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Abstract. A real-number to molecular structure mapping is a topological index. It is a graph invariant

method for describing physico-chemical properties of molecular structures specific substances. In that

article, We examined pentacene’s chemical composition. The research on the subsequent indices is

reflected in our paper, we conducted an analysis of several indices including general randic connectivity

index, first general zagreb index, general sum-connectivity index, atomic bond connectivity index,

geometric-arithmetic index, fifth class of geometric-arithmetic indices, hyper-zagreb index, first and

second multiple zagreb indices for a four para-lines graphs of linear [n]-pentacene and multi-pentacene.

1. Introduction and preliminaries

All substances molecule possesses qualities, both chemical and physical, and certain may also exhibit

physiologically active characteristics. Several pharmaceutical companies are really hunting for novel

antibacterial chemicals. For this reason, hundreds of compounds are examined, however costly exam-

inations for biology. In order to circumvent such issue, additional methods for investigating potential

antibiotics employ the relationship between structural features and biological activity or features of

chemical and physical nature. Topological indices, or molecular descriptors, provide insights into the

physicochemical properties of molecules. They are valuable tools for understanding and explaining
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the characteristics of chemical compounds. Several graph invariants have been created in recent

years and have been used in many academic fields such as structural chemistry, theoretical chemistry,

environmental chemistry, toxicology, and pharmacology. Because of the substantial industrial need, re-

searchers are urged to study topological indices. More than 400 topological indexes have been opened

a consequence of research. Chemical compounds’ topological structures and chemical characteristics

are tightly related, since each compound’s shape is critical to determining its functionality. Topolog-

ical indices are often used in multilinear regression modelling, chemical documentation, drug design,

QSAR/QSPR modelling, and database selection. Molecular descriptors are utilized to describe the

physicochemical properties of molecular structures. These descriptors can be classified into three main

types. degree-based indices [1–5], distance-based indices [6–11] and spectrum-based indices [12–15].

Studies that have been documented in the literature (see [16–18]) use indicators that are based on

both distances and degrees.

Due to pentacene’s important functions in both electrical devices and organic solar cells, a popular

hydrocarbon semiconductor, it is necessary to optimise organic solar cells for less expensive energy

sources [19]. The Georgia Institute of Technology researchers have developed method to produce

portable artificial solar cells. Pentacene has been shown to be a very efficient means of converting

sunlight into energy. In contrast to other materials, pentacene functions well as a semiconductor due

to its crystalline properties. Pentacene’s relevance motivated us to do topological study on it, and as

a result, we have made several important discoveries that could be helpful for analysing pentacene’s

physical and chemical characteristics. See [20,21] for further topological research on pentacene.

Consider an easy graph G consisting of a edge set E(G) and vertex set V (G), where loops and

several edges present are excluded. The set x ∈ V (G), Nx of neighbors in G is represented by Nx , and

the valence (degree) of x is equal to dx1 = |Nx | and Sx1 =
∑
y∈Nx dx2 . By inserting a vertex between

every edge of the given graph, the edges are divided into two, resulting in the graph being subdivided.

This operation, known as graph subdivision and denoted as S(G), leads to the formation of a line

graph where adjacent edges in G become connected vertices in the new graph. The resulting graph,

denoted as L(G), represents the line graph of the subdivision graph. In this article, the four para-line

graph of G is represented by L(S(G)) (referred to as G?). Conversely, G? can be constructed from G

using the following procedure:

1. Replace each vertex x1 ∈ V (G) with Kx1 , complete graph on dx1 vertices;

2. There is an edge connecting the vertex Kx1 and the vertex Kx2 in G
? if and only if there is an

edge that coincides with x1 and x2 in G;

3. For each vertex x2 in Kx1 , in G
?, the valency (degree) of x2 is equal to the valency (degree) of

x1 in G.

Structural chemistry commonly utilizes these diagrams. The research focus on four para-line graphs

has diminished in recent times, but there is a shift happening. One appealing aspect of these graphs
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is their straightforward construction process. The carbon skeleton, in which each atom acts as the

vertex and each link between nearby atoms as the edge, may be used to generate any chemical

compound. For example, Butane is an organic compound with the formula (C4H10). Butane is a

saturated hydrocarbon containing 4 of carbon atoms, with an unbranched structure. Butane is mainly

used as a gasoline blend, alone or mixed with propane. It is also used as a feedstock for the production

of ethylene and butadiene. Butane, like propane, is obtained from natural gas or refineries, and the

two gases usually occur together. Butane is stored under pressure as a liquid. When the curler is

turned on, butane is released and turns into a gas. Figure 1(a) depicts the the molecular graph and

its structure of butane. Furthermore, Figure 2(b) and (c) exhibit the four para-line graphs derived

from the molecular plot of butane. now figure is;

Figure 1. (a) The molecular architecture of butane

Figure 2. (b) The molecular architecture of butane (c) four para-line graph of butane

to accurately represent it

The general randic connectivity index G is defined as [12].

Rα(G) =
∑

x1x2∈E(G)

(dx1dx2)
α (1.1)

The first universal Zagreb index was presented by Li and Zhao [22]:

Mα(G) =
∑

x1∈V (G)

(dx1)
α (1.2)
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The the general sum connectivity index of the G chart was introduced in 2010 [23]:

χα(G) =
∑

x1x2∈E(G)

(dx1 + dx2)
α (1.3)

The index (ABC) was proposed by Estrada [24]. It is expressed as follows for a graph G:

ABC(G) =
∑

x1x2∈E(G)

√
dx1 + dx2 − 2

dx1dx2
(1.4)

The geometric-arithmetic index (GA) was introduced by Vukicevic and Furtula [25]. It is denoted

as GA and is defined as follows for a graph G resently A. Asghar et.al [31]:

GA(G) =
∑

x1x2∈E(G)

2
√

(dx1dx2)

(dx1 + dx2)
(1.5)

Ghorbani et al. [26] described another index belonging to the 4th class of indices, denoted as (ABC),

which is defined as follows resently Zaib Hassan Niazi et.al [32]:

ABC4(G) =
∑

x1x2∈E(G)

√
dS1 + Sx2 − 2

Sx1Sx2
(1.6)

Graovac et al. [27] introduced a fifth class of geometric-arithmetic indices denoted as GA5, which

is defined as follows:

GA5(G) =
∑

x1x2∈E(G)

2
√

(Sx1Sx2)

(Sx1 + Sx2)
(1.7)

Established the hyper-zagreb index in 2013 as follows resently Mukhtar Ahmad et.al [33]:

HM(G) =
∑

x1x2∈E(G)

(dx1 + dx2)
2 (1.8)

In 2012, Ghorbani and Azimi introduced two new types of zagreb graph indices. The first is the first

multiple zagreb index, denoted as PM1(G). The second multiple zagreb index is used, denoted as

PM2(G). Additionally, the first and second zagreb polynomials, M1(G, p) and M2(G, p), respectively,

are characterised as:

PM1(G) = Πx1x2∈E(G)(dx1 + dx2) (1.9)

PM2(G) = Πx1x2∈E(G)(dx1 × dx2) (1.10)

M1(G, p) =
∑

x1x2∈E(G)

P (dx1+dx2) (1.11)

M2(G, p) =
∑

x1x2∈E(G)

P (dx1×dx2) (1.12)
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2. Topological index of four para-line graphs

For an index that Schultz offered, Ranjini created the independent relations. Under the watchful

eye of the Schultz index, these researchers looked at the subdivision of a number of graphs, including

helm, ladder, tadpole, and wheel [28]. They also looked at the ladder, tadpole, and wheel four para-line

graph under the zagreb index [29]. In 2015, Xu and Su conducted an analysis of two indices specific to

ladder, tadpole, and wheel graphs constructed using tare lines and named the total connectivity index

of the sum and the co-index [30]. Nadim et al. calculated the atomic bond connectivity index and

fifth class of geometric arithmetic indices for four para-line tadpole, wheel, and ladder graphs. They

also investigated several other indices, including randic general connectivity index, first zagreb general

index, summation general connectivity index, atomic bond connectivity index, geometric arithmetic

index, fifth class of geometric arithmetic indices, hyperzagreb index, the first and second multiple

zagreb index for a four paralinear graphs of linear [n]-pentacene and multiple pentacene., lattice plot

in nanotorus TUC4C8[p, q] and 2D nanotube.

In our study, we computed various indices, including randic general connectivity index, first za-

greb general index, summation general connectivity index, atomic bond connectivity index, geometric

arithmetic index, fifth class of geometric arithmetic indices, hyperzagreb index.

2.1. Molecular characteristics of the linear [n]-pentacene four para-line graph. Figure 3 depicts

the linear [n]-pentacene molecular graph, which is indicated by the symbol Tn. Tn consists of 28n− 2

edges and 22n vertices.

Theorem 2.1. Consider a four para-line graph G? derived from the graph Tn.

Mα(G?) = (5n + 2)2α+2 + 3α+1(12n − 4).

Proof. In Figure 3, the graph G? is displayed. There are 56n − 4 vertices in total in G?, this has

36n − 12 vertices of degree and 20n + 8 vertices of degree, where

Mα(G?) = (5n + 2)2α+2 + 3α+1(12n − 4).

Theorem 2.2 Consider a four para-line graph G? derived from the graph Tn.

1. Rα(G?) = (10n + 10)16α + (20n − 4)20α + (44n − 16)25α.

2. χα(G?) = (10n + 10)8α + (20n − 4)9α + (44n − 16)10α.

3. ABC(G?) = (15
√

2 + 88
3 )n + 3

√
2− 323 .

4. GA(G?) = (54 + 8
√

6)n − 6− 85
√

6.

Proof. The total number of edges in G? is determined by the formula 74n − 10. The edges in G?

can be divided into three sets, E1(G?), E2(G?), and E3(G?), which do not intersect with each other.

The edge partition E1(G?) contains 10n + 10 edges x1, x2, where dx1 = dx2 = 4, edge the partition

E2(G
?) contains 20n − 4 edges x1, x2, where dx1 = 4 and dx2 = 5, and The edge partition E3(G?)

consists of 44n− 16 edges. This partition includes edges x1 and x2, where dx1 = dx2 = 5. By utilizing

we get the required outcomes using formulae (1), (3), (4), and (5).

Theorem 2.3 Consider a four para-line graph G? derived from the graph Tn.
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Figure 3. Linear Pentacene

1. ABC4(G?) = (
√

110 + 4
√

2 + 2
√

30 + 16
3 )n + 5

2 + 2
5 −

8
5

√
2− 23

√
30− 15

√
110− 329

2. GA5(G?) = (30 + 80
13

√
10 + 288

17

√
2)n − 2 + 16

9

√
5− 1613

√
10− 9617

√
2

Proof. Assuming that the set of edges depends on the sum of the degrees of the neighbors of the

end vertices, we can partition edges that divide (G?) into seven distinct sets: E6(G?), E7(G?), ...,

E12(G
?). Thus, we have E(G?) =

⋃12
i=6 Ei(G

?). The edge assortment E6(G?) comprises 12 edges

x1x2, where Sx1 = Sx2 = 6, the edge collection E7(G?) holds 6 edges x1x2, where Sx1 = 6 and Sx2 =

7, the edge collection E8(G?) holds 11n − 5 edges x1x2, where Sx1 = Sx2 = 7, set of edges E9(G?)

contains 22n − 5 edges x1x2, where Sx1 = 7 and Sx2 = 10, edge the collection E10(G?) contains 10n

edges x1x2, where Sx1 = Sx2 = 10, the edge set E11(G?) contains 26n − 9 edges x1x2, where Sx1 =

10 and Sx2 = 11 and the set of edges E12(G?) is satisfied 13n− 9 edges x1x2, where Sx1 = Sx2 = 11.

By utilizing we can get the required outcomes using formulae 6 and 7.

Theorem 2.4 Consider a four para-line graph G? derived from the graph Tn

1. HM(G) = 6480n − 1464.

2. PM1(G?) = 810n+10 × 920n−4 × 1044n−16.

3. PM2(G) = 1610n+10 × 2020n−4 × 2544n−16.

Proof. Consider a four para-line graph G? of a linear pentacene. Based on the angles of the final

vertex, the collection of edges E(G?) might be categorised as three distinct groups. The first category,

E1(G
?), consists of 10n+ 10 edges x1x2, where dx1 = dx2 =4. The second category, E2(G?), includes

20n−4 edges x1x2, where dx1 = 4 and dx2 =5. The third category, E3(G?), comprises 44n−16 edges

x1x2, where dx1 = dx2 = 5. Let |E1(G)| = e4,4, |E2(G)| = e4,5, and |E3(G)| = e5,5. Therefore,

1. HM(G) =
∑
x1x2∈E(G)(dx1 + dx2)

2

HM(G) =
∑
x1x2∈E1(G)[dx1 + dx2 ]

2 +
∑
x1x2∈E2(G)[dx1 + dx2 ]

2+
∑
x1x2∈E3(G)[dx1 + dx2 ]

2

HM(G) = 64|E1(G)| + 81|E2(G)| + 100|E3(G)|
HM(G) = 64(10n + 10) + 81(20n − 4) + 100(44n − 16)

HM(G) = 460n + 460 + 1620n − 324 + 4400n − 1600

This implies that

HM(G) = 6480n − 1464.

2. PM1(G) = Πx1x2∈E1(G)(dx1 + dx2)× Πx1x2∈E2(G)(dx1 + dx2)× Πx1x2∈E3(G)(dx1 + dx2)

PM1(G) = 8|E1(G)| × 9|E2(G)| × 10|E1(G)|

PM1(G) = 810n+10 × 920n−4 × 1044n−16
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3. PM2(G) = Πx1x2∈E1(G)(dx1 × dx2)× Πx1x2∈E2(G)(dx1 × (dx2)× Πx1x2∈E3(G)(dx1 × dx2)
PM2(G) = 16|E1(G)| × 20|E2(G)| × 25|E1(G)|

PM2(G) = 16|E1(G)| × 20|E2(G)| × 25|E1(G)|

PM2(G) = 1610n+10 × 2020n−4 × 2544n−16

2.2. Molecular descriptors of four paraline graphs for multiple pentacenes. The chemical diagram

Tm,n representing multiple pentacene is depicted in Figure 4. This graph consists of 22mn vertices

and 33mn − 2m − 5n edges.

Theorem 2.5 Consider a four para-line graph G? derived from the graph Tm,n.

Mα(G?) = (5n + 2)2α+2 + 3α+1(12n − 4).

Proof. Figure 5 shows the graph G? in a visual format. It has 56n− 4 worth of vertices in total, of

which 20n+ 8 and 36n− 12 have degrees of 3 and 4, respectively. Using formula 2, we can calculate

Mα(G?).

Theorem 2.6 Consider a four para-line graph G? derived from the graph Tm,n.

1. Rα(G?) = (10n + 6m + 4)16α+ (4m + 20n − 8)20α + (99mn − 20m − 55n + 4)25α.

2. χα(G?) = (10n + 6m + 4)8α + (4m + 20n − 8)9α + (99mn − 20m − 55n + 4)10α.

3. ABC(G?) = (15
√

2 - 1103 )n + (5
√

2 - 403 )m − 2
√

2 + 66mn + 8
3 .

4. GA(G?) = (−45 + 8
√

6)n+(85
√

6− 14)m + 99mn+ 8 - 165
√

6.

Proof. The division graph S(Tm,n) comprises a total of 198mn − 20m − 50 vertices and 99mn −
10m − 25n edges. There are 8m + 20nverticesof degree2and66mn-12m-30n vertices of degree

3, according to the vertex division. The edge set E(G?) of the four para-line graph G? consists of

99mn − 20m − 55n + 4 edges. Based on the angles of the end vertices, these edges are divided

into three groups, i.e, E(G?) = E1(G
?) ∪ E2(G?) ∪ E3(G?). The edge separation E1(G?) consists of

10n+6m+4 edges x1x2. where dx1 = dx2 = 4. Edge Separation 4m+20n−8 with E2(G?) Edge x1x2,

where dx1 = 4 and dx2 = 5. Lastly, Separating the edges E3(G?) comprises 99mn − 20m − 55n + 4

edges x1x2, where dx1 = dx2 = 5. By applying the required outcome may be produced using formulae

(1), (3), (4) and (5).

Figure 4. Multiple Pentacene

Theorem 2.7 Consider a four para-line graph G? derived from the graph Tm,n.

1. ABC4(G?) = (44m +
√

14 + 4
√

2 +
√

110 + 2
√

30− 1163 )n + (12
√

6
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+15
√

110 + 2
5

√
35− 1129 + 2

3

√
30)m + 2

√
6− 85

√
2− 25

√
110− 43

√
30 + 80

9 .

2. GA5(G?) = (8013
√

10 + 99m + 288
17

√
2− 69)n +

(−26 + 16
13

√
10 + 16

9

√
5 + 96

17

√
2)m − 19217

√
10− 3213

√
10 + 24

Proof. Seven distinct edge sets may be formed from the set of edges by taking into account the

degree sum of end vertices’ neighbours. Ei(G
?), where i = 6, 7, ..., 12. Thus, we have E(G?) =⋃12

i=6 Ei(G
?). The edge partition E6(G?) contains 2m + 8 edges x1x2, where Sx1 = Sx2 = 6. The

edge partition E7(G?) consists of 4m edges x1x2, where Sx1 = 6 and Sx2 = 7. Edge partition E8(G?)

contains 10n − 4 edges x1x2. where Sx1 = Sx2 = 7. Edge partition E9(G?) contains 20n + 4m − 8

edges x1x2. where Sx1 = 8 and Sx2 = 9. Edge partition E10(G?) consists of 10n edges x1x2. where

Sx1 = Sx2 = 9. Edge partition E11(G?) contains 8m + 24n − 16 edge x1x2. where Sx1 = 10 and

Sx2 = 11. Finally, edge partition E12(G?) contains 99mn − 28m − 87n + 20 edge x1x2. where

Sx1 = Sx2 = 11. By utilizing formulas (6) and (7), we obtain the desired result.

Figure 5. Four para-line graph multiple of pentacene

By performing computations on the chemical structures of multiple-pentacene, we obtain the fol-

lowing indices: HM(G), PM1(G), PM2(G).

Theorem 2.8 Consider a four para-line graph G? derived from the graph Tm,n.

1. HM(G?) = 9900mn − 1292m − 3420n + 8

2. PM1(G?) = 810n+6m+4 × 94m+20n−8 × 1099mn−20m−55n+4.

3. PM2(G?) = 1610n+6m+4 × 204m+20n−8 × 2599mn−20m−55n+4

4. M1(G, p) = (10n + 6m + 4)P 8 + (4m + 20n − 8)P 9 + (99mn − 20m − 55n + 4)P 10.

5. M2(G, p) = (10n + 6m + 4)P 16 + (4m + 20n − 8)P 20 + (99mn − 20m − 55n + 4)P 25.

Proof. Consider a graph G? with its edges broken down into three parts categories due to the

degrees of the final vertex. The initial category, denoted as E1(G), consists of 10n + 6m + 4 edges

x1x2, which both vertices x1 and x2 have a degree of 4. The second category, denoted as E2(G),

contains 4m + 20n − 8 edges x1x2, which x1 has a degree of 4 and x2 has a degree of 5. The third

category, denoted as E3(G), includes 99mn − 20m− 55n + 4 edges x1x2, where both vertices x1 and

x2 have a degree of 5. We can observe that the cardinality of E1(G) is equal to e4,4, E2(G) is equal

to e4,5, and E3(G) is equal to e5,5.

1. HM(G?) =
∑
x1x2∈E(G)(dx1 + dx2)

2

HM(G?) =
∑
x1x2∈E1(G)[dx1 + dx2 ]

2 +
∑
x1x2∈E2(G)[dx1 + dx2 ]

2 +
∑
x1x2∈E3(G)[dx1 + dx2 ]

2
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HM(G?) = 64|E1(G)| + 81|E2(G)| + 100|E3(G)|
HM(G?) = 64(10n + 6m + 4) + 81(4m + 20n − 8) + 100(99mn − 20m − 55n + 4)

HM(G?) = 460n + 384m + 256 + 324m + 1620n − 648 +9900mn − 2000m − 5500n + 400

This implies that

HM(G?) = 9900mn − 1292m − 3420n + 8

Since,

2. PM1(G?) = Πx1x2∈E(G)(dx1 + dx2)

PM1(G
?) = Πx1x2∈E1(G)(dx1 + dx2)× Πx1x2∈E2(G)(dx1 + dx2)× Πx1x2∈E3(G)(dx1 + dx2)

PM1(G
?) = 810n+6m+4 × 94m+20n−8 × 1099mn−20m−55n+4.

Now that

3. PM2(G?) = Πx1x2∈E(G)(dx1 × dx2)
PM2(G

?) = Πx1x2∈E1(G)(dx1 timesdx2)× Πx1x2∈E2(G)(dx1 × dx2)× Πx1x2∈E3(G)(dx1 × dx2)
PM2(G

?) = 16|E1(G)| × 20|E1(G)| × 25|E1(G)|

PM2(G
?) = 1610n+6m+4 × 204m+20n−8 × 2599mn−20m−55n+4.

4. M1(G, p) =
∑
x1x2∈E(G) P

(dx1+dx2

M1(G, p) =
∑
x1x2∈E1(G) P

(dx1+dx2) +
∑
x1x2∈E2(G) P

(dx1+dx2)
∑
x1x2∈E1(G) P

(dx1+dx2)

M1(G, p) =
∑
x1x2∈E1(G) P

8 +
∑
x1x2∈E2(G) P

9 +
∑
x1x2∈E1(G) P

10

M1(G, p) = |E1(G)|P 8 + |E2(G)|P 9 + |E3(G)|P 10

M1(G, p) = (10n + 6m + 4)P 8 + (4m + 20n − 8)P 9 + (99mn − 20m − 55n + 4)P 10.

5. M2(G, p) =
∑
x1x2∈E(G) P

(dx1+dx2

M2(G, p) =
∑
x1x2∈E1(G) P

(dx1×dx2) +
∑
x1x2∈E2(G) P

(dx1×dx2
∑
x1x2∈E1(G) P

(dx1×dx2)

M2(G, p) =
∑
x1x2∈E1(G) P

16 +
∑
x1x2∈E2(G) P

20 +
∑
x1x2∈E1(G) P

20

M2(G, p) = |E1(G)|P 16 + |E2(G)|P 20 + |E3(G)|P 25

M2(G, p) = (10n + 6m + 4)P 16 + (4m + 20n − 8)P 20 + (99mn − 20m − 55n + 4)P 25.

This makes the proof whole.

3. Conclusion and Future Studies

In our research article, we investigated indices randic general connectivity index, first zagreb general

index, summation general connectivity index, atomic bond connectivity index, geometric arithmetic

index, fifth class of geometric arithmetic indices, hyperzagreb index, The initial and secondly multiple

[n]-pentacene zagreb indices for a four paraline graphs of these two types of pentacenes. These indices

play a crucial role in chemical informatics, specifically in the analysis of organic compounds. The randic

index (Rα) is commonly used to explore the physicochemical properties of alkanes, such as boiling

point, surface area, and enthalpy of formation. It provides valuable insights into the characteristics

of organic molecules. The ABC index is a useful tool for predicting the stability of hydrocarbons,

encompassing both linear and branched alkanes. The stability of cycloalkanes can be assessed by the

indicated index, which is associated with their strain energy stability. This provides significant insights
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into the overall stability of cycloalkanes. In terms of predicting physicochemical characteristics, chem-

ical reactivity, and biological activities, the GA index demonstrates superior performance compared to

the ABC index. Our investigation of pentacene was approached from a philosophical standpoint rather

than relying solely on empirical observations. Our theoretical understanding of pentacenes can sub-

stantially benefit in understanding their physical properties, chemical activity and biological activity. A

variety from physical feature-related data may be correlated with the chemical structure of pentacenes

according to this study’s major results, which may be useful for the power industry.
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