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ABSTRACT. In this manuscript, we establish the notion of neutrosophic b-metric spaces as a generalization of fuzzy b-metric 

spaces, intuitionistic fuzzy b-metric spaces and neutrosophic metric spaces in which three symmetric properties plays an 

important role for membership, non-membership and neutral functions as well we derive some common fixed point and 

coincident point results for contraction mappings. Also, we provide several non-trivial examples with graphical views of 

neutrosophic b-metric spaces and contraction mappings by using computational techniques. Our results are more 

generalized with respect to the existing ones in the literature. At the end of the paper, we provide an application to test 

the validity of the main result.  

 

1. INTRODUCTION AND PRELIMAINARIES 

    Fixed-point theorems in metric spaces (and their different generalizations) have made exquisite 

theoretical progress and have a variety of practical applications. These advancements over the last 

three decades were fantastic. The majority of scholars based their reference findings on Banach’s 
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contraction Theorem [1]. By applying nonlinear equations to similar fixed-point (FP) applications, 

numerous problems in engineering and economics can be resolved. A fixed point 𝐹𝑥 =  𝑥 can be 

established for an operator sum 𝐺𝑥 = 0, where 𝐹 is a self-mapping in some relevant disciplines. For 

resolving issues brought on by a variety of mathematical inspection origins, such as split feasibility 

concerns, supporting problems, equilibrium problems, and matching and selection issues, FP theory 

has a number of key modes. Studying the notion of FPs is both exciting and interesting. This idea 

has already been demonstrated to be an amazing attempt to condense nonlinear analysis into a short 

timeframe. 

    The idea of fuzzy sets (FSs), that is utilized to characterize/manipulate information and data 

having non-statistical uncertainty, was first introduced by Zadeh [2] in 1965. The idea of FSs seeks 

to address issues where errors and a high degree of uncertainty are present by providing logical and 

set hypothetical tools. Later, in 1986, Atanassov [3] proposed the concept of intuitionistic FSs. This 

set theory, which is a broader version of FS theory, defines both the degree of membership and the 

degree of non-membership. Many authors used this idea in various branches of mathematics. This 

theory has been applied to groups and its properties by Gulzar et al. [4-6]. Akber [7] established the 

intuitionistic fuzzy mappings and developed standard FPs for particular types of mappings. The 

important sign that the notion of a distance function plays in approximation theory has led to the 

application of FSs to the fundamental notion of metric as well. A number of publications [8–10] have 

taken steps in this direction by introducing the applications of metric spaces to fuzzy circumstances. 

Kramosil and Michalek [11] introduced the idea of fuzzy metric spaces (FMSs) in 1975, and in 1994, 

George and Veeramani [12] established a Hausdorff topology utilizing fuzzy metric. In fuzzy cone 

metric spaces, Rehmanand and Aydi [13] established their findings. The idea of b-metric space, which 

is a broader category than metric space, was initially put forth by Bakhtin [14]. Later, Saleem et al. 

[15] coined the concept graphical of FMSs. The concept of fuzzy b-metric space (FbMS), was put 

up by Nadaban [16] in 2016, generalization of FMSs. Ishtiaq et al. [17] derived several FP results in 

generalizations of FMSs. In fuzzy strong b-metric spaces, Shazia et al. [18] identified FPs for a 

number of nonlinear contraction mappings. In 2004, Park [19] used the idea of intuitionistic FSs, 

continuous t-norm (CTN), and continuous t-conorm (CTCN) to established intuitionistic fuzzy 

metric spaces (IFMSs) as a generalization of FMSs. Banach's contraction principle was improved by 

Jungck [20] in 1976 by looking into coincidence and common FPs in commuter mappings. In 1986, 

Jungck [21] introduced the idea of common FPs as well as compatible maps for a pair of self-
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mappings. Jungck's common FP theorems were generalized by Turkoglu et al. [22] in IFMSs in 2006. 

Weakly compatible (w-compatible) mappings were first described by Jungck and Rhoades [23] in 

2006. Since any pair of compatible mappings is w-compatible, but the converse is not true in general, 

weakly compatible mappings are more general. Grabiec [24] derived the Banach’s FP results in the 

context of FMSs in 1988. Schweizer and Sklar [25] introduced statistical metric spaces. Kanwal et 

al. [26] derived some new FP results in intuitionistic fuzzy b-metric spaces (IFbMS).  

    In 2005, Smarandache [27] proposed the concept of neutrosophic sets (NSs), as a generalization 

of IFSs. In 2019, Kirişci and Şimşek [28] established the notion of neutrosophic metric spaces (NMSs) 

and discussed a topological structure. In NMSs, membership (𝑀), non-membership (𝑁) and neutral 

functions (𝑂) are used and they establish the following three symmetric properties for these functions: 

𝑀(𝜔, 𝜐, 𝜄) = 𝑀(𝜔, 𝜐, 𝜄), for all 𝜄 > 0, 

𝑁(𝜔, 𝜐, 𝜄) = 𝑁(𝜔, 𝜐, 𝜄), for all 𝜄 > 0, 

𝑂(𝜔, 𝜐, 𝜄) = 𝑂(𝜔, 𝜐, 𝜄), for all 𝜄 > 0. 

Şimşek and Kirişci [29] derived numerous FP results for contraction mappings in the context of NMS. 

Ishtiaq et al. [30] generalized the notion of NMS and introduced the notion orthogonal NMSs and 

proved some new types of FP theorems for contraction mappings. Debnath [31] worked on a 

mathematical model using fixed point theorem for two-choice behavior of rhesus monkeys in a 

noncontingent environment. Authors in [32] and [33] did amazing work in the direction of fixed point 

theory. 

    In this manuscript, we aim to introduce the notion of neutrosophic b-metric space (NbMS) as a 

generalization of NMS and we use the above defined three symmetric properties to introduce the 

notion of NbMS. We established some coincident point (c-point) and common FP results in which 

symmetric properties of NbMS plays a very significant role. We coined several non-trivial examples 

and graphical views via computational techniques. Also, we provide an application to support our 

main result.  

We start with some definitions that are helpful for readers to understand the main results. 

Definition 1.1 [25] A binary operation ∗: [0,1] × [0,1] → [0,1] is called CTN if the below circumstances 

are fulfilled: 

(a1) ∗ is associative and commutative, 

(a2) ∗ is continuous, 

(a3) 𝜆 ∗ 1 = 𝜆, for all 𝜆 ∈ [0,1],  
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(a4) If 𝜆 ≤ 𝑘 and 𝑎 ≤ 𝑙 with 𝜆, 𝑎, 𝑘, 𝑙 ∈ [0,1], then 𝜆 ∗ 𝑎 ≤ 𝑘 ∗ 𝑙. 

Definition 1.2 [3] A binary operation ∘: [0,1] × [0,1] → [0,1] is called CTCN if the below 

circumstances are fulfilled: 

(b1) ∗ is associative and commutative, 

(b2) ∘ is continuous, 

(b3) 𝜆 ∘ 0 = 𝜆, for all 𝜆 ∈ [0,1], 

(b4) If 𝜆 ≤ 𝑘 and 𝑎 ≤ 𝑙 with 𝜆, 𝑎, 𝑘, 𝑙 ∈ [0,1], then 𝜆 ∗ 𝑎 ≤ 𝑘 ∗ 𝑙. 

Definition 1.3 [16] Suppose 𝜁 be a non-empty set. Let 𝑠 ∈ ℝ, s ≥ 1 and ∗ be CTN. A FS 

𝑀 on 𝜁 × 𝜁 × [0, +∞) is known as fuzzy b-metric if, for all 𝜔, 𝜐, 𝑧 ∈ 𝜁 the below conditions are 

verified: 

(bM1) 𝑀 (𝜔, 𝜐, 0) = 0, 

(bM2) 𝑀 (𝜔, 𝜐, 𝜄) = 1, for all 𝜄 ≥ 0 ⟺ 𝑆𝜔 = 𝜐, 

 (bM3) 𝑀 (𝜔, 𝜐, 𝜄) = 𝑀(𝜔, 𝜐, 𝜄), for all 𝜄 ≥ 0, 

(bM4) 𝑀 (𝜔, 𝑧, 𝑠(𝜄 + 𝜃))  ≥ 𝑀(𝜔, 𝜐, 𝜄) ∗ 𝑀(𝜐, 𝑧, 𝜃)𝑑, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜄, 𝜃 ≥ 0, 

(bM5) lim
𝜄→+∞

𝑀 (𝜔, 𝜐, 𝜄) = 1 and 𝑀(𝜔, 𝜐, . ): [0, +∞] → [0,1] is left continuous. 

Then (𝜁, 𝑀,∗, 𝑠) is called a fuzzy b-metric space. 

Definition 1.4 [27] Let a set 𝜁 ≠ ∅ and 𝜗 ∈ 𝑋. A neutrosophic set (NS) 𝐺 in 𝜁 is categorized by three 

components 

(i) truth-membership function 𝑀(𝜗), 

(ii) indeterminacy-membership function 𝑁(𝜗),  

(iii) falsity-membership function 𝑂(𝜗). 

The functions 𝑀(𝜗), 𝑁(𝜗) and 𝑂(𝜗) are real standard or non-standard subsets of ]0−, 1+[, that is 

𝑀(𝜗): 𝜁 →]0−, 1+[,  𝑁(𝜗): 𝜁 →]0−, 1+[ and 𝑂(𝜗): 𝜁 →]0−, 1+[    𝑠uch that   

0− ≤ sup 𝑀(𝜗) + sup 𝑁(𝜗) + sup 𝑂(𝜗) ≤ 3+. 

Definition 1.5 [28] A 6-tuple (𝜁, 𝑀, 𝑁, 𝑂,∗,∘) is known as a NMS if 𝜁 is an arbitrary set, ∗ and ∘ are 

CTN and CTCN respectively, 𝑀, 𝑁, 𝑂 are NSs on 𝜁2 × [0, +∞) verifying the bellow circumstances 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔, 𝜐, 𝑧 ∈ 𝜁, 

(N1) 𝑀(𝜔, 𝜐, 𝜄) + 𝑁(𝜔, 𝜐, 𝜄) + 𝑂(𝜔, 𝜐, 𝜄) ≤ 3, 

(N2) 𝑀(𝜔, 𝜐, 0) = 0, 

(N3) 𝑀(𝜔, 𝜐, 𝜄) = 1, for all 𝜄 > 0 iff  𝜔 = 𝜐, 

(N4) 𝑀(𝜔, 𝜐, 𝜄) = 𝑀(𝜔, 𝜐, 𝜄), for all 𝜄 > 0, 
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(N5) 𝑀(𝜔, 𝑧, 𝜄 + 𝜃) ≥  𝑀(𝜔, 𝜐, 𝜄)  ∗ 𝑀(𝜐, 𝑧, 𝜃), for all   𝜄, 𝜃 > 0, 

(N6) 𝑀(𝜔, 𝜐, . ): [0, +∞) → [0,1] is left continuous and lim
𝜄→+∞

𝑀(𝜔, 𝜐, 𝜄) = 1, 

(N7)  𝑁(𝜔, 𝜐, 0) = 1, 

(N8)  𝑁(𝜔, 𝜐, 𝜄) = 0,   for all 𝜄 > 0 iff 𝜔 = 𝜐, 

(N9)  𝑁(𝜔, 𝜐, 𝜄) = 𝑁(𝜔, 𝜐, 𝜄), for all 𝜄 > 0, 

(N10) 𝑁(𝜔, 𝑧, 𝜄 + 𝜃) ≤  𝑁(𝜔, 𝜐, 𝜄)  ∘ 𝑁(𝜐, 𝑧, 𝜃), for all 𝜄, 𝜃 > 0, 

(N11)  lim
𝜄→+∞

𝑁(𝜔, 𝜐, 𝜄) = 0 and 𝑁(𝜔, 𝜐, . ) : [0, +∞) → [0,1] is right continuous, 

(N12)  𝑂(𝜔, 𝜐, 0) = 1, 

(N13)  𝑂(𝜔, 𝜐, 𝜄) = 0,   for all 𝜄 > 0 iff 𝜔 = 𝜐, 

(N14)  𝑂(𝜔, 𝜐, 𝜄) = 𝑂(𝜔, 𝜐, 𝜄), for all 𝜄 > 0, 

(N15) 𝑂(𝜔, 𝑧, 𝜄 + 𝜃) ≤  𝑂(𝜔, 𝜐, 𝜄)  ∘ 𝑂(𝜐, 𝑧, 𝜃), for all 𝜄, 𝜃 > 0,  

 (N16)  lim
𝜄→+∞

𝑂(𝜔, 𝜐, 𝜄) = 0 and 𝑂(𝜔, 𝜐, . ) : [0, +∞) → [0,1] is right continuous. 

Then (𝜁, 𝑀, 𝑁, 𝑂,∗,∘, 𝑠)  said to be a NMS. 

Definition 1.6 [26] A 6-tuple (𝜁, 𝑀, 𝑁,∗,∘, 𝑠) is known as an IFbMS if 𝜁 ≠ 𝜙, 𝑠 ≥ 1 is a given real 

number, ∗ and ∘ are CTN and CTCN, respectively, 𝑀 and 𝑁 are FSs on 𝜁2 × [0, +∞) verifying the 

below circumstances 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔, 𝜐, 𝑧 ∈ 𝜁, 

(IFB1) 𝑀(𝜔, 𝜐, 𝜄) + 𝑁(𝜔, 𝜐, 𝜄) ≤ 1, 

(IFB2) 𝑀(𝜔, 𝜐, 0) = 0, 

(IFB3) 𝑀(𝜔, 𝜐, 𝜄) = 1, for all 𝜄 > 0 iff  𝜔 = 𝜐, 

(IFB4) 𝑀(𝜔, 𝜐, 𝜄) = 𝑀(𝜔, 𝜐, 𝜄), for all 𝜄 > 0, 

(IFB5) (𝜔, 𝑧, 𝑠(𝜄 + 𝜃)) ≥  𝑀(𝜔, 𝜐, 𝜄)  ∗ 𝑀(𝜐, 𝑧, 𝜃), for all 𝜄, 𝜃 > 0, 

(IFB6) 𝑀(𝜔, 𝜐, . ): [0, +∞) → [0,1] is left continuous and lim
𝜄→+∞

𝑀(𝜔, 𝜐, 𝜄) = 1, 

(IFB7)  𝑁(𝜔, 𝜐, 0) = 1, 

(IFB8)  𝑁(𝜔, 𝜐, 𝜄) = 0,   for all 𝜄 > 0 iff 𝜔 = 𝜐, 

(IFB9)  𝑁(𝜔, 𝜐, 𝜄) = 𝑁(𝜔, 𝜐, 𝜄), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜄 > 0, 

(IFB10) 𝑁(𝜔, 𝑧, 𝑠(𝜄 + 𝜃)) ≤  𝑁(𝜔, 𝜐, 𝜄)  ∘ 𝑁(𝜐, 𝑧, 𝜃), for all 𝜄, 𝜃 > 0, 

(IFB11)  lim
𝜄→+∞

𝑁(𝜔, 𝜐, 𝜄) = 0, 

(IFB12) 𝑁(𝜔, 𝜐, . ) : [0, +∞) → [0,1] is right continuous.  
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2. NEUTROSOPHIC b-METRIC SPACES 

In this section, we will establish the notion of NbMS and several non-trivial examples with their 

graphical structures.  

Definition 2.1 A 7-tuple (𝜁, 𝑀, 𝑁, 𝑂,∗,∘, 𝑠) known to be an NbMS if 𝜁 ≠ 𝜙, 𝑠 ≥ 1 is a given real 

number, ∗ and ∘ are CTN and CTCN, respectively, and 𝑀, 𝑁, 𝑂 are NSs on 𝜁2 × [0, +∞) verifying 

the below circumstances 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔, 𝜐, 𝑧 ∈ 𝜁, 

(NBM1) 𝑀(𝜔, 𝜐, 𝜄) + 𝑁(𝜔, 𝜐, 𝜄) + 𝑂(𝜔, 𝜐, 𝜄) ≤ 3, 

(NBM2) 𝑀(𝜔, 𝜐, 0) = 0, 

(NBM3) 𝑀(𝜔, 𝜐, 𝜄) = 1, for all𝜄 > 0 iff  𝜔 = 𝜐, 

(NBM4) 𝑀(𝜔, 𝜐, 𝜄) = 𝑀(𝜔, 𝜐, 𝜄), for all 𝜄 > 0, 

(NBM5) 𝑀(𝜔, 𝑧, 𝑠(𝜄 + 𝜃)) ≥  𝑀(𝜔, 𝜐, 𝜄)  ∗ 𝑀(𝜐, 𝑧, 𝜃), for all 𝜄, 𝜃 > 0, 

(NBM6) 𝑀(𝜔, 𝜐, . ): [0, +∞) → [0,1] is left continuous and lim
𝜄→+∞

𝑀(𝜔, 𝜐, 𝜄) = 1, 

(NBM7) 𝑁(𝜔, 𝜐, 0) = 1, 

(NBM8)  𝑁(𝜔, 𝜐, 𝜄) = 0,   for all 𝜄 > 0   iff 𝜔 = 𝜐, 

(NBM9)  𝑁(𝜔, 𝜐, 𝜄) = 𝑁(𝜔, 𝜐, 𝜄), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜄 > 0, 

(NBM10) 𝑁(𝜔, 𝑧, 𝑠(𝜄 + 𝜃)) ≤  𝑁(𝜔, 𝜐, 𝜄)  ∘ 𝑁(𝜐, 𝑧, 𝜃), for all 𝜄, 𝜃 > 0, 

(NBM11)  lim
𝜄→+∞

𝑁(𝜔, 𝜐, 𝜄) = 0 and  𝑁(𝜔, 𝜐, . ) : [0, +∞) → [0,1] is right continuous, 

(NBM12)  𝑂(𝜔, 𝜐, 0) = 1, 

(NBM13)  𝑂(𝜔, 𝜐, 𝜄) = 0,   for all 𝜄 > 0 iff 𝜔 = 𝜐, 

(NBM14)  𝑂(𝜔, 𝜐, 𝜄) = 𝑂(𝜔, 𝜐, 𝜄), for all 𝜄 > 0, 

(NBM15) 𝑂(𝜔, 𝑧, 𝑠(𝜄 + 𝜃)) ≤  𝑂(𝜔, 𝜐, 𝜄)  ∘ 𝑁(𝜐, 𝑧, 𝜃), for all 𝜄, 𝜃 > 0, 

 (NBM16)  lim
𝜄→+∞

𝑂(𝜔, 𝜐, 𝜄) = 0 and  𝑂(𝜔, 𝜐, . ) : [0, +∞) → [0,1] is right continuous. 

Then (𝜁, 𝑀, 𝑁, 𝑂,∗,∘, 𝑠)  said to be a NBMS. 

Remark 2.1 If, we let 𝑠 = 1 in the above definition, then it will become NMS. So, every NMS is an 

NbMS, but the converse is not generally true. 

Example 2.1 Suppose (𝜁, ϖ, s) be a b-metric space and 𝑎 ∗ b = min{𝑎, 𝑏} , 𝑎 ∘ 𝑏 =

max{𝑎, 𝑏}, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ [0,1], and let 𝑀𝜛, 𝑁𝜛 and 𝑂𝜛 be NSs on 𝜁2 × [0, +∞), defined as follows:  

𝑀𝜛(𝜔, 𝜐, 𝜄) = {

𝜄

𝜄 + ϖ(𝜔, 𝜐)  
, if  𝜄 > 0,

0,                              if 𝜄 = 0
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𝑁𝜛(𝜔, 𝜐, 𝜄) =  {

ϖ(𝜔, 𝜐)

𝜄 + ϖ(𝜔, 𝜐)  
, if  𝜄 > 0,

1,                              if 𝜄 = 0

 

and 

𝑂𝜛(𝜔, 𝜐, 𝜄) =  {
ϖ(𝜔, 𝜐)

𝜄  
, if  𝜄 > 0,

1,                     if 𝜄 = 0.
 

We verify the axioms (NBM5), (NBM10) and (NBM15) of definition 2.1 others; are obvious. Let 

𝜔, 𝜐, 𝑧 ∈ 𝜁 and 𝜄, 𝜎 > 0. without loss of the generality, we suppose that 

𝑀𝜛(𝜔, 𝜐, 𝜄) ≤  𝑀𝜛(𝜐, 𝑧, 𝜎) 

𝑁𝜛(𝜔, 𝜐, 𝜄) ≥ 𝑁𝜛(𝜐, 𝑧, 𝜎), 

and  

𝑂𝜛(𝜔, 𝜐, 𝜄) ≥ 𝑂𝜛(𝜐, 𝑧, 𝜎), 

Thus,   

𝜄

𝜄 + 𝜛(𝜔, 𝜐)  
≤

𝜎

𝜎 + 𝜛(𝜔, 𝜐)
 

𝜛 (𝜔, 𝜐)

𝜄 + 𝜛(𝜔, 𝜐)
≥

𝜛(𝜐, 𝑧)

𝜎 + 𝜛(𝜔, 𝜐)
  

𝜄𝜛(𝜐, 𝑧) ≤ 𝜎𝜛(𝜐, 𝑧) 

On the contrary, 

𝑀𝜛(𝜔, 𝑧, 𝑠(𝜄 + 𝜎)) =
𝑠(𝜄 + 𝜎)

𝑠(𝜄 + 𝜎) + 𝜛(𝜔, 𝑧)
 

≥
𝑠(𝜄 + 𝜎)

𝑠(𝜄 + 𝜎) + 𝑠[𝜛(𝜔, 𝜐) + 𝜛(𝜐, 𝑧)]
  

=
𝜄 + 𝜎

𝜄 + 𝜎 + 𝜛(𝜔, 𝜐) + 𝜛(𝜐, 𝑧)
 . 

Also, 

𝑁𝜛(𝜔, 𝑧, 𝑠(𝜄 + 𝜎)) =
𝜛(𝜔 + 𝑧)

𝑠(𝜄 + 𝜎) + 𝜛(𝜔, 𝑧)
 

≤
𝑠[𝜛(𝜔, 𝜐) + 𝜔(𝜐, 𝑧)]

𝑠(𝜄 + 𝜎) + 𝑠[𝜛(𝜔, 𝜐) + 𝜛(𝜐, 𝑧)]
  , 

=
𝜛(𝜔, 𝜐) + 𝜛(𝜐, 𝑧)

𝜄 + 𝜎 + 𝜛(𝜔, 𝜐) + 𝜛(𝜐, 𝑧)
 

𝜛(𝜔, 𝜐) + 𝜛(𝜐, 𝑧)

𝜄 + 𝜎 + 𝜛(𝜔, 𝜐) + 𝜛(𝜐, 𝑧)
≤

𝜛(𝜔, 𝜐)

𝜄 + 𝜛(𝜔, 𝜐)
   

and  
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𝑂𝜛(𝜔, 𝑧, 𝑠(𝜄 + 𝜎)) =
𝜛(𝜔 + 𝑧)

𝑠(𝜄 + 𝜎)
 

≤
𝑠[𝜛(𝜔, 𝜐) + 𝜔(𝜐, 𝑧)]

𝑠(𝜄 + 𝜎)
, 

=
𝜛(𝜔, 𝜐) + 𝜛(𝜐, 𝑧)

𝜄 + 𝜎
 

𝜛(𝜔, 𝜐) + 𝜛(𝜐, 𝑧)

𝜄 + 𝜎
≤

𝜛(𝜔, 𝜐)

𝜄
. 

Hence,  

𝑀𝜛(𝜔, 𝑧, 𝑠(𝜄 + 𝜎)) ≥    𝑀𝜛(𝜔, 𝜐, 𝜄) = 𝑀𝜛(𝜔, 𝜐, 𝜄) ∗ 𝑀𝜛(𝜐, 𝑧, 𝜎) 

𝑁𝜛(𝜔, 𝑧, 𝑠(𝜄 + 𝜎)) ≤  𝑁𝜛(𝜔, 𝜐, 𝜄) = 𝑁𝜛(𝜔, 𝜐, 𝜄) ∘ 𝑁𝜛(𝜐, 𝑧, 𝜎),  

and 

𝑂𝜛(𝜔, 𝑧, 𝑠(𝜄 + 𝜎)) ≤ 𝑂𝜛(𝜔, 𝜐, 𝜄) = 𝑂𝜛(𝜔, 𝜐, 𝜄) ∘ 𝑂𝜛(𝜐, 𝑧, 𝜎). 

Now     

𝜄 + 𝜎

𝜄 + 𝜎 + 𝜛(𝜔, 𝜐) + 𝜛(𝜐, 𝑧)
≥

𝜄

𝜄 + 𝜛(𝜔, 𝜐)
 

⇔ 𝜄2 + 𝜎𝜄 + 𝜄𝜛(𝜔, 𝜐) + 𝜎𝜛(𝜔, 𝜐) ≥ 𝜄2 + 𝜎𝜄 + 𝜄𝜛(𝜔, 𝜐) + 𝜄𝜛(𝜐, 𝑧) 

⇔ 𝜎𝜛(𝜔, 𝜐) ≥ 𝜄𝜛(𝜐, 𝑧), 

which is true.  

Also  

𝜛(𝜔, 𝜐) + 𝜛(𝜐, 𝑧)

𝜄 + 𝜎 + 𝜛(𝜔, 𝜐) + 𝜛(𝜐, 𝑧)
≤

𝜛(𝜔, 𝜐)

𝜄 + 𝜛(𝜔, 𝜐)
 

⇔ 𝜄𝜛(𝜔, 𝜐) + 𝜄𝜛(𝜐, 𝑧) + 𝜛(𝜔, 𝜐) + 𝜛(𝜐, 𝑧) + (𝜛(𝜔, 𝜐))
2
 

≤ 𝜄𝜛(𝜔, 𝜐) + 𝜎𝜛(𝜔, 𝜐) +  𝜛(𝑥, 𝜐)𝜛(𝜐, 𝑧) + (𝜛(𝜔, 𝜐))
2
 

⇔ 𝜄𝜛(𝜐, 𝑧) ≤ 𝜎𝜛(𝜔, 𝜐), 

and 

𝜛(𝜔, 𝜐) + 𝜛(𝜐, 𝑧)

𝜄 + 𝜎
≤

𝜛(𝜔, 𝜐)

𝜄
 

⇔ 𝜄𝜛(𝜔, 𝜐) + 𝜄𝜛(𝜐, 𝑧) ≤ 𝜄𝜛(𝜔, 𝜐) + 𝜎𝜛(𝜔, 𝜐) 

⇔ 𝜄𝜛(𝜐, 𝑧) ≤ 𝜎𝜛(𝜔, 𝜐), 

which is true. Hence, (𝜁, 𝑀𝜛,𝑁𝜛, 𝑂𝜛,∗,∘, 𝑠) is an NbMS. 

Remark 2.2 Let 𝜁 = [0,1] and 𝛼(𝜔, 𝜐) = |𝜔 − 𝜐|𝑠 with 𝑠 ≥ 1 be a b-metric space. Consider the above 

example, we have the graphical views for 𝑀𝜛 in figure 1, 𝑁𝜛 in figure 2 and 𝑂𝜛 in Figure 3. 
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Figure 1 shows the graphical behavior of 𝑀𝜛 for 𝑠 = 1, 𝑠 = 2, 𝑠 = 3, 𝑠 = 4 and 𝑠 = 5. 

 

Figure 2 shows the graphical behavior of 𝑁𝜛 for 𝑠 = 1, 𝑠 = 2, 𝑠 = 3, 𝑠 = 4 and 𝑠 = 5. 
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Figure 3 shows the graphical behavior of 𝑂𝜛 for 𝑠 = 1, 𝑠 = 2, 𝑠 = 3, 𝑠 = 4 and 𝑠 = 5. 

Definition 2.2 Let 𝑠 ≥ 1 be a given real number. A function 𝑄: 𝑅 → 𝑅 is said to be an s-non-decreasing 

if  𝜄 < 𝜎 implies that 𝑄(𝜄) ≤ 𝑄(𝑠𝜎) and 𝑄 is said to be s-non-increasing if 𝜄 < 𝜎 implies that 𝑄(𝜄) ≥

𝑄(𝑠𝜎).  

Proposition 2.1 In an NbMS (𝜁, 𝑀𝑏,𝑁𝑏 , 𝑂𝑏 ,∗,∘, 𝑠), 𝑀(𝜔, 𝜐, . ): [0, +∞) → [0,1] is s-non-decreasing, 

𝑁(𝜔, 𝜐, . ): [0, +∞) → [0,1] is s-non-increasing and 𝑂(𝜔, 𝜐, . ): [0, +∞) → [0,1] is s-non-increasing, for 

all 𝜔, 𝜐 ∈ 𝜁.  

Proof: For 0 < 𝜄 < 𝜎, we get  

𝑀(𝜔, 𝜐, 𝑠𝜎) = 𝑀(𝜔, 𝜐, 𝑠(𝜎 − 𝜄 + 𝜄)) 

≥ 𝑀(𝜔, 𝜔, 𝜎 − 𝜄) ∗ 𝑀(𝜔, 𝜐, 𝜄) 

= 1 ∗ 𝑀(𝜔, 𝜐, 𝜄) = 𝑀(𝜔, 𝜐, 𝜄). 

Also 

𝑁(𝜔, 𝜐, 𝑠𝜎) = 𝑁(𝜔, 𝜐, 𝑠(𝜄 − 𝜄 + 𝜄)) 

≤ 𝑁(𝜔, 𝜔, 𝜎 − 𝜄) ∘  𝑁(𝜔, 𝜐, 𝜄) 

= 0 ∘ 𝑁(𝜔, 𝜐, 𝜄) = 𝑁(𝜔, 𝜐, 𝜄) 

and  

𝑂(𝜔, 𝜐, 𝑠𝜎) = 𝑂(𝜔, 𝜐, 𝑠(𝜄 − 𝜄 + 𝜄)) 

≤ 𝑂(𝜔, 𝜔, 𝜎 − 𝜄) ∘  𝑂(𝜔, 𝜐, 𝜄) 



11 Int. J. Anal. Appl. (2023), 21:73 

 

= 0 ∘ 𝑂(𝜔, 𝜐, 𝜄) = 𝑂(𝜔, 𝜐, 𝜄). 

Definition 2.3 Suppose (𝜁, 𝑀, 𝑁, 𝑂,∗,∘, 𝑠) be an NbMS. An open ball 𝐵(𝜔, 𝑟, 𝜄) with the center 𝜔 ∈ 𝜁 

and radius 𝑟, 0 < 𝑟 < 1, and 𝜄 > 0 is defined as 𝐵(𝜔, 𝑟, 𝜄) = {𝜐 ∈ 𝜁: 𝑀(𝜔, 𝑟, 𝜄) > 1 − 𝑟, 𝑁(𝜔, 𝑟, 𝜄) <

𝑟 and 𝑂(𝜔, 𝑟, 𝜄) < 𝑟}. 

Definition 2.4 Let (𝜁, 𝑀, 𝑁, 𝑂,∗,∘, 𝑠) be an NbMS and a subset 𝐴 of 𝜁. If for each 𝜔 ∈ 𝐴, there is an 

open ball 𝐵(𝜔, 𝑟, 𝜄) contained in 𝐴, then 𝐴 is called an open in 𝜁. 

Definition 2.5 Suppose (𝜁, 𝑀, 𝑁, 𝑂,∗,∘, 𝑠) be an NbMS. Define 𝜏𝑀,𝑁,𝑂 as 𝜏𝑀,𝑁,𝑂 = {𝐴 ∈ 𝑃(𝜁): 𝜔 ∈

𝐴 iff there exists 𝜄 > 0 and 𝑟 ∈ (0,1): 𝐵(𝜔, 𝑟, 𝜄 ⊂ 𝐴)} then 𝜏𝑀,𝑁,𝑂  is a topology on 𝜁,  where 𝑃(𝜁) is the 

power set of 𝜁. 

Definition 2.6 Suppose (𝜁, 𝑀, 𝑁, 𝑂,∗,∘, 𝑠) be an NbMS. 

(a) Any sequence 𝜔𝑛 in 𝜁 is said to be convergent if there exist 𝜔 ∈ 𝜁 such that 

lim
𝑛→+∞

𝑀(𝜔𝑛, 𝜔, 𝜄) = 1 ,  lim
𝑛→+∞

𝑁(𝜔𝑛, 𝜔, 𝜄) = 0  and  lim
𝑛→+∞

𝑂(𝜔𝑛, 𝜔, 𝜄) = 0  𝑓𝑜𝑟 𝑎𝑙𝑙𝜄 > 0. A point 

ω is said to be the limit of the sequence 𝜔𝑛 and it is described as lim
𝑛→+∞

𝜔𝑛 = 𝜔, or 𝜔𝑛 → 𝜔. 

(b) Any sequence 𝜔𝑛 in  (𝜁, 𝑀, 𝑁, 𝑂,∗,∘, 𝑠) is said to be a Cauchy sequence if, for every 𝜀 in (0,1), 

there is 𝑛0 ∈ 𝑁 such that  𝑀(𝜔𝑛, 𝜔𝑚, 𝜄) > 1 − 𝜀, 𝑁(𝜔𝑛, 𝜔𝑚, 𝜄) < 𝜀 and  𝑂(𝜔𝑛, 𝜔𝑚, 𝜄) < 𝜀 for 

all 𝑚, 𝑛 ≥ 𝑛0 and 𝜄 > 0. 

(c)  𝜁 is known to be complete if every Cauchy sequence in 𝜁 is convergent in 𝜁. 

 

3. MAIN RESULTS 

In this section, we will derive several coincident point and common FP results in the context of 

NbMS.  

Definition 3.1 Suppose 𝜁 ≠ ϕ and ∆, 𝜎: 𝜁 → 𝜁 be two mappings on 𝜁. 

(i) An element 𝜔 ∈ 𝜁 is said to be a c-point of ∆ and 𝜎 if ∆(ω) = 𝜎(ω). 

(ii) An element 𝜐 ∈ 𝜁 is said to be a c-point of ∆ and 𝜎 if there exists 𝜔 ∈ 𝜁 such that if 𝜐 =

∆(𝜔) = 𝜎(𝜔).   

(iii)  An element 𝑧 ∈ 𝜁 is called a common FP of ∆ and 𝜎 if 𝑧 = ∆(z) = 𝜎(z). 

Definition 3.2 Two self-mappings ∆, 𝜎: 𝜁 → 𝜁 are called w-compatible if ∆𝜎(𝜔) = 𝜎∆(𝜔) when ∆(𝜔) =

𝜎(𝜔). 

Theorem 3.1 Suppose 𝜁 ≠ 𝜙, 𝑌 ≠ 𝜙, and (𝑌, 𝑀, 𝑁, 𝑂,∗,∘, 𝑠) be an NbMS and ∆, 𝜎: 𝜁 ⟶ 𝑌 be mappings 

verifying the below circumstances: 
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(i)  𝜎(𝜁) ⊆ ∆(𝜔); 

(ii) There is 𝑘, such that 0 ≤ 𝑘 ≤ 1, for all 𝜔, 𝜐 ∈ 𝜁 

𝑀(𝜎(𝜔), 𝜎(𝜐), 𝑘𝜄) ≥ 𝑀(∆(𝜔), ∆( 𝜐), 𝜄) 

 

𝑁(𝜎(𝜔), 𝜎(𝜐), 𝑘𝜄) ≤ 𝑁 (∆(𝜔), ∆( 𝜐), 𝜄). 

and 

𝑂(𝜎(𝜔), 𝜎(𝜐), 𝑘𝜄) ≤ 𝑂(∆(𝜔), ∆( 𝜐), 𝜄). 

If ∆(𝜁) or 𝜎(𝜁) is complete, then there exists an element 𝑧 ∈ 𝜁 such that ∆(𝜁) =𝜎(𝜁). Furthermore, 

∆ and 𝜎 have a unique c-point. 

Proof: Suppose 𝜔0 ∈ 𝜁. Applying (i), we can deduce 𝜔1 ∈ 𝜁 such that ∆(𝜔1) = 𝜎(𝜔0), for 𝑘 = 0, we 

have 

𝑀(𝜎( 𝜔0), 𝜎(𝜔1), 0𝜄) ≥ 𝑀(∆(𝜔0), ∆(𝜔1), 𝜄 ), 

𝑁(𝜎(𝜔0), 𝜎(𝜔1), 0𝜄) ≤ 𝑁(∆(𝜔0), ∆(𝜔1), 𝜄 ) 

and 

𝑂(𝜎(𝜔0), 𝜎(𝜔1), 0𝜄) ≤   𝑂(∆(𝜔0), ∆(𝜔1), 𝜄 ) 

 𝑀(𝜎(𝜔0), 𝜎(𝜔1), 0𝜄) = 1, 

𝑁(𝜎(𝜔0), 𝜎(𝜔1), 0𝜄) = 0 

and 

𝑂(𝜎(𝜔0), 𝜎(𝜔1), 0𝜄) = 0. 

That is, 

𝜎(𝜔0) = 𝜎(𝜔1) 

∆(𝜔1) = 𝜎(𝜔1). 

Hence, 𝜔1 is the c-point of ∆ and 𝜎. For 𝑘 ≠ 0, by induction, we have a sequence {𝜔𝑛} in 𝜁, such 

that  

∆(𝜔𝑛) =  𝜎(𝜔𝑛−1): 𝑀(∆(𝜔𝑛), ∆(𝜔𝑛+1), 𝜄) = 𝑀(𝜎(𝜔𝑛−1), 𝜎(𝜔𝑛), 𝜄) 

≥ 𝑀(∆(𝜔𝑛−1), ∆(𝜔𝑛), 𝜄 𝑘⁄  ) ≥ ⋯ ≥ 𝑀(∆(𝜔0), ∆(𝜔1), 𝜄 𝑘𝑛⁄ ). 

Clearly, 1 ≥ 𝑀(∆(𝜔𝑛), ∆(𝜔𝑛+1), 𝜄) ≥ 𝑀(∆(𝜔0), ∆(𝜔1), 𝜄 𝑘𝑛⁄ ) → 1, when 𝑛 → +∞.  

Thus,  

lim
𝑛→+∞

𝑁(∆(𝜔𝑛), ∆(𝜔𝑛+1), 𝜄 ) = 𝑁(𝜎(𝜔𝑛−1), 𝜎(𝜔𝑛), 𝜄) 

≤ 𝑁(∆(𝜔𝑛−1), ∆(𝜔𝑛), 𝜄 𝑘⁄  ) ≤ ⋯ ≤ 𝑁(∆(𝜔0), ∆(𝜔1), 𝜄 𝑘𝑛⁄ ). 

Clearly, 
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 0 ≤ 𝑁(∆(ωn), ∆(ωn+1), 𝜄) ≤ 𝑁(∆(ω0), ∆(ω1), 𝜄 𝑘𝑛⁄ ) → 0, when 𝑛 → +∞. 

That is, 

lim
𝑛→+∞

𝑁(∆(𝜔𝑛), ∆(𝜔𝑛+1), 𝜄) = 0. 

Also, 

lim
𝑛→+∞

𝑂(∆(𝜔𝑛), ∆(𝜔𝑛+1), 𝜄) = 𝑂(𝜎(𝜔𝑛−1), 𝜎(𝜔𝑛), 𝜄) 

≤ 𝑂(∆(𝜔𝑛−1), ∆(𝜔𝑛), 𝜄 𝑘⁄ ) ≤ ⋯ ≤ 𝑂(∆(𝜔0), ∆(𝜔1), 𝜄 𝑘𝑛⁄ ). 

Clearly, 

 0 ≤ 𝑂(∆(𝜔𝑛), ∆(𝜔𝑛+1), 𝜄) ≤ 𝑂(∆(𝜔0), ∆(𝜔1), 𝜄 𝑘𝑛⁄ ) → 0, when 𝑛 → +∞. 

That is, 

lim
𝑛→+∞

𝑂(∆(𝜔𝑛), ∆(𝜔𝑛+1), 𝜄) = 0. 

Let  

𝜏𝑛(𝜄) =  𝑀(∆(𝜔𝑛), ∆(𝜔𝑛+1), 𝜄 ),  

𝜇𝑛(𝜄) = 𝑁(∆(𝜔𝑛), ∆(𝜔𝑛+1), 𝜄 ), 

ℎ𝑛(𝜄)  = 𝑂(∆(𝜔𝑛), ∆(𝜔𝑛+1), 𝜄 ) for all 𝑛 ∈ ℕ ∪ {0}, 𝜄 > 0. 

To show that ∆(𝜔𝑛) is a Cauchy sequence, assume it is not, then there exists 0 < 𝜀 < 1 and two 

sequences 𝑝(𝜂) and 𝑞(𝜂) such that for every 𝜂 ∈ ℕ ∪ {0}, 𝜄 > 0, 𝑝(𝜂) > 𝑞(𝜂) ≥ 𝜂,  

 𝑀 (∆(𝜔𝑝(𝜂), 𝜔𝑞(𝜂), 𝜄 )) ≤ 1 − 𝜀,  

𝑁 (∆𝜔𝑝(𝜂), (∆𝜔𝑞(𝜂), 𝜄)) ≥ 𝜀,  

𝑂 (∆𝜔𝑝(𝜂), (∆𝜔𝑞(𝜂), 𝜄)) ≥ 𝜀. 

Then  

 

𝑀(∆(𝜔𝑝(𝜂)−1), ∆(𝜔𝑞(𝜂)−1), 𝜄) > 1 − 𝜀 

𝑀(∆(𝜔𝑝(𝜂)−1), ∆(𝜔𝑞(𝜂)), 𝜄) > 1 − 𝜀, 

 𝑁(∆(𝜔𝑝(𝜂)−1), ∆(𝜔𝑞(𝜂)−1), 𝜄) < 𝜀 

𝑁(∆(𝜔𝑝(𝜂)−1), ∆(𝜔𝑞(𝜂)), 𝜄) < 𝜀, 

and  

 𝑂(∆(𝜔𝑝(𝜂)−1), ∆(𝜔𝑞(𝜂)−1), 𝜄) < 𝜀 

𝑂(∆(𝜔𝑝(𝜂)−1), ∆(𝜔𝑞(𝜂)), 𝜄) < 𝜀. 

Now, 
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1 − 𝜀 ≥ 𝑀(∆(𝜔𝑝(𝜂)), ∆(𝜔𝑞(𝜂)), 𝜄) 

≥ 𝑀(∆(𝜔𝑝(𝜂)−1), ∆(𝜔𝑝(𝜂)), 𝜄 2𝑠⁄ ) ∗ 𝑀(∆(𝜔𝑝(𝜂)−1), ∆(𝜔𝑞(𝜂)), 𝜄 2𝑠⁄ ) 

> 𝜏𝑝(𝜂)−1(𝜄 2𝑠⁄ ) ∗ 1 − 𝜀 

𝜀 ≤ 𝑁(∆(𝜔𝑝(𝜂)), ∆(𝜔𝑞(𝜂)), 𝜄) 

≤ 𝑁(∆(𝜔𝑝(𝜂)−1), ∆(𝜔𝑝(𝜂)), 𝜄 2𝑠⁄ ) ∘ 𝑁(∆(𝜔𝑝(𝜂)−1), ∆(𝜔𝑞(𝜂)), 𝜄 2𝑠⁄ ) 

< 𝜇𝑝(𝜂)−1(𝜄 2𝑠⁄ ) ∘ 𝜀 

and  

𝜀 ≤ 𝑂(∆(𝜔𝑝(𝜂)), ∆(𝜔𝑞(𝜂)), 𝜄) 

≤ 𝑂(∆(𝜔𝑝(𝜂)−1), ∆(𝜔𝑝(𝜂)), 𝜄 2𝑠⁄ ) ∘ 𝑂(∆(𝜔𝑝(𝜂)−1), ∆(𝜔𝑞(𝜂)), 𝜄 2𝑠⁄ ) 

< ℎ𝑝(𝜂)−1(𝜄 2𝑠⁄ ) ∘ 𝜀. 

Since, 𝜏𝑝(𝜂)−1(𝜄 2𝑠⁄ ) → 1 𝑎𝑠 𝜂 → +∞, 𝜇𝑝(𝜂)−1(𝜄 2𝑠⁄ ) → 0 as 𝜂 → +∞ and ℎ𝑝(𝜂)−1(𝜄 2𝑠⁄ ) → 0 as 𝜂 →

+∞ for every 𝜄, supposing that 𝜂 → +∞, we have  

1 − 𝜀 ≥  𝑀(∆(𝜔𝑝(𝜂)), ∆(𝜔𝑞(𝜂)), 𝜄) < 𝜀.  

Hence, it is a contradiction. That is, ∆(𝜔𝑛) is a Cauchy sequence in ∆(𝜁). 

Case1: Let ∆(𝜁) is complete. Then, there exists an element 𝜐 ∈ ∆(𝜁) such that lim
𝑛→+∞

∆(𝜔𝑛) = 𝜐. This 

shows that there exists 𝑧 ∈ 𝜁 such that 𝜐 = ∆(𝑧). 

𝑀(∆(𝑧), 𝜎(𝑧), 𝜄) ≥ 𝑀(∆(𝑧), ∆(𝜔𝑛), 𝜄 2𝑠⁄ ) ∗ 𝑀(∆(𝜔𝑛), 𝜎(𝑧), 𝜄 2𝑠⁄ ) 

= 𝑀(∆(𝑧), ∆(𝜔𝑛), 𝜄 2𝑠⁄ ) ∗ 𝑀(𝜎(𝜔𝑛−1), 𝜎(𝑧), 𝜄 2𝑠⁄ ) ≥ 𝑀(∆(𝑧), ∆(𝜔𝑛), 𝜄 2𝑠⁄ ) ∗ 𝑀(∆(𝜔𝑛−1), ∆(𝑧), 𝜄 2𝑠𝑘⁄ )

≥ 1 ∗ 1 = 1 as 𝑛 → +∞, 

𝑁(∆(𝑧), 𝜎(𝑧), 𝜄) ≤ 𝑁(∆(𝑧), ∆(𝜔𝑛), 𝜄 2𝑠⁄ ) ∘ 𝑁(∆(𝜔𝑛), 𝜎(𝑧), 𝜄 2𝑠⁄ ) 

= 𝑁(∆(𝑧), ∆(𝜔𝑛), 𝜄 2𝑠⁄ ) ∘ 𝑁(𝜎(𝜔𝑛−1), 𝜎(𝑧), 𝜄 2𝑠⁄ ) ≤ 𝑁(∆(𝑧), ∆(𝜔𝑛), 𝜄 2𝑠⁄ ) ∘ 𝑁(∆(𝜔𝑛−1), ∆(𝑧), 𝜄 2𝑠𝑘⁄ )

≤ 0 ∘ 0 = 0 as 𝑛 → +∞ 

and 

𝑂(∆(𝑧), 𝜎(𝑧), 𝜄) ≤ 𝑂(∆(𝑧), ∆(𝜔𝑛), 𝜄 2𝑠⁄ ) ∘ 𝑂(∆(𝜔𝑛), 𝜎(𝑧), 𝜄 2𝑠⁄ ) 

= 𝑂(∆(𝑧), ∆(𝜔𝑛), 𝜄 2𝑠⁄ ) ∘ 𝑂(𝜎(𝜔𝑛−1), 𝜎(𝑧), 𝜄 2𝑠⁄ ) 

≤ 𝑂(∆(𝑧), ∆(𝜔𝑛), 𝜄 2𝑠⁄ ) ∘ 𝑂(∆(𝜔𝑛−1), ∆(𝑧), 𝜄 2𝑠𝑘⁄ ) ≤ 0 ∘ 0 = 0 as 𝑛 → +∞. 

By Definition 2.1, it follows that    ∆(𝑧) = 𝜎(𝑧). 

Case 2: Suppose that 𝜎(𝜁) is complete; then there exists an element 𝜐 ∈ 𝜎(𝜁) such that 

lim
𝑛→+∞

∆(𝜔𝑛) = 𝜐. Since, 𝜎(𝜁) ∈ ∆(𝜁), so there exists an element 𝑧 ∈ 𝜁 such that  𝜐 = ∆(𝜁). The 

existence of a coincident point is obvious from case 1. Now, we examine the uniqueness of a 
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coincident point of ∆ and 𝜎. Suppose 𝜐1 be another point of coincidence of ∆ and 𝜎. Then, 𝜐1 =

∆(𝑧1) = 𝜎(𝑧1) for some 𝑧1 in 𝜁 

1 ≥ 𝑀(𝜐, 𝜐1, 𝜄) = 𝑀( 𝜎(𝑧), 𝜎(𝑧1), 𝜄) 

≥ 𝑀(∆(𝑧), ∆(𝑧1), 𝜄 𝑘⁄ ) = 𝑀(𝜐, 𝜐1, 𝜄 𝑘⁄ )  

≥ ⋯ ≥ 𝑀(𝜐, 𝜐1, 𝜄 𝑘𝑛⁄ ), 

0 ≤ 𝑁(𝜐, 𝜐1, 𝜄) = 𝑁( 𝜎(𝑧), 𝜎(𝑧1), 𝜄) 

≤ 𝑁(∆(𝑧), ∆(𝑧1), 𝜄 𝑘⁄ ) = 𝑁(𝜐, 𝜐1, 𝜄 𝑘⁄ )  

≤ ⋯ ≤ 𝑁(𝜐, 𝜐1, 𝜄 𝑘𝑛⁄ ) 

and 

0 ≤ 𝑂(𝜐, 𝜐1, 𝜄) = 𝑂( 𝜎(𝑧), 𝜎(𝑧1), 𝜄) 

≤ 𝑂(∆(𝑧), ∆(𝑧1), 𝜄 𝑘⁄ ) = 𝑂(𝜐, 𝜐1, 𝜄 𝑘⁄ )  

≤ ⋯ ≤ 𝑂(𝜐, 𝜐1, 𝜄 𝑘𝑛⁄ ). 

Thus, by Definition 2.1, lim
𝑛→+∞

𝑀(𝜐, 𝜐1, 𝜄 𝑘𝑛 ⁄ ) = 1, lim
𝑛→+∞

𝑁(𝜐, 𝜐1, 𝜄 𝑘𝑛⁄ ) = 0 and lim
𝑛→+∞

𝑂(𝜐, 𝜐1, 𝜄 𝑘𝑛 ⁄ ) =

0. 

It follows that 1 ≥ 𝑀(𝜐, 𝜐1, 𝜄) ≥ 1, 0 ≤  𝑁(𝜐, 𝜐1, 𝜄) ≤ 0 and 0 ≤  𝑂(𝜐, 𝜐1, 𝜄) ≤ 0, which implies that 𝜐 =

 𝜐1, also by the Definition 2.1. lim
𝑛→+∞

𝑀(𝜐, 𝜐1, 𝜄 𝑘𝑛 ⁄ ) = 1, lim
𝑛→+∞

𝑁(𝜐, 𝜐1, 𝜄 𝑘𝑛 ⁄ ) = 0 and 

lim
𝑛→+∞

𝑂(𝜐, 𝜐1, 𝜄 𝑘𝑛⁄ ) = 0. It follows that 1 ≥ 𝑀(𝜐, 𝜐1, 𝜄) ≥ 1,  0 ≤  𝑁(𝜐, 𝜐1, 𝜄) ≤ 0 and  0 ≤  𝑂(𝜐, 𝜐1, 𝜄) ≤

0. Which implies that 𝜐 = 𝜐1. 

Remark 3.1 If ∆ or 𝜎 is a bijective, a unique coincident point must be exist. 

Theorem 3.2 Suppose (𝜁, 𝑀, 𝑁, 𝑂,∗,∘, 𝑠) be a complete NbMS and ∆, 𝜎: 𝜁 → 𝜁 are verifying the 

following circumstances:  

(1)  𝜎(𝜁) ⊆ ∆(𝜁), 

(2) there exists 𝑘, 0 ≤ k < 1, such that, for all 𝜔, 𝜐 ∈ 𝜁, 

𝑀(𝜎(𝜔), 𝜎(𝜐), 𝑘𝜄) ≥ 𝑀(∆(𝜔), ∆(𝜐), 𝜄), 

𝑁(𝜎(𝜔), 𝜎(𝜐), 𝑘𝜄) ≤ 𝑁(∆(𝜔), ∆(𝜐), 𝜄), 

𝑂(𝜎(𝜔), 𝜎(𝜐), 𝑘𝜄) ≤ 𝑂(∆(𝜔), ∆(𝜐), 𝜄), 

(3)  ∆ and 𝜎 are w-compatible. 

Then, ∆ and 𝜎 have a unique-common FP in 𝜁. 
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Proof: By utilizing Theorem 3.1, there exists a unique coincidence point of ∆ and 𝜎 in 𝜁. Therefore, 

we have, 𝜐 in 𝜁 such that 𝜐 = ∆(𝜎(𝑧)) = ∆(𝜐).Let 𝜎 = ∆(𝜐) = 𝜎(𝜐), then 𝜎 is a coincidence point of 

∆ and 𝜎, therefore, the coincidence point is unique, this shows that  

 𝜎 = 𝜐 ⇒ 𝜐 = ∆(𝜐) = 𝜎(𝜐). 

Hence, 𝜐 is a unique common FP of ∆ and 𝜎. 

Corollary 3.1 Suppose (𝜁, 𝑀, 𝑁, 𝑂,∗,∘) be a complete NMS and ∆, 𝜎:  𝜁 → 𝜁 be mappings verifying the 

below circumstances: 

(1) 𝜎(𝜁) ⊆ ∆(𝜁), 

(2) there exists 𝑘, such that 0 ≤ 𝑘 < 1, for all 𝜔, 𝜐 ∈ 𝜁, 

𝑀(𝜎(𝜔), 𝜎(𝜐), 𝑘𝜄) ≥ 𝑀(∆(𝜔), ∆(𝜐), 𝜄), 

𝑁(𝜎(𝜔), 𝜎(𝜐), 𝑘𝜄) ≤ 𝑁(∆(𝜔), ∆(𝜐), 𝜄) 

and  

𝑂(𝜎(𝜔), 𝜎(𝜐), 𝑘𝜄) ≤ 𝑂(∆(𝜔), ∆(𝜐), 𝜄), 

(3) ∆ and 𝜎 are w-compatible. 

Then, ∆ and 𝜎 have a unique-common FP in 𝜁. 

Proof: By taking 𝑠 = 1 in Theorem 3.2, it is obvious. 

Corollary 3.2 Suppose (𝜁, 𝑀,∗) be a complete fuzzy b-metric space and ∆, 𝜎: 𝜁 → 𝜁 are mappings 

verifying the below circumstances: 

(1) 𝜎(𝜁) ⊆  ∆(𝜁), 

(2) there exists 𝑘 ∈ [0,1) such that, for all 𝜐 ∈ 𝜁, 

𝑀(𝜎(𝜔), 𝜎(𝜐), 𝑘𝜄 ) ≥ 𝑀(∆(𝜔), ∆(𝜐), 𝜄 ), 

(3) ∆ and 𝜎 are w-compatible. 

Then, ∆ and 𝜎 have a unique-common FP in 𝜁. 

Proof: By taking 𝑁 = 0 = 𝑂 (i.e., 𝑁 and 𝑂 are zero functions) in Theorem 3.2, it is obvious. 

Corollary 3.3  Suppose (𝜁, 𝑀,∗) be a complete FMS and ∆, 𝜎: 𝜁 → 𝜁 are mappings verifying the below 

circumstances: 

(1) 𝜎(𝜁) ⊆ ∆(𝜁), 

(2) there exists 𝑘 ∈ [0,1) such that, for all 𝜐 ∈ 𝜁, 

𝑀(𝜎(𝜔), 𝜎(𝜐), 𝑘𝜄 ) ≥ 𝑀(∆(𝜔), ∆(𝜐), 𝜄 ), 

(3) ∆ and 𝜎 are w-compatible. 
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Then, ∆ and 𝜎 have a unique-common FP in 𝜁. 

Proof:   By taking 𝑁 = 0 = 𝑂 (i.e., 𝑁 and 𝑂 are zero functions) and 𝑠 = 1 in Theorem 3.2, it is 

obvious. 

Example 3.1 Suppose 𝜁 = [0,1] and ∆: 𝜁 → 𝜁 be a self mapping on 𝜁 defined as ∆(𝜔) = 3𝜔, for all  

𝜔 ∈  𝜁. Define 𝑀, 𝑁, 𝑂: 𝜁2 × [0, +∞) → [0,1] by 

𝑀(𝜔, 𝜐, 𝜄) = {

𝜄

𝜄 + |𝜔 − 𝜐|2
,     if 𝜄 > 0,

0,                           if 𝜄 = 0,
 

𝑁(𝜔, 𝜐, 𝜄) = {

|𝜔 − 𝜐|2

𝜄 + |𝜔 − 𝜐|2
, if 𝜄 > 0,

1,                              if 𝜄 = 0,

 

and  

𝑂(𝜔, 𝜐, 𝜄) = {
|𝜔 − 𝜐|2

𝜄
,               if 𝜄 > 0,

1,                              if 𝜄 = 0.

 

It is clear that (𝜁, 𝑀, 𝑁, 𝑂,∗,∘, 𝑠) is a complete NbMS but not a NMS, where 𝑎 ∗ 𝑏 = min{𝑎, 𝑏} , 𝑎 ∘

𝑏 = max{𝑎, 𝑏}, and 𝑓𝑜𝑟 𝑎𝑙𝑙𝑎, 𝑏 ∈ [0,1]. Now, define 𝜎: 𝜁 → 𝜁 as 𝜎(𝜔) = 2𝜔, 𝑓𝑜𝑟 𝑎𝑙𝑙𝜔 ∈ 𝜁. It is obvious 

that 𝜎(𝜁) ⊆ ∆(𝜁) and ∆ and 𝜎 are weakly compatible. Then 

𝑀(𝜎(𝜔), 𝜎(𝜐), 𝑘𝜄) =
𝑘𝜄

𝑘𝜄 + |2𝜔 − 2𝜐|2
 

=
𝑘𝜄

𝑘𝜄 + 4|𝜔 − 𝜐|2
≥

𝜄

𝜄 + 9|𝜔 − 𝜐|2
= 𝑀(∆(𝜔), ∆(𝜐), 𝜄), 

𝑁(𝜎(𝜔), 𝜎(𝜐), 𝑘𝜄) =
|2𝜔 − 2𝜐|2

𝑘𝜄 + |2𝜔 − 2𝜐|2
. 

=
4|2𝜔 − 2𝜐|2

𝑘𝜄 + 4|𝜔 − 𝜐|2
≤

9|𝜔 − 𝜐|2

𝜄 + 9|𝜔 − 𝜐|2
= 𝑁(∆(𝜔), ∆(𝜐), 𝜄) 

and 

𝑂(𝜎(𝜔), 𝜎(𝜐), 𝑘𝜄) =
|2𝜔 − 2𝜐|2

𝑘𝜄
 

=
4|2𝜔 − 2𝜐|2

𝑘𝜄 +
≤

9|𝜔 − 𝜐|2

𝜄
= 𝑂(∆(𝜔), ∆(𝜐), 𝜄). 

Thus, all the circumstances of Theorem 3.2 are fulfilled for 𝑘 = [0,
1

4
). That is, ∆ and 𝜎 have a unique 

common FP 0. As we can see that the behavior of contractions in figure 4, figure 5 and figure 6. 

Also, it is easy to see in figure 7 that 0 is unique common FP.  
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Figure 4 shows the graphical behavior of the contraction mapping 𝑀(𝜎(𝜔), 𝜎(𝜐), 𝑘𝜄) ≥

𝑀(∆(𝜔), ∆(𝜐), 𝜄) for 𝑘 =
1

10
 and 𝜄 = 1. 

 

Figure 5 shows the graphical behavior of the contraction mapping 𝑁(𝜎(𝜔), 𝜎(𝜐), 𝑘𝜄) ≤

𝑁(∆(𝜔), ∆(𝜐), 𝜄) for 𝑘 =
1

10
 and 𝜄 = 1. 
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Figure 6 shows the graphical behavior of the contraction mapping 𝑂(𝜎(𝜔), 𝜎(𝜐), 𝑘𝜄) ≤

𝑂(∆(𝜔), ∆(𝜐), 𝜄) for 𝑘 =
1

10
 and 𝜄 = 1. 

 

Figure 7 shows that 0 is a common FP, i.e., 0 = ∆(0) = 𝜎(0). 
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4. APPLICATION 

Now, we will establish an application to show the validity of Theorem 3.1. 

Theorem 4.1 Suppose continuous mappings 𝐹, 𝐺: ℝ × 𝐼 → ℝ and 𝑄: ℝ → ℝ such that  

𝐺(𝜔, 𝜎) = 𝐹(𝜔, 𝜎) + 𝑄(𝜔), 

where, 

 𝐼 = {𝜎 ∈ ℝ; 𝑎 ≤ 𝜎 ≤ 𝑏, 𝑎, 𝑏 ∈ ℝ}. 

Suppose 𝐶(𝐼) be the collection of all continuous functions defined from 𝐼 into ℝ. Assume that, for 

each 𝜔 ∈ 𝐶(𝐼),  there exist 𝜐 ∈ 𝐶(𝐼) such that (𝑄𝜐)(𝜎) = 𝐺(𝜔(𝜎), 𝜎) and {𝑄𝜔: 𝜔 ∈ 𝐶(𝐼)} is complete. 

If there exist 𝑘 ∈ [0,1] such that 𝑧, for all 𝜔1, 𝜔2 ∈ 𝐶(𝐼) and 𝜎 ∈ 𝐼, then the equation, 𝐹(𝜔, 𝜎) = 0, 

defines a continuous function 𝜔 in terms of 𝜎. 

Proof: Suppose 𝜁 = 𝑌 = 𝐶(𝐼). Define 𝑀, 𝑁, 𝑂: 𝜁2 × [0, +∞) → [0,1] as 

𝑀𝜔(𝜔, 𝜐, 𝜄) = {

𝜄

𝜄 + max𝜎∈𝐼|𝜔(𝜎) − 𝜐(𝜎)|
,     if 𝜄 > 0,

0,                                                    if 𝜄 = 0,
 

𝑁𝜔(𝜔, 𝜐, 𝜄) = {

max𝜎∈𝐼|𝜔(𝜎) − 𝜐(𝜎)|

𝜄 + max𝜎∈𝐼|𝜔(𝜎) − 𝜐(𝜎)|
,     if 𝜄 > 0,

1,                                                    if 𝜄 = 0,

 

and  

𝑂𝜔(𝜔, 𝜐, 𝜄) = {
max𝜎∈𝐼|𝜔(𝜎) − 𝜐(𝜎)|

𝜄
,             if 𝜄 > 0,

1,                                                    if 𝜄 = 0.
 

Define a mapping 𝜎: 𝜁 → 𝜁 as follows: 𝜎(𝜔(𝜎)) = 𝐺(𝜔(𝜎), 𝜎). Then, by assumption, 𝑄(𝜁) =

{𝑄𝜔: 𝜔 ∈ 𝜁} is complete.  Let 𝜔∗ ∈ 𝜎(𝜁); then, 𝜔∗ = 𝜎𝜔 for 𝜔 ∈ 𝜁 and 𝜔∗(𝜎) = 𝜎𝜔(𝜎) =

 𝐺(𝜔(𝜎), 𝜎). By assumptions, there exists 𝜐 ∈ 𝜁 such that 𝜎𝜔(𝜎) =  𝐺(𝜔(𝜎), 𝜎) = 𝑄𝜐(𝜎). Hence, 

𝜎(𝜁)⊆ 𝑄(𝜁). Since  

|(𝜎 𝜔)(𝜎) − (𝜎 𝜐)(𝜎)| = |𝐺(𝜔(𝜎), 𝜎) − 𝐺(𝜐(𝜎), 𝜎)| 

≤ k|(𝑄𝜔)(𝜎) − (𝑄𝜐)(𝜎)| 

≤ 𝑘(max𝜎∈𝐼|((𝑄𝜔)(𝜎) − (𝑄𝜐)(𝜎))|). 

That is, 

max𝜎∈𝐼|(𝜎𝜔)(𝜎) − (𝜎𝜐)(𝜎)| ≤ 𝑘(max𝜎∈𝐼 |(𝑄𝜔)(𝜎) − (𝑄𝜐)(𝜎)|) 

⇒
max𝜎∈𝐼|(𝜎𝜔)(𝜎) − (𝜎𝜐)(𝜎)|

𝑘𝜄
≤

(max𝜎∈𝐼 |(𝑄𝜔)(𝜎) − (𝑄𝜐)(𝜎)|)

𝜄
 

⇒
𝑘𝜄

max𝜎∈𝐼|(𝜎𝜔)(𝜎) − (𝜎𝜐)(𝜎)|
≥

𝜄

(max𝜎∈𝐼 |(𝑄𝜔)(𝜎) − (𝑄𝜐)(𝜎)|)
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⇒
𝑘𝜄

𝑘𝜄 + max𝜎∈𝐼|(𝜎𝜔)(𝜎) − (𝜎𝜐)(𝜎)|
≥

𝜄

𝜄 + (max𝜎∈𝐼 |(𝑄𝜔)(𝜎) − (𝑄𝜐)(𝜎)|)
 

⇒ 𝑀(𝜎𝜔, 𝜎𝜐, 𝑘𝜄) ≥ 𝑀(𝑄𝜔, 𝑄𝜐, 𝜄). 

Also,  

max𝜎∈𝐼|(𝜎𝜔)(𝜎) − (𝜎𝜐)(𝜎)|

𝑘𝜄
≤

(max𝜎∈𝐼 |(𝑄𝜔)(𝜎) − (𝑄𝜐)(𝜎)|)

𝜄
 

⇒
max𝜎∈𝐼|(𝜎𝜔)(𝜎) − (𝜎𝜐)(𝜎)|

𝑘𝜄 + max𝜎∈𝐼|(𝜎𝜔)(𝜎) − (𝜎𝜐)(𝜎)|
≤

(max𝜎∈𝐼 |(𝑄𝜔)(𝜎) − (𝑄𝜐)(𝜎)|)

𝜄 + (max𝜎∈𝐼 |(𝑄𝜔)(𝜎) − (𝑄𝜐)(𝜎)|)
  

⇒ 𝑁(𝜎𝜔, 𝜎𝜐, 𝑘𝜄) ≤ 𝑁(𝑄𝜔, 𝑄𝜐, 𝜄). 

and  

max𝜎∈𝐼|(𝜎𝜔)(𝜎) − (𝜎𝜐)(𝜎)|

𝑘𝜄
≤

(max𝜎∈𝐼 |(𝑄𝜔)(𝜎) − (𝑄𝜐)(𝜎)|)

𝜄
 

⇒ 𝑂(𝜎𝜔, 𝜎𝜐, 𝑘𝜄) ≤ 𝑂(𝑄𝜔, 𝑄𝜐, 𝜄). 

Therefore, all the circumstances of Theorem 3.1 are fulfilled to get a continuous function 𝑧: 𝐼 → ℝ 

such that 𝜎𝑧 = 𝑄𝑧. Then,  

𝐺(𝑧(𝜎), 𝜎) − 𝑄(𝑧(𝜎)) = 0, 

where 𝑧 will be a solution of the equation 𝐹(𝑧, 𝜎) = 0. 

Example 4.1 If, we let an implicit form 𝐹(𝜔, 𝜎) = 10𝜔5(𝜎 − 1) + 𝜎, then by assumptions 𝐺(𝜔, 𝜎) =

10𝜔5(𝜎 − 1) + 𝜎 + 90𝜔5 and 𝑄(𝜔(𝜎)) = 90𝜔5 in Theorem 4.1, we deduce the explicit 

representation as 𝜔 = √[5]  𝜎 10⁄ (1 − 𝜎). 

Suppose the implicit equation, 

𝜎 + sin(8𝜔5𝜎) − 𝜔5 = 0, 

in the space 𝐶 ([−
1

9
, 𝜄

1

9
]). Let  

𝐹(𝜔, 𝜎) = 𝜎 + sin(8𝜔5𝜎) − 𝜔5, 

𝑄(𝜔) = 5𝜔5 − 5, 

where 𝐹: ℝ × 𝐶 ([−
1

9
, 𝜄

1

9
]) → ℝ and 𝑄: ℝ → ℝ.  Let  

𝐺(𝜔, 𝜎) = 𝜎 + sin(8𝜔5𝜎) + 4𝜔5 − 5. 

Here, 𝑄(𝜔) = 5𝜔5 − 5 implies that 𝑄(ℝ) = ℝ. Now,  

|𝜎𝜔1 − 𝜎𝜔2| = |𝐺(𝜔1, 𝜎) − 𝐺(𝜔2, 𝜎)| = |𝜎 + sin(8𝜔1
5𝜎) + 4𝜔1

5 − 5 − 𝜎 − sin(8𝜔2
5𝜎) − 4𝜔2

5 + 5| 

≤ sin(8𝜔1
5𝜎) − sin(8𝜔2

5𝜎) + 4𝜔1
5 − 4𝜔2

5 

≤ |sin(8𝜔1
5𝜎) − sin(8𝜔2

5𝜎)| + |4𝜔1
5 − 4𝜔2

5| 

≤ 8|𝜎|𝜔1
5 − 𝜔2

5|𝜔1
5 − 𝜔2

5| 
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≤
44

45
|5𝜔1

5 − 5 − 𝜔2
5 + 5|. 

Therefore, all the circumstances of Theorem 4.1 are fulfilled to apply Theorem 3.1, choose an initial 

guess 𝜔0(𝜎) = 0,  

𝜎(𝜔0(𝜎)) = 𝐺(𝜔0(𝜎), 𝜎) = 𝜎 − 5 = 𝑄(𝜔1(𝜎)) = 5𝜔1
5 − 5. 

This shows that  𝜔1(𝜎) = √[5] 𝜎 5.⁄  

𝜎(𝜔1(𝜎)) = 𝐺(𝜔1(𝜎), 𝜎) = 𝜎 + sin(8𝜔1
5𝜎) + 5𝜔1

5 − 5 

=  𝜎 + sin (8
𝜎2

5
) + 4 (

𝜎

5
) − 5 

𝑄(𝜔) = 𝜎 + sin (8
𝜎2

5
) + 4 (

𝜎

5
) − 5, 

5𝜔2
5(𝜎) = 𝜎 + sin (8

𝜎2

5
) + 4 (

𝜎

5
) − 5, 

⇒ 𝜔(𝜎) = √𝜎 + sin (8
𝜎2

5
) + 4 (

𝜎

5
) − 5

5

5

 

𝜎(𝜔2(𝜎)) = 𝐺(𝑤2(𝜎), 𝜎) = 𝜎 + sin(8𝜔1
5𝜎) + 5𝜔1

5 − 5, 

𝑄(𝜔3) = 𝜎 + sin 8 (
𝜎 + sin8 (

𝜎2

5
) + 9 (

𝜎2

5
) − 5

5
) + 4 (

𝜎 + sin8 (
𝜎2

5
) + 9 (

𝜎2

5
) − 5

5
) − 5, 

⇒ 𝜔3 = √
𝜎 + sin 8 (𝜎 + sin8 (

𝜎2

5
) + 9 (

𝜎2

5
) − 5 5⁄ ) + 4 (𝜎 + sin8 (

𝜎2

5
) + 9 (

𝜎

5
) − 5) 5⁄

5

5

 

approximates the explicit form of 𝐹(𝜔, 𝜎).  

 

5. CONCLUSION 

In this manuscript, we established the notion of NbMS that generalized the notions of fuzzy b-metric 

space, IFbMS and NMS. We provided numerous non-trivial examples and their graphical views via 

computational techniques. Also, we derived several coincident points and common fixed-point results 

for contraction mappings in the context of NbMS, as well, we presented a graphical view of defined 

contractions. At the end, we provided a novel application to support the validity of our main result. 
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