, 0)}
=160, %(0)) M1 +vo+1) P T 1)
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Making use of inequality (3.7), we get o« = L. Therefore, as a consequence of the condition (3.6),

we get the required

1—y14u1 h 1—m
oM< InllcPy ™ (E,0) | [lhallocPy " o>} .
G(0, %(0)) My +va+1) Mva+1)
On applying Lemma (2.3), the solution for equation 2 = AxBs in S is obtained and thus for hybrid
FDE (1.5)-(1.6). O

Using Schauder’'s FPT, we can now exhibit the existence and attractiveness of solutions. Assume the
following:
(C) For each » € Bei_g, t — F(t, 2(t)) is measurable on R, ; for a.e. t € Ry the mapping
»n — F(t, %#(t)) is continuous on Bei_, and 3 — G(t, %(t)) is continuous and bounded.
(D) Foreach # € Randa.e. te Ry, 3T : Ry — Ry such that T is a continuous function and
T(t)

Floe0) < o

lim Pmo(t, 0)(Jgi Vo pl )T (1) = 0.
—00

Set

T* = sup Py (4, 0) (12" + pI2 V)T (1) < co.
teRy

Theorem 3.2. /f (C)- (D) holds, then, 3 at least one solution for problem (1.5) defined on R which

is uniformly locally attractive.

Proof. Define K for » € Bei_o

%0733/_1({, O)
G(0,(0)) r(Vl +v2)

1 t
—— [ WeTl(ts) (s ds}
b L W)
Let function G be bounded by /. Now, for » € Bei_,,t € Ry

(K)(t) = g(t,%(t)){ / W"1+”2 L(t,8)F(s, %(s))ds

l-0o
Py 6.0 0001 =I5 <) | 5 j(o)) f(“;l fui’) [ ol (e
pPl ?(t,0) v
0 * | _ p*
—N{\g(o,%(m)\” }‘R'
K0 e <R.. (39)

implies, K() € Be1_g and K(Bei_,) C Bei_s as a result of the continuity of C(5¢) on R4; for any
S BCl*O"
Consider Br = B(0, Ry) ={G € Be1-¢ : [1Gl|Be,_, < Re}-
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Equation (3.9) implies K transforms the ball Bg- into itself. From Lemma (3.1) the solutions of
problem (1.5)-(1.6) are nothing but the fixed points of (). We shall show that the operator K
satisfies all the assumptions of Theorem (2.1).

Step 1. Firstly, we shall prove the continuity of K.

Consider a convergent sequence {2, }nen in Bg, such that 3¢, — 3¢ . Then, for each t € R, we have

Qy 7 (4, 0) (Kaen) (1) — Qu 7 (1, 0) (K3 ()]

0 Qy 7(t,0)

+ Qy ’(t,0)
G(0,2(0)) ~ T(v1+w2)

M(v2)
/ Wt (4, 5) F (s, 2(s))ds

s‘g(t, un(t)){ / WL (¢ §) F(s, r20(s))ds — p

L 900
G(o, %(0)) M(v1 4 v2)

/W”2 L, 5)%n(s)d5} g(t, %(’t)){

1 a
—pgwl_([/;)o/ WPt 5)%(s )ds}

<[oe. )] e

N Q4 “(t,0)
G(0,5(0))  T(v1+v2)

/ W2, 5)%n(s)d5} —g(t%(’t)){

Ql 7(t,0) - QL= 7(t,0)
_ pi\lll'(uz) / Wy L(t, 8)2,(s )ds} + G(t, 2 ( {'Q(O 2 (0) + I'(\Zl )

l1-o
/WWFUQ L(t, 5)F (s, 7(s))ds — p Q‘U(to)/ Wi L, 5)%n(5)d5} Gg(t, %(t)){(()%(o))

v (0
r(l/l + 1)

S‘G(t (1) — Gt ”(t))H‘

Qﬁf"(t 0)
M(v2)

/ Wi L(t, 8)F (s, 2,(s))ds

/ W24, 5) F (s, sen(s))ds —

) Q‘%I/ U(t O)
Gg(o, (O)) NZEEZ))

/W”l*”2 (t,5)F(s, 2(s))ds — p \UF(UV(;)VO)/ Wt 5)%(5)0'5}

70 Qy (0
Q(O (O)) |_(I/1 + 1/2)

b+iac (t))|{\ v (L0) / WL )

+U2

Wy L(t, )| F(s, 2,(s))|ds

¢
W\‘I’}J”’Tl(t, 5)F(s, 7n(s))ds

_pl'(au(;O)/ W2 (¢, 5)5,(s)ds

Qu 7(t0)
M(v2)
1—0
W eoson|* Tt
+”r(uz/ WL, 5)|%n(5)|d5}+/\/{ 10—1(—t1/(2))/ el g)

|f<s,%n<s>)—f(s,%(s>)|ds+p95’r: O [ s bate) — etelde |

<}"(s, un(s)) — F(s, %(5))) ds—p ; W\‘f,rl(t,s)(%n(s) — u(s))ds

g‘g(t, 7,(t)) — G(t, 2 (t

Case I. For t € [0, €], by applying Lebesgue dominated convergence theorem and s, — » as n — oo

on above equation along with the continuity of G and F, we get ||K(2,) —K(5¢)||5.,_, — 0 as n — oo.
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Case Il. For t € (g, 00), then, from the hypotheses and above equation, we have

Py 000000 - P00 < j0(e () - 5020 {5 )|

+PLo(t,0) (/gﬁ%"’f(s, sp(s)) + plg ‘“%n(s)) +N{P&,“’(t, 0) (/gﬁ”%“ﬂf(s, 2n(s))
= o (&) + pIgE () ~ ()] ) |
< ’g(t, #n(1) — G(t, %(t))mg ) ‘ + Py (t,0) </gﬁ”2;"’ + p/gi?"’> T(t)}

+ 2N'Py (¢, 0) (/gﬁ”z;‘“ - p/gf"’> T(¢).

Since, 3, — 3 as n — oo, G is continuous and Py, (4, O)(l”““"2 At Io% 2V (t) — 0 as t — oo, it
follows from above equation that [|K(2z,) — K(5)||5.,_, — 0 as n — oo.

Step 2. On every compact subset [0, €] of Ry, € > 0, we need to prove the uniform boundedness and
equi-continuity of L(Bg,). Since Bg, is bounded and L(Bg,) C Bg,, so L(Bg,) is uniformly bounded.
For each » € Bg, and t1,t; € [0, €], t1 < tp, we have

P47 (2, 0) (K3e) (t2) — Py~ (1, 0)(Kae) (1)

2 Py % (t2,0)

n Py (t2,0)
G(0, %(0)) NZEZ))

M(v2)

o ,P&/_U(tlr O) ¢ vi+o—1
GO #0) T Tt Jy v ()

]g(u %(tm{ g7 (e ds — p

/" W e, )5e(5)ds b~ G0, (1))

F(s, %(s))ds — p Pir‘E(tl) 0) /“W l(tg,s)%(s)ds}

o Py %(82,0) [ i Py °(t2,0)
S‘g(b'”(b)){g(o,%m)) + F\éjul ) /o wit (tz,s)}'(s,%(s))ds—p‘“r(T

/sz W\T,z_l(fz,S)%(ﬁ)ds} g(tl,%(tl)){g( ¥o 73‘}, 7(tz, 0)/ WoH=1 (1t 5)

0, %(O U1+U2

%/ W, 5)%(s)d5}+g(t1 %(tl)){ adl Py *(t2.0)

F (s, 5(s))ds — G(0,2(0))  T(vy+ 1)

P&,"tz

N W\’,’}’L”Z_l(tg,s)f(s,%(5))d5— / W™ Ly, 5)%(5)0’5} G(ty, »(t1))
0

{ ) P&,atO

v1t+ro—1 Pl U(tl 0) _1
Q(O,%(O)) F(or + 1) W 24y, 8) F (s, 2(s))ds — p——r / Wi (tl,s)%(s)ds}

M(v2)

t2
Wt (o, 5)F (s, (s))ds
0

P Py % (t2,0)
G(0, »%(0)) (v +v2)

<16(t, 5(t2)) — G(t, %(t1>>|{

Py (2,0) [20 - Py %(2,0) (%

D) [T 0108 |+ 100oa e[ [T ) ()
P&*U(tz O) e vit+r2—1 ,P‘}Jio’(tl' O) “ vit+r2—1

T+ ) /o Wy, (’cz.s)]-'(s,%(s))dsf7r(ul+u2) ; Wy, (tl,s)}'(s,%(s))ds}
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lfo’tvo to lfc't,o
Py “(t2.0) W\‘ff*l(tg,s)%(s)ds—ipw (4.0

P\}f"(tg, 0)
*”{ ) s F(v2)

) /o W (to, 5) 2 (s)ds +

1—-0o
<|G(t2, #(t2)) — G(t1, %(tl))|{’g(0 %0(0)) ‘ + 7;\(111/1 5:21/5)) 0

Pl—o 0 t -1 t1 Pl p 0
+Pwr(§;2))/o Wy (f2,5)%(5)|d5}+£{(/0 r(\uUl(_t2U2))

t
/ WY (4, 5)5¢(s)ds
0

t2
Wt (4, 8)| F (s, %(s))|ds

Wu1+uz l(t 5)

1—o -0
- P )| e e+ T [ ) (s (o)
4 -0 l1-0o
so [Py ) - Ww&lm,s) 5(s)lds
Py °(t2,0)

) W e, ) e(o)los ) |

r(UQ) 4
§|g(t2'%(t2))_g(tl'”(tlm{ Q(O,%(O))’ 7;?’;1 $2,;§))/2W\’1/}+U21(t1,5)7'(5)d5}
t1 'Pl CT(JQ O) vitve—1 rPl O'(tl O) st
+£{</0 mw Tt 8) — WW 2y, 8)| T (s)ds

Py ?(t2,0)
M1+ ) Jy

W{,’,1+”21(t1,5)T(5)d5> }
Given that T, G are continuous and setting T. = sup;c[o ¢ T (t), we obtain

[Py (t2, 0) (Koe) (t2) — Py (11, 0) (ko3¢ ) (1)

1 a
<IG(t, 5(12)) — 611, (1)) {]Q(O R A fm / e 1(t1,5)d5}+£T*
WP (82,0) g Py C(t2,0) Pl—a(t2,o)
</0 r(’/l‘i‘//)w G r\éj —i—U)W T (,s)|d F\Ell/l—i—//g)

t2
W\‘I’}Jr”_l(tl,s)ds) :
t1

As t; — to, we have [P %(ta, 0)(K3)(t2) — Py 9 (t1, 0)(K3¢)(t1)| — 0.
Step 3. To prove the equiconvergence of L(Bgr). For any » € L(Bg,),

Pl 7(t,0)
M1+ o)

L (4, 0) () ()] <IGt %(tm{

’g 7 ))' /Wu1+uQ L4, 8) F(s. (s))ds

P&u ?(t,0)

~P ) /W”2 L(t, )3 (s)ds

borer,

{'g(o (0))} + Py (4 0) (1Y +p/gi?‘“)T(t)}.
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Since Py (¢, O)(lgfr”;w - /gi;w)T(t) — 0 as t — oo, we find
POV PO 0) (1Y T)(t
(o <ef 2 [ PO | PO T0)
Py (t,0)G(0, 2(0)) Py °(t.0) Py °(t.0)
Hence, |(K2)(t) — (K#)(0)] — 0 as t — oo. Thus, K : Bg, — Bg, is compact and continuous
using Lemma (2.5). Applying Schauder FPT (2.1),the fixed point of K is a solution of (1.5) on R.

Step 4. Uniform local attractivity.
Let s, be a solution of hybrid FDE (1.5) and » € B<%* 25{‘ GO

+ 27'*}) , we have

Py 7 (£, 0)K(3¢)(t) — Py 7 (£, 0)(56) ()]
<[Py 7 (4, 0)K(50) (1) — Py 7 (t, 0)K (5.) ()]
{' ' PLo(t,0)
G(o, %(0)) (v +v2) Jo

l1-0o l1-o
+pp“’r(u(;0)/o W$2_1(t,5)|%(5)|d5}+£{|7_D("’Ul fg i W21 )| F(s, 2(s))

— F(s, 7.(s))|ds + pM /t Wt 5)|5(s) — %*(5)|d5}

s‘ga,%(t)) — G(t st WL 6)| F(s, 54(s))| ds

_25{‘ g(O,;(O))‘ f(&,ul"::;; / W (4 6) T (s >|d5}
+2£|7_m i W (4,5)|T(s)|ds
§2£{ Q(OK%O(O))‘ +2T*}.
Thus, we get
o) =l . < 26{ g S| + 2

This implies the continuity of K such that

S (2o | +27)) < (022w +27}))

Moreover, if 2 is a solution of problem (1.5), then

|22() — 2. (1))
— 1Kot (t) — Koea(0)
o—1 1
<1G(t (1) — G(t, %*(t))|{Pw (t 0)’9(0(0)) {F(l/1+1/2)
/ W\l{/1+l/271(t’5)|‘7_—(5’ %(5)) —f(ﬁ,%*(ﬁ))ldﬁ / Wl/z 1({ 5)|%(5) - %*(5)|d5}
0

o1 P&U I, 0)(/”1“2 ‘“T)(t) Py 0) (1Y T)()
< 2£{7>w (t, o)’g(O,%(O))‘ PI7(1.0) +2p P (1,0) }
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Therefore,

[56(t) = 56 (B)] =I(K () — (K ()] < 2£{7’$1<f' 0"9(0,%5«)))‘

Py 7 (L0 T | Py (6 0) (G T)(Y) } (3.10)
Py 7(0) R |
By using (3.10) and
Jim P 0) (I 4 )T (1) = 0,
we conclude
lim |2(t) — 2.(t)| = 0.
t—oo
The Lemma (2.4) indicates that solutions of IVP (1.5) has uniform local attractiveness. O

4. Conclusion

The criteria presented in this work ensured the existence and uniform local attractivity of solutions
for some Hybrid FDEs with W-Hilfer FD. The methodology is predicated on Banach algebras and
Schauder's FPT.
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