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Abstract. In an almost distributive lattice (ADL), the idea of E-ideals is introduced, and their properties
are discussed. In terms of a congruence, an equivalence is established between the minimal prime E-
ideals of an ADL and its quotient ADL. Finally, topological investigations are performed on prime

E-ideals and minimal prime E-ideals.

1. Introduction

In the article by Swamy and Rao [9], the concept of an Almost Distributive Lattice (ADL) was
introduced as a generalization of Boolean algebras and distributive lattices. This allowed for the
abstraction of various ring-theoretic generalizations. They also introduced the notion of an ideal in an
ADL, noting that the set of principal ideals in an ADL forms a distributive lattice. This extension of
lattice theory notions to ADLs was significant.

The concept of normal lattices was initially introduced by Cornish [2]. Later, Rao and Ravi Kumar
presented the concept of a minimal prime ideal belonging to an ideal in an ADL [6]. In another

paper by Rao and Ravi Kumar [7], the notion of a normal ADL was defined, providing equivalent

Received: Jun. 7, 2023.

2020 Mathematics Subject Classification. 06D99, 06D15.
Key words and phrases. almost distributive lattice(ADL); prime filter; E-ideal; E-normal ADL; congruence; compact;

Hausdorff space; closure.

https://doi.org/10.28924 /2291-8639-21-2023-85 © 2023 the author(s).
ISSN: 2291-8639


https://doi.org/10.28924/2291-8639-21-2023-85

2 Int. J. Anal. Appl. (2023), 21:85

conditions for an ADL to be considered normal in terms of its annulets. These papers contributed to
the understanding of ADLs and their properties.

The study of D-filters in lattices and their properties was carried out by Kumar et al. [4]. They
investigated the properties of D-filters in lattices, providing valuable insights.

In the same line of research, we investigated the notions of prime E-ideals and E-ideals in an ADL.
The properties of these ideals are thoroughly examined, and it is established that every proper E-ideal
must satisfy a set of equivalent conditions to become a prime E-ideal. It is also proven that every
maximal E-ideal in an ADL is a prime E-ideal.

Furthermore, the paper introduces the concept of OF (M) as the intersection of all minimal prime
E-ideals contained in a prime E-ideal M in an ADL R. An ADL is defined as E-normal, characterized in
terms of relative dual annihilators with respect to an ideal E. An equivalence between the minimal prime
E-ideals of an ADL and its quotient ADL is derived with respect to a congruence. The topological
properties of the space of all prime E-ideals and the space of all minimal prime E-ideals in an ADL

are also investigated.

2. Preliminaries

In this section, we recall certain definitions and important results from [5] and [9], those will be

required in the text of the paper.

Definition 2.1. [9] An algebra R = (R, V, A\,0) of type (2,2,0) is called an Almost Distributive
Lattice (abbreviated as ADL), if it satisfies the following conditions:

(1) (avb)Ac=(anc)V(bAc)

(2) an(bvc)=(anb)Vv(anc)

(3) (avb)Ab=0b

(4) (avb)na=a

(5) av(anb)=a

(6) 0ANa=0

(7) av0=a, foralla,b,c € R.

Example 2.1. Every non-empty set X can be regarded as an ADL as follows. Let xg € X. Define the
binary operations V, A\ on X by

X If X# Xy y If x# X
y if x=Xxg Xo If X =Xp.

Then (X,V, A, xp) is an ADL (where xq is the zero) and is called a discrete ADL.

If (R,V,A,0)is an ADL, for any a, b € R, define a < b if and only if a = a A b (or equivalently,
aV b=Db), then < is a partial ordering on R.
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Theorem 2.1. [9] If (R, V,A,0) is an ADL, for any a, b, c € R, we have the following:

(1) avb=a<aAnb=b

(2) avb=bsanb=a

(3) A is associative in R

(4) anbAc=bANaANc

(5) (avb)Ac=(bVva)Ac

(6) av(bAnc)=(aVvb)A(aVc)

(7) an(avb)=a, (aAnb)vb=bandaVv (bNa)=a
(8) anha=aandaVva=a.

[t can be observed that an ADL R satisfies almost all the properties of a distributive lattice except
the right distributivity of vV over A, commutativity of vV, commutativity of A. Any one of these
properties make an ADL R a distributive lattice.

As usual, an element m € R is called maximal if it is a maximal element in the partially ordered set
(R, <). Thatis, for any a € R, m < a= m = a. The set of all maximal elements of an ADL R is
denoted by M.

As in distributive lattices [1,3], a non-empty subset / of an ADL R is called an ideal of Rif avb e |
and aAx €/ forany a,b € | and x € R. Also, a non-empty subset F of R is said to be a filter of R
fanbeFandxVaeF fora,be Fand x € R.

The set J(R) of all ideals of R is a bounded distributive lattice with least element {0} and greatest
element R under set inclusion in which, for any /, J € 3(R), I N Jis the infimum of / and J while the
supremum is given by I vV J:={aVv b|a€l, be J}. A proper ideal(filter) P of R is called a prime
ideal(filter) if, forany x,y € R, xAy € P(xVy € P) = x € Pory € P. A proper ideal(filter) M of R
is said to be maximal if it is not properly contained in any proper ideal(filter) of R. It can be observed
that every maximal ideal(filter) of R is a prime ideal(filter). Every proper ideal(filter) of R is contained
in z;maximal ideal(filter). For any subset S of R the smallest ideal containing S is given by (S] :=

{( \/ s)Ax|si€S xe€ Rand ne N} If S={s}, we write (s] instead of (S] and such an ideal is

=

called the principal ideal of R. Similarly, for any S C R, [S) := {x\/(/\ si)|si€S,x€ Randne N}
If S = {s}, we write [s) instead of [S) and such a filter is called the pr|nC|pa| filter of R.

For any a, b € R, it can be verified that (a] vV (b] = (aV b] and (a] A (b] = (a A b]. Hence the set
(3P1(R), v,N) of all principal ideals of R is a sublattice of the distributive lattice (J(R), V,N) of all
ideals of R. Also, we have that the set (F(R), VvV, N) of all filters of R is a bounded distributive lattice.

Theorem 2.2. [6] Let R be an ADL with maximal elements. Then P is a prime ideal of R if and only
if R\ P is a prime filter of R.

Definition 2.2. [5] An ADL R is said to be an associate ADL, if the operation V is associative on R.
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Definition 2.3. [8] For any nonempty subset A of an ADL R, define AT = {x € R | aV x is maximal,
for all a € A}. Here A is called the dual annihilator of A in R.

For any a € R, we have {a}* = (a]™, where (a] is the principal filter generated by a. An element
a of an ADL R is called dual dense element if (a]* = M and the set E of all dual dense elements in

an ADL R is an ideal if E is non-empty.

3. E-ideals of ADLs

In this section, we present the concepts of prime E-ideals and E-ideals in an Abstract Distributive
Lattice (ADL) and explore their properties. We observe that any proper E-ideal in an ADL can be
transformed into a prime E-ideal based on a set of equivalent conditions. Additionally, we establish
that the intersection of all minimal prime E-ideals contained in a prime E-ideal M is denoted as
OF(M). Furthermore, we introduce the notion of E-normal ADLs, which are characterized in relation
to the relative dual annihilators with respect to an ideal £. We establish an equivalence between the

minimal prime E-ideals of an ADL and its quotient ADL with respect to a congruence.
Definition 3.1. An ideal G of R is said to be an E-ideal of R if E C G.
Now we have the example of an E-ideal of an ADL.

Example 3.1. Let R=1{0,a,b,c,d, e, f, g} and define v, A on R as follows:

A0 b dlel|flg V|iO|lal|b|lc|d|el|fl|g
ojo|jolojo|o010|0]|0 Ol 0|al|b|c|d|el|fl|yg
alOla|blc|d|el|flg ala a alalala
b|O|a|b|lc|d|e|f]|g b|b|b|b|b|b|b|b|b
c|O0|lclc|c|0|0|c|O clclalblcla|b|f]|f
d|0|d|e|0|d|elgl|g d|d alal|d|d|a|d
el0|d|e|0|d|e|lgl|yg ele|b|b|b|le|le|b|e
flo|f|f|cl|g flg flflalb|fla|bl|f]|f
g|0|9]9|0|g 9gl9 glglal|b|fldle|f]|g

Then (R,V, A) is an ADL. Clearly, we have that E = {0, g} and G = {0, c, f, g} are ideals of R
satisfying E C G. Therefore G is an E-ideal of R. Consider an ideal H = {0, c} of R, but not an
E-ideal.

It is easy to verify the proof of the following result.

Lemma 3.1. For any non-empty subset A of an ADL R, (A]V E is the smallest E-ideal of R containing
A.
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We denote (A]V E by AE, ie., AF = (Al Vv E. For, A = {a}, we denote simply (a)f for {a}E.
Clearly, we have that (a)f is the smallest E-ideal containing a, which is known as the principal E-ideal

generated by a.

Lemma 3.2. For any two elements x, y of an ADL R with maximal element m, we have the following:

(1) (0F=E

(2) (mF =R

(3) x <y implies (x)E C (y)F
(4) (xVy)F =(x)FV(nE

(5) (xAy)F =()FNn()~

(6) (x)E =E ifand only ifx € E.

Proof. (1) Now (0)F = (0] vV E = E.

(2) Now (m)E = (mVE=RVE=R.

(3) Let x < y. Then (x] € (y]. Now (x)E = (x] V E C (y] V E = (y)E. Therefore (x)E C (y)E.

(4) Clearly, we have that (x Vy] = (x] V (y]. Now, (x Vy)E = (xVy]VE = (x]V (y]VE =

(XIVE)V((yIV E)) = (x)5 V (y)F. Therefore (x v y)& = (x)5 V (y)F.

(5) Since x Ay <y and y Ax < x and hence (x Ay] C (x] and (y Ax] C (y]. Since (xAy] = (y Ax],

we get that (x Ay] C (x]N(y]. Let t € (x]N(y]. Then t € (x] and t € (y]. That implies x At =1t

and y At =t. Therefore x Ay At =t and hence t € (x A y]. Thus (x] N (y] € (x A y], which gives

(xAyl = (xIN(y]. Now (xAy)E = (xAy]VE = [(XIN(WVIVE = (x]VE)N((V]IVE) = ()" N(y)~.

Hence (x A y)E = (x)E N (y)E.

(6) Assume that (x)E = E. Then (x] V E = E. That implies (x] € E and hence x € E. Conversely,

assume that x € E. Then (x] C E. This implies that (x] V E C E. Since E C (x] V E, we get that
= (x] vV E. Therefore (x)E = E. O

We denote J(R), 35 (R)and J7EF(R) as the set of all ideals, E-ideals and principal E-ideals of an
ADL R respectively.

Theorem 3.1. J5(R) forms a distributive lattice contained in 3(R), and 37EF (R) forms a sublattice
of IE(R).

Definition 3.2. An E-ideal Q is said to be proper if @ C R. A proper E-ideal Q is said to be maximal
if it is not properly contained in any proper E-ideal of R. A proper E-ideal Q of an ADL R is said to
be a prime E-ideal if Q is a prime filter of R.
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Example 3.2. Consider a distributive lattice L = {0, a, b, ¢, 1} and discrete ADL A= {0/, a'}.

Clearly,
R =AxL = {(0,0),(0,a),(0,b),(0,c),(0,1),(d,0),(a,a),(a, b)(a c)(a 1)} is an ADL
with zero element (0,0"). Clearly, the dense set E = {(0',0), (0, a)}. Consider the E-ideals:
={(0,0), (0", a). (0", b)}
l2 ={(0,0),(0",a), (0", )}
I3 ={(0,0),(0",a),(4',0), (', a)}
la ={(0,0),(0",a), (0", ¢), (&', 0). (', a)(a", ©)}
Is = {(0",0), (0", a), (0", b),(a,0),(d", a), (', b)}
le ={(0",0), (0", a), (0", b), (0", ), (0, 1)}
Clearly, l4, Is and lg are prime E-ideal. But |1 is not a prime E-ideal, because (a’, b)A(0', ¢) = (0, a) €
Iy, but (a',b) ¢ I1. and (0',c) ¢ I1. And also, I is not a prime E-ideal, because (0',b) A (d',¢c) =
(0, a) € I, but (0',b) ¢ I, and (', ¢c) & I».

Theorem 3.2. For any E-ideal Q of R, the following conditions are equivalent:

(1) Q is a prime E-ideal
(2) for any two E-ideals G,H of RGNHCQR=GCQRQorHCQ
(3) foranyx,y e R,(X)EN(Y)FCQ=x€QoryeQqQ.

Proof. (1) = (2) Assume (1). Let G and H be two E-ideals of R such that GNH C @. We prove that
GCQor HCQ. Suppose G € Q and HZ Q. Choose x,y € Rsuchthat x € G\ Q and y € H\ Q.
By our assumption we have that x Ay ¢ Q. Since x € G,y € H, which gives x Ay € GNH C Q.
Therefore x Ay € Q, we get a contradiction. Thus G CQ or H C Q.

(2) = (3) Assume (2). Let x,y € R with (x)E N (¥)E C Q. Since (x)£ and (y)F are E-ideals of R,
and by our assumption, we get that (x)E C Q or (y)f C Q. Hence x € Q or y € Q.

(3) = (1) Assume (3). Let x, y € Rwith xAy € Q. Since Q is an E-ideal, we have that (x)EN(y)f =
(x Ay)E C Q. By our assumption, we get that x € Q or y € Q. Hence Q is prime. O

Theorem 3.3. Every maximal E-ideal of an ADL R is a prime E-ideal.
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Proof. Let N be a maximal E-ideal of R. Let a,b € R with a¢ N and b ¢ N. Then NV (a)f = R
and NV (b)E = R. That implies R = NV ((a)En(b)E) =NV (anb)E. Ifanbe Nthen N =R,

we get a contradiction. Therefore aA b ¢ N and hence N is prime. [l

n

Corollary 3.1. Let Ny, N>, N3, ..., N, and N be maximal E-ideals of an ADL R with (| N; C N, then
i=1

N; € N, for somej € {1,2,3,..., n}.

Theorem 3.4. A proper E-ideal Q of an ADL R is a prime E-ideal if and only if R\ Q is a prime filter
such that (R\ Q)N E = 0.

Proof. Assume that Q is a prime E-ideal of R. Clearly, R\ Q is a prime filter of R. We prove that
(R\Q)NE=0.I1f (R\Q)NE # ), choose x € (R\ Q)N E. That implies x € E C Q, which gives a
contradiction. Hence (R\ Q) N E = ). Conversely, assume that R\ Q is a prime filter of R such that
(R\ Q)N E = 1. Clearly, Q is a prime ideal of R and E C R\ (R\ Q) = Q. Therefore Q is a prime
E-ideal of R. O

Theorem 3.5. Let G be a E-ideal of an ADL R, and K be any non-empty subset of R, which is closed
under the operation A such that G N K = (). Then there exists a prime E-ideal Q of R containing G
such that Q N K = (.

Proof. Let K be a non-empty subset of R, which is closed under the operation A such that GNK = 0.
Consider § = {H | His an E—ideal of R,G C H and HNK = (}. Clearly, it satisfies the hypothesis of
the Zorn’s lemma and hence § has a maximal element say Q. That is, Q is an E-ideal of R such that
GCQRand QNK =0. Let x, y € R be such that xAy € Q. We prove that x € Q or y € Q. Suppose
that x ¢ Q and y ¢ Q. Then clearly Qv (x)F and Q V (y)F are E-ideals of R such that Q C QV (x)E
and Q € QV (y)E. Since Q is maximal in §, we get that (QV (X)E)NK # 0 and (QV (y)E)NK # 0.
Choose s € (QV (x)E)nK and t € (QV (¥)E)N K. Then s € (QV (x)E),t € (QV (y)F) and
s,t € K. Since K is closed under A, we get sAt € K. Now sAt ={QV (x)E}n{QV (y)F} =
QV{X)EN(EY=QV (xAy)E. Since xAy € Q, we get that sAt € Q. Since sAt € K, we get
that s A t € QN K, which is a contradiction to Q N K = (). Therefore either x € Q or y € Q. Thus Q
is a prime E-ideal of R. O

Corollary 3.2. For any E-ideal G of an ADL R with x ¢ G, there exists a prime E-ideal @ of R such
that G C Q and x ¢ Q.

Corollary 3.3. For any E-ideal G of an ADL R, G = ({Q | Q is a prime E — ideal of R and G C Q}.
Corollary 3.4. E is the intersection of all prime E-ideals of R.

Proof. Let Q be any prime E-ideal of R. Clearly, we have that £ C (| Q. Let @ be any prime E-ideal
of an ADL R and x € [ Q. Suppose x ¢ E. Then there exists prime filter N such that x € N and
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NN E = (. That implies x ¢ R\ N and E C R\ N. Therefore R\ N is a prime E-ideal of R and
x ¢ R\ N, which is a contradiction. Therefore x € E and hence (1Q C E. Thus E =[Q. O

Theorem 3.6. /n an ADL the following are equivalent:
(1) Every proper E-ideal is prime
(2) 35(R) is a chain
(3) 3PEF(R) is a chain.

Proof. (1) = (2) Assume (1). Clearly (J(R), C) is a poset. Let S and T be two proper E-ideals of
R. By (1), we have that SN T is a prime E-ideal of R. Since SNT CSNT,weget SCSNTCT
or TCSNT CS. Hence 35(R) is a chain.

(2) = (3) It is obvious.

(3) = (1) Assume that (3). Let G be a proper E-ideal of R. We prove that G is prime. Let x,y € R
such that (x)5 N (y)E C G. By our assumption, we get that (x)E C (y)f or (y)F C (x)E. That
implies x € (x)E = (X)EN(y)E CGorye (y)E =(x)EN(y)E CG. Therefore G is a prime E-ideal
of R. O

Now we introduce the concept of a relative dual annihilator in the following definition.

Definition 3.3. For any nonempty subset S of R, define (S,E) ={a€ R|sAhac E, forall se S}.

We call this set as relative dual annihilator of S with respect to the ideal E.
For S = {s}, we denote ({s}, E) by (s, E).

Lemma 3.3. /fS, T are nonempty subsets of an ADL R, then we have the following:

(1) (R.E)=E=(ME)
(2) (E.E)=R
(3) EC (S E)
(4) (S, E) is a E-ideal of R
(5) SCE ifandonly if (S E)=R
(6) ifSCT, then(T,E)C(S,E) and ((S,E),E) C((T,E), E)
(7) SC((S.E).E)
(8) (((S.E).E).E)=(S,E)
(9) (5. E)=([5). E)

(10) N (5. E)=( U SiE)

JISTAN JISTAN

(11) (S,E) S (SNT,(T,E))

(12) ifSCT, then (S,(T,E)) = (S, E)

(13) (SUT,E)C (S, (T,E))C(SNT,E)

(14) (S, (S,E))=(S,E).
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Proof. (1) Let x € (R, E). Then aA x € E, for all a € R. That implies x A x € E. So that x € E.
Hence (R, E) C E. Let x € E. Then aAx € E, foralla € R. Thus x € (R, E). Therefore E C (R, E)
and hence (R, E) = E. Clearly, we have that (M, E) = E.
(2) Let x € E. Then x Aa € E, for all a € R. Since x Aa € E, forall x € E, we get that
a€ (E,E), forall ae R. Therefore R C (E, E) and hence R = (E, E).
(3) Let x € E. Then y Ax € E, forally € R. Then aAx € E, forall a € S C R. That implies
x € (S, E). Therefore E C (S, E).
(4) Leta,be (S,E). ThensAa,sAbe E, foralls € S. This implies (sAa)V (sAb) € E. Therefore
sN(avb)e E.Henceavbe (S E) Letae (S E)and be Rwith b<a. ThensAae E and
sAb<sAa, forallseS. SincesAaecE and E is an ideal, we get sA b € E. Hence b € (S, E),
forall s € S. Thus (S, E) is an ideal of R. Since E C (S, E), we get that (S, E) is an E-ideal of R.
(5) Suppose (S,E) = R. Let me M. Then m € (S, E). That impliesa=mAae€ E, forall a € S.
Hence a € E, for all a € S. Therefore S C E. Conversely, assume that S C E. Let x € R. Since E is
an ideal, we get aAx € E, for alla€ S C E. Hence x € (S, E). Therefore (S, E) = R.
(6) Suppose SC T.Letae (T,E). Thenthae€ E, forallt € T.Since S C T, we get that sha € E,
for all s € S. That implies a € (S, E). Therefore (T, E) C (S, E) and hence ((S,E),E) C ((T,E), E).
(7) Let x € (S,E). Then sAx € E, for all s € S. That implies x A's € E, for all x € (S, E). That
implies s € ((S,E),E), foralls€ S. Thus S C ((S,E), E).
(8) By (7), we have that (((S,E),E),E) C (S,E). Let x ¢ (((S,E), E), E). Then there exists an
element a ¢ ((S,E), E) such that aA x ¢ E. Since S C ((S,E), E), we have that a ¢ S. So that
aAx ¢ E and s ¢ S. Therefore x ¢ (S, E), it concludes that (S, E) C (((S,E),E),E). Thus
(((S.E).E).E) = (S.E).
(9) Since S C (S], we get that ((S],E) C (S, E). Let x € (S,E). Then aAx € E, forallae S C (S].
That implies x € ((S], E). Therefore (S, E) C ((S], E). Therefore (S, E) C ((S], E). Hence (S, E) =
((S]. E).
(10) Since S; € U Si, for all i € A, we get that (J S;, E) C (S;, E), for all i € A. That implies
(U SiLE)C ﬂle(é,-, E).Letx € (S, E). Then ;EGA(S,-, E), forall i € A. That implies aAx € E,
ien TN €A
foralla€ S; CJS;. That implies () (Si, E) € ( U Si, E). Therefore N (S, E) = ( U Si. E).
N ien ien ien
(11) Since E is an ideal in R, we have that £ C (T, E) and hence we get that (S, E) C (S, (T, E)).
Since SNT C S, we get that (S,(T,E)) C(SNT,(T,E)). Therefore (S,E) C(SNT,(T,E)).
(12) Let S, T be two non empty subsets of R such that S C T. Since E C (T,E), we have
that (S,E) C (S,(T,E)). Let x € (5,(T,E)). Then aAnx € (T,E), for all a € S. That implies
aANx € (S E), forall a e S SinceaAx € (S,E), we get that sA(aAx) € E, foralls € S
and hence a A x € E, for all a € S. Therefore x € (S, E) and hence (S,(T,E)) C (S, E). Thus
(5(T,E))=(S E).
(13) Clearly, we have that (SUT,E) C (S,E) and E C (T,E). So that (S, E) C (S,(T,E)). Also
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SNT CS. Itfollows that (S, (T,E)) C(SNT,E). Therefore (SUT,E) C(S,(T,E)) C(SNT,E).
(14) It is clear by (12). O

Proposition 3.1. Let S and T be any two ideals of and ADL R. Then we have the following:

(1) (S E)N((S.E).E)=E
(2) (SVT.E)=(S.E)n(T.E)
(3) (SNT.E), E) < ((S E).E)n((T,E), E).

Proof. (1) We have that E C (S,E)N((S,E), E). Let x € (S,E)N((S,E),E). Then x € (S, E) and
x € ((S, E),E).Since x € ((S,E), E)), we have that aAx € E, for all a € (S, E). Since x € (S, E),
we get that x € E and hence (S,E)N((S,E),E) CE. Thus (S, E)N((S,E),E)=E.

(2) Clearly, SCSVTand TCSVT. Then (SVT),E)C(S,E)and ((SVT),E)C(T,E). That
implies (SVT),E) C(S,E)N(T,E). Let x € (S,E)N(T,E). Then x € (S,E) and x € (T, E).
That implies sAx € E, forallse€ Sand t Ax € E, for all t € T. That implies (sAx)V (tAx) € E
and have (sVt)Ax € E.SinceseSandteT,wegetsVteSVT. Therefore (sVt)Axe€E,
forallsvte SV T. That implies x € (SV T,E). Therefore (S,E)N(T,E) C(SVT,E). Hence
(S,SE)N(T,E)=(SVT,E).

(3)Since SNT CSand SNT CT,wegetthat (S,E)C(SNT,E)and (T,E) C(SNT,E). That
implies (SN T,E),E) C ((S,E),E) and ((SNT,E),E) C ((T,E),E). Hence ((SNT,E), E) C
((S,E),E)n((T,E), E). O

Theorem 3.7. For any non-empty subset S of an ADL R, (S, E) = () ((s], E).
ses

Proof. Let x € () ((s],E). Then x € ((s],E), for all s € S. That implies t A x € E, for all
seS
t € (s] and for all s € S. It follows that s A x € E for all s € S. Therefore x € (S, E). Hence

x € (((s],E) C(S,E). Let s be any element of S. Take t € (s]. Then sAt =t. Now, x € (S, E).
seSs

That implies sAx € E, foralls€ S. Sothat t Ax=tAsAx € E, forall t €(s] and forall s € S.

That implies x € ((s], E), for all s € S. Therefore x € [ ((s], E) and hence (S, E) € () ((s], E).
Thus (S, E) = ) ((s], E). < =g
seS

Corollary 3.5. Let x € R and S be arbitrary subset of R. Then (S, (x]) = ) (a, (x]).
aes

Corollary 3.6. For any x,y € R we have the following:
(1) (x].E) = (x. E)
(2) x<y=(.E)<S(x,E)
(3) (xVy, E)=(x,E)N(y. E)
(4) (xAy. E).E)=((x.E).E)n((y. E). E)
(5) (x,E)=R< x€E.
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Theorem 3.8. Let G be an E-ideal of an ADL R. Then
(1) GNn(G,E)=E
(2) (GV(G E)).E)=E.

Proof. (1) It is clear.

(2) Clearly, ((GV(G,E)),E) C(G,E)N((G,E),E). Letac (G,E)N((G,E),E). Let be GV (G, E).
Then b = cVv d, for some ¢ € G and d € (G, E). That implies aAc € E and aAd € E. Now
aANb=an(cvd)=(anc)V(and) e E, forall be GV (G, E). Therefore a € ((GV(G, E)), E) and
hence (G, E)N((G,E),E) C ((GV(G,E)),E). Thus E = (G, E)N((G,E),E) = ((GV(G,E)),E). O

Consider two ADLs R; and R> with zero elements 0 and 0’ respectively. Let M and M’ be denotes

the set of all maximal elements of ADLs Ry and R respectively.

Lemma 3.4. Let Ry and Ry be two ADLs with m € M and m" € M'. Then for any (x,y) € R1 X R»,
we have the following:

(1) )T =@ x(n)*

(2) (x,y)" = (m,m") if and only if (x)* = M and (y)* = M’

(3) (x.y). E) =(a, E) x (y, E).

Let £1 and E» be dual dense sets of Ry and R» respectively. From the above result, it can be
concluded that E = E; x E5 is a dual dense set of R1 X R». Further, every dual dense set of R1 x R»

is form the form E; x Es.

Theorem 3.9. Let M, be a prime E;—ideals of ADLs R;, for i = 1,2. Then M1 x R> and R1 x M>

are prime E-ideals of R1 x R».

Proof. Since E;1 C M; and E; C Mo, we get E1 X Eo C M; X Ry and E; x E» C Ry x Mo.
That implies M; x Ry and Ry x M, are E-ideals of Ry x R». Let (a,b),(c,d) € Ry x Ry with
(a,b) A (c,d) € My X Ry. Then aA ¢ € My. Since My is a prime Ej—ideal of Ry, we get a € M,
or ¢ € My. Thus (a,b) € My x Ry or (¢,d) € My x Ry. Therefore My x Ry is a prime E-ideal of

R1 X R». Similarly, we can prove that Ry x M> is also a prime E-ideal of R{ X R». [l

Theorem 3.10. Let Ry and R> be two ADLs with zero elements 0 and 0’ respectively. For any prime
E-ideal P of R1 X R>, P is of the form P; x Ry or R1 X P>, where P; is a prime E;,—ideal of R;, for
i=1,2.

Proof. Let P be a prime E-ideal of Ry x R,. Consider P, = m(P) = {x1 € Ry | (x1,x) €
P, for some xo € Ry} and P, = m(P) = {xx € Ry | (x1,x) € P, for some x; € R1}. It is easy
to verify that P is E;—ideals of R;, for i = 1,2. We first show that P; is prime E;—ideals of R;, for
i =1,2. Suppose P, = Ry and P, = R». Let (a,b) € Ry X R>. Then there exist x € Ry and y € R»
such that (a,y) € P and (x, b) € P. Since (a,0")A(a,y) € P and (0, b)A(x, b) € P, we get (a,0") € P



12 Int. J. Anal. Appl. (2023), 21:85

and (0, b) € P. Therefore (a, b) = (a,0") v (0, b) € P. Hence P = Ry x R, which is a contradiction
to that P is proper. Next suppose that P, # Ry and P> # R». Choose a € R1\ P and b € Ry \ P>.
Then (a,y) ¢ P forall y € Ry and (x, b) ¢ Py for all x € Ry. In particular, (a,0") ¢ P and (0, b) ¢ P.
Since P is prime, we get (0,0') ¢ P, which is a contradiction. From the above observations, we get
that either L =R; and P, # Ry or P # Ry and P, = R».

Case (i): Suppose P, = Ry and P> # R». Let x2, o € R» be such that xo Ay, € P>. Then there exists
a € Ry = Py such that (a, xaAy2) € P. Therefore (a, x2)A(a,y2) = (ana, (xoAyz)) = (a, x2Ay2) € P.
Since P is prime, we get (a,x2) € P or (a,y»2) € P. Hence xo € P> or y» € P>. Therefore P is a prime
E>—ideal of R>. We now show that P = Ry x . Clearly P C Ry x P. On the other hand, suppose
(a,y) € Ry X P>. Since P = Ry, there exists b € R, such that (a, b) € P and there exists x € R
such that (x,y) € P. Since (a,0")A(a, b) = (a,0") and (0, y) A (x,y) = (0, y), we get (a,0") € P and
(0,y) € P. Since P is an ideal, it gives (a,y) = (a,0') V (0,y) € P. Hence Ry x P> C P. Therefore
P=RyxPs.

Case (ii): Suppose P; # Ry and P> = R,. Similarly, we can prove that Py is prime Ej—ideal of Ry
and P =P} x R». O

Theorem 3.11. Let S be a sub ADL of an ADL R and P is a prime E-ideal of S. Then there exists
a prime E-ideal Q of R such that QNS = P.

Proof. Let P be a prime E-ideal of S. Then S\ P is a prime filter of S. Consider /| = (P]. Then
P CInNS. Suppose IN(S\P)#®. Choose x € IN(S\ P). Then x € | and x € (S \ P). Since
x €1 =(P], there exists a1 VaxV...Va, € Psuchthat x=yA(aiVaV...Va,). Since Pis an
ideal of S, we get a1 Vax V...V a, € Pandhence x € P. Since x € (S\ P), we get a contradiction.
Hence IN(S\ P) = (). Then there exists a prime E-ideal Q of R such that / C Q and QN (S\ P) = 0.
Since | CQ,weget I NSCENS. Since QN (S\ P) =10, we get Q C P. Hence, both observations
leadto PCINSCRNSCPNSCP Therefore P=QNS. O

Now, we have the following definition.

Definition 3.4. A prime E-ideal M of an ADL R containing an E-ideal G is said to be a minimal prime
E-ideal belonging to G if there exists no prime E-ideal N such that G C N C M.

Note that if we take E = G in the above definition then we say that M is a minimal prime E-ideal.

Example 3.3. From the Example 3.2, we have that lg is a prime E-ideal and |1 is a E-ideal of R.
Clearly I1 C lg. Clearly there is no E-ideal N of R such that I1 C N C lg. Hence lg is a minimal prime
E-ideal belonging to I;.

Proposition 3.2. Let G be an E-ideal and M, a prime E-ideal of R with G C M. Then M is a minimal
prime E-ideal belonging to G if and only if R\ M is a maximal filter with (R\ M) NG = ().
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Proof. Clearly, R\ M is a proper filter and we have (R\ M)NG = (. We prove that R\ M is maximal.
Let N be any proper filter of R such that NN G =@ and R\ M C N. Then G C R\ N C M. By
the minimality of M, we get R\ N = M. Therefore R\ M is a maximal filter with respect to the
property (R\ M) N G = (). Conversely, assume that R \ M be a maximal filter with respect to the
property (R\ M) N G = (). We prove that M is minimal. If N is any prime E-ideal of R such that
ECGCNCM. Clearly, R\ N is a filter such that R\ M C R\ N and (R\ N)NG =0, which is a

contradiction. Therefore M is a minimal prime E-ideal belonging to G. [l

Theorem 3.12. [et G be an E-ideal and M, a prime E-ideal of R with G C M. Then M is a minimal
prime E-ideal belonging to G if and only if for any a € M, there exists b ¢ M such that aANb € G.

Proof. Assume that M is a minimal prime E-ideal belonging to G. Then R\ M is a maximal filter
with respect to the property that (R\ M) NG = (). Let a € M. Then a ¢ R\ M. That implies
R\ M C (R\ M)V [a). By the maximality of R\ M, we get that ((R\ M) Vv [a)) NG # 0. Choose
s € ((R\M)V[a)) NG. Then there exists b € R\ M such that s = bA a and s € G. Therefore
b A a€ G. Conversely, assume that for any a € M, there exists b ¢ M such that a A b € G. Suppose
M is not a minimal prime E-ideal belonging to G. Then there exists a prime E-ideal N of R such that
ECGCNC M. Choose a € M\ N. Then, by the our assumption, there exists b ¢ M such that
aNnbe G CN. Since aé¢ N, we get that b € N C M, which is a contradiction. Therefore M is a

minimal prime E-ideal belonging to G. [l

Corollary 3.7. A prime E-ideal M of an ADL R is minimal if and only if for any a € M there exists
b ¢ M such thatanb € E.

Definition 3.5. For any prime E-ideal M of R, define the set OF (M) as follows:
OF(M)={xe R |xe(y E), forsomey ¢ M}.

Clearly, observe that OF(M) = |J (v, E).
yEM

Lemma 3.5. Let M be prime E-ideal of an ADL R. Then OF(M) is an E-ideal such that OF (M) is

contained in M.

Proof. Let a, b € OF(M). There exist elements s ¢ M and t ¢ M such that a € (s, E) and b € (¢, E).
That implies ((s,E), E) C (a,E) and ((t,E),E) C (b,E). So that ((sAt,E),E) = ((s,E),E)n
((t,E),E) C (a,E)N(b,E) =(aV b E). Hence avb e ((aVbE)E)C(((sAnt E)E)E)=
(sAt E). Since sAt ¢ M, we get that aVv b € OF(M). Let a € OF(M) and b < a. There exists
s & M such that a € (s, E). Since (s, E) is an ideal, we get that b € (s, E). Therefore b € OF (M)
and hence OF(M) is an ideal of R. Clearly, we have that E C OF(M). Thus OF (M) is an E-ideal
of R. Let a € OF(M). Then there exists s ¢ M such that a € (s, E). That implies aAs € E C M.
Since M is prime, we get that a € M. Hence OF(M) C M. 0
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Corollary 3.8. For any prime E-ideal M of R, M is minimal if and only if OF (M) = M.
Theorem 3.13. Every minimal prime E-ideal of R belonging to O (M) is contained in M.

Proof. Let N be any minimal prime E-ideal belonging to OF(M). We prove that N € M. Suppose
N ¢ M. Choose a € N\ M. Then there exists b ¢ N such that aA b € OF(M). Hence aA b € (s, E),
for some s ¢ M. That implies bA (aAs) € EC M. Since a¢ M,s ¢ M, and M is prime, we get
aAs¢ M. Therefore b € OF(M) C N, which is a contradiction. Hence N C M. O

Theorem 3.14. For any prime E-ideal M of an ADL R, OF(M) is the intersection of all minimal

prime E-ideals contained in M.

Proof. Let M be a prime E-ideal of R. By Zorn’s lemma, M contains a minimal prime E-ideal. Let
{Sa}aen be the set of all minimal prime E-ideals contained in M. Let x € OF(M). Then x € (a, E),
for some a ¢ M. Since each So C M, we have that a ¢ S, for all @ €A . Since xANa€ E C S4 and

a¢ Sy, forall a €A, we get x € S, for all @ €A. Hence x € () S,. Therefore OF (M) C ) Sa.
acAh ach

Let x ¢ OF(M). Consider S = (R\ M) V [x). Suppose ENS # (. Choose a € ENS. Since a € S,
we get a =t A x, for some t € R\ M. Since a € E, we get that t A x € E. Hence x € (t, E), where
t ¢ M. Thus x € OF (M), which is a contradiction. Therefore SN E = (). Let M be a maximal filter
such that SC M and MNE = (. Then R\ M is a minimal prime E-ideal such that R\ M C M and
x & R\ M, since x € S C M. Hence x ¢ () Sa. Therefore (] Sq C OF(M). O

ach ach

Proposition 3.3. Let My and M» be two prime E-ideals in an ADL R with My C M. Then (’)E(Mz) -
OF(My).

Proof. Let x € OF(M,). Then there exists an element a ¢ Ma such that x € (a, E). That implies
x € (a, E) and a ¢ M;. So that x € OF(My). Therefore OF(M,) C OF (My). O

Proposition 3.4. For any non zero element a € R with a ¢ E, there is a minimal prime E-ideal not

containing a.

Proof. Let a be any non zero element of R with a ¢ E. By Corollary 3.2, there exists a prime E-ideal
P of R such that a ¢ P. Consider § = {Q | Q is a prime E —ideal of R,a ¢ Q and Q C P}. It
satisfies the hypothesis of Zorn’s Lemma. So that § has a minimal element say M. i.e. M is minimal
and a ¢ M. O

Theorem 3.15. For any prime E-ideal M of an ADL R, the following are equivalent:

(1) M is minimal prime E-ideal
(2) M = 0E(Mm)

(3) for any x € R, M contains precisely one of x or (x, E).



Int. J. Anal. Appl. (2023), 21:85 15

Proof. (1) = (2) Assume (1). Let x € M. Then there exists y ¢ M such that x Ay € E. This implies
that x € OF(M). So that M C OF(M). Since OF(M) C M, we get that M = OF(M).

(2) = (3) Assume (2). Let x € R. Suppose x ¢ M. Let a € (x, E). Then a A x € E. That implies
aAx € M. So that a € M. Since x ¢ M. Therefore (x, E) C M.

(3) = (1) Let Q be any prime E-ideal of R with @ C M. Then choose x € M such that x ¢ Q. That
implies (x, E) € Q € M. So that (x, E) € M which is a contradiction. O

Corollary 3.9. Let P be a minimal prime E-ideal of an ADL R and a € R. Then a € P if and only if
((a E).E)CP.

Proof. Assume that a € P. Then (a,E) € P. Let t € ((a,E), E). Then (a, E) C (t, E). Suppose
t ¢ P. Then (a,E) C (t,E) C P, which is a contradiction. That implies t € P, which gives
((a, E), E) C P. The converse follows from the fact that a € ((a, E), E). O

Definition 3.6. An ADL R with maximal elements is called an E- semi complemented if for each non

maximal element x € R, there exists a non zero element y ¢ E such that x ANy € E.
Example 3.4. From the Example 3.2, clearly we have that R is an E-semi complemented ADL.

Theorem 3.16. Let R be an ADL with maximal elements. Then R is E-semi complemented if and

only if the intersection of all maximal filters disjoint with E is M.

Proof. Assume that R is E-semi complemented. Consider
K= ﬂ{M | M is a maximal filter of R and M N E = (}.

We have to prove that K = M. Let x € K with x is not a maximal element. Then x € M,
for all maximal filter M disjoint with E. Then x ¢ E. Since x is non maximal and R is E- semi
complemented, there exists a non zero element y ¢ E such that x Ay € E. Then x Ay ¢ M. That
implies MV [xAy) = R. Since y ¢ E, there exists a minimal prime E-ideal N of R such that y ¢ N. That
implies y € R\ N and (R\N)NE = (), where R\ N is maximal filter of R. So that x, y € R\ N. We have
x Ny € R\ N. Therefore (R\ N)NE # (), which is a contradiction. Therefore x is a maximal element.
Hence K = M. Conversely, assume that (\{M | M is a maximal filter of R and MNE =} = M.
Let x be any non maximal element of R. Then there exists a maximal filter M such that x ¢ M and
M N E = (). That implies MV [x) = R. So that a A x = 0, for some a € M. Since a € M and
MNE =0, we get a¢ E. Clearly, aA x € E. That is, for any non maximal element x of R, there

exists a non zero element a ¢ E such that a A x € E. Hence R is E-semi complemented. ]

Definition 3.7. An ADL R is said to be E-normal if for any a, b € R such that aA b € E, there exists
x € (a,E)andy € (b, E) such that x V' y is maximal.

From the Example 3.2, clearly we have that R is a D—normal ADL. The following result is a direct

consequence of the above definition.
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Theorem 3.17. R is E-normal if and only if (a, E)V (b, E) = R, forany a,b € R, withaAb € E.
Definition 3.8. Two E-ideals G1 and G, of R are said to be co-maximal if Gy V Go = R.

Example 3.5. From the Example 3.2, we have that |5, I3, 14, Is are E-ideals of R. Clearly, 14V Is = R.

Therefore 14 and Is are co-maximal. Also, we have I, V I3 # R. Therefore |5, I3 are not co-maximal.

Theorem 3.18. /n an ADL R, the following are equivalent:

(1) foranya,be Rwithanbe E,(a,E)V (b, E)=R

(2) foranya,be R, (a,E)V(b,E)=(aNDb,E)

(3) any two distinct minimal prime E-ideals are co-maximal

(4) every prime E-ideal contains a unique minimal prime E-ideal

(5) for any prime E-ideal P, OF(P) is prime.

Proof. (1) = (2) Assume (1). Let a,b € R with x € (aA b,E). Then x A (aA b) € E and
hence (x A a) A (x A b) € E. By (1), we have that (x A a,E) V (x A b, E) = R. That implies
x € (xNa E)V(xAb,E). Then there exists r € (x A a, E) and s € (x A b, E) such that x =rVs.
Since r € (x ANa,E), s € (xAb E) weget that rAx € (a,E) and s A x € (b, E). That implies
(xAr)V(xAs)e(a, E)V(b E)and hence xA(rVvs) e (a, E)V (b E). Since x =rVs, we get
that x € (a, E) V (b, E). Therefore (anb, E) C (a, E)V (b, E). Since (a, E)V (b, E) C (aAb, E), we
get that (a, E) V (b, E) =(aADb,E), forall a,b e R.

(2) = (3) Assume (2). Let M and N be two distinct minimal prime E-ideals of R. Choose elements
X,y € Rsuch that x € M\ N and y € N\ M. Since M and N are minimal, xAa€ E, y Ab € E, for
some a¢ M, b¢ N. That impliesx AaAy Abe E and hence R= (xANaAyAb, E). By (2), we
get that (x Ab,E)V(aAy,E) =R.Since a¢ M and y ¢ M, we get that aAy ¢ M. That implies
(aAy, E) C M. Similarly, we have that (x A b, E) C N. That implies (x Ab)A(aAy),E)C MV N
and hence R = MV N. Therefore M and N are co-maximal.

(3) = (4) Assume (3). Let M be a prime E-ideal of R. Suppose M contains two distinct minimal
prime E-ideals, say N; and N,. By (3), we get that R = Ny V N, € M, we get a contradiction.
Therefore every prime E-ideal contains a unique minimal prime E-filter.

(4) = (5) Assume that every prime E-ideal of R contains a unique minimal prime E-ideal. Then by
Corollary 3.8, we get that OF(P) is a prime E-ideal.

(5) = (1) Assume (5). Let a, b € R be such that aAb € E. Suppose (a, E)V (b, E) # R. Then there
exists a maximal E-ideal M such that (a, E) V (b, E) € M. That implies (a, E) C M and (b, E) C M.
That implies a ¢ OF (M) and b ¢ OF(M). Since OF (M) is prime, we get a A b ¢ OF(M). So that
E ¢ OF(M), which is a contradiction. Therefore (a, E) V (b, E) = R. O

Theorem 3.19. /In an ADL R with maximal elements, the following conditions are equivalent:

(1) R is E-normal
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(2) for any two distinct maximal filters Gy and G, of R with G1 N E =0, Go N E = () there exist
a¢ Gy and b ¢ G, such that aV b is maximal
(3) for any maximal filter G with GNE = 0, G is the unique maximal filter containing R\ OF (P).

Proof. (1) = (2) Assume that R is E-normal.

Let G; and G, be two distinct maximal filters of R with GiNE =0,GoNE = (. Then R\ Gy and
R\ Gy are distinct minimal prime E-ideals of R. By our assumption, we get R\ G; and R\ G» are
co-maximal. Thatis, (R\ G1)V (R\ G2) = R. Then, there exist a € R\ G1 and b € R\ G such that
aV bis maximal.

(2) = (3) Assume (2). Let G be any maximal filter of R with GNE = and R\ OF(P) C G. Let G;
be any maximal filter of R with Gy N E = () and R\ OF(P) C G;. We prove that G = G;. Suppose
G # G1. By our assumption, there exists a ¢ G and b ¢ Gy such that a Vv b is maximal. That implies
a,b¢ R\ OF(P). So that a, b € OF(P). This implies that aVv b € OF(P). Therefore OF(P) = R,
which is a contradiction. We conclude that G = G;.

(3) = (1) For any maximal filter G with G N E = (), G is the unique maximal filter containing
R\ (’)E(P). Let P be a prime E-ideal of R. Suppose P contains two minimal prime E-ideals say Q1
and Q,. Thatis, Q1 C P and Q> C P. That implies OF(P) C OF(Q1) and OF(P) C OF(Q,). We get
P C OF(Q1) and P C OF(Q>). So that Q2 € Q1 and Q; € Q. This concludes that Q; = Q>. [

Let F be a filter of R. For any x,y € R, define a binary relation ¢ on R as ¢r = {(x,y) €
RxR|xANa=yAa, forsomeac F}.

Proposition 3.5. For any filter F of an associative ADL R, ¢ is a congruence relation on R.

For any ADL R, it can be easily verified that the quotient R/¢fg is also an ADL with respect to
the following operations: [a]g. A [blg, = [a A blg. and [ale, V [blg, = [a V blg, Where [a]g, is the
congruence class of a modulo ¢F . It can be routinely verified that the mapping ® : R — R/¢r
defined by ®(a) = [a]g, is a homomorphism.

Theorem 3.20. /n an ADL R, we have the following:

(1) if x is a dual dense element of R, then [x]g. is a dual dense element of R/¢r
(2) ifG is a E-ideal of R/¢g, then ®~1(G) is a E-ideal of R
(3) if G is a prime E-ideal of R/¢g, then ®~(G) is a prime E-ideal of R.

Definition 3.9. Let F be a filter of an ADL R. For any ideal G of R, define G = {lalg; | @ € G}.
The following result can be proved easily.
Lemma 3.6. Let G be an E-ideal of R. Then G is an E-ideal of R/®F.

Proposition 3.6. Let G be a prime E-ideal and F a filter of an ADL R such that GN F = (. We have
the following:
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(1) x € G if and only if [X]g, € G
(2) GNF =0
(3) if G is a prime E-ideal of R, then G is a prime E-ideal of R/ ¢ -

Proof. (1) Assume that x € G. Then we have [x]y, € G. Conversely assume that [x]gr € G. Then
there exists y € G such that [x]s, = [y]¢,. That implies (x,y) € ¢r. So there exists a € F such that
xNa=yNa€eG.SinccGNF =0, wegetaé¢ G.SincexAa€eGandaé¢ G, we get that x € G.
(2) Suppose G N F # (). Then choose an element x € R such that [X]gr € GNF. Then [x]gr € G
and [x]g, € F. Since [x]gr € G and by (1), we get x € G. Since [X]¢r € F, there exists y € F such
that [x]g, = [v]¢r. Then (x,y) € ¢F. So there exist a € F such that x Aa=y Aa.SinceyANaeF,
we get that x A a € F. Since x € G, we have that x A a € GN F. That implies GN F # ), we get a
contradiction. Hence G N F = 0.

(3) Clearly, we have that G is a proper ideal of R/¢r- Let [x]gr € E. Then x € E C G. That implies
[X]p- € G and hence G is an E-ideal of R/g.. Let [y, [V]gr € R/gr such that [X]g. A [V]pr € G.
Then [x A ylgr € G. By (1) we have that x Ay € G. Since G is prime, we get that x € G or y € G
Again by(1) we get that [x]g, € G or V]er € G. Hence G is a prime E-ideal in R/r- O

Proposition 3.7. Let F be a filter of an ADL R. Then there is an order isomorphism of the set of all
prime E-ideals of R disjoint from F onto the set of all prime E-ideals of R/, .

Proof. Let G and H be two prime E-ideals of R such that GNF =0 and HNF = (. Then by
Proposition 3.6(1), we get that G C H if and only if G C H. Let G be a prime E-ideal of R with
GNF = 0. Then by Proposition 3.6(3), we get that Gis a prime E-ideal of R/4.. Let Q be a
prime E-ideal of R/g.. Consider G = {a € R|[a]s, € Q}. Since Q is a E-ideal of R/4,, we get that
G is a E-ideal of R. Let a,b € R with aA b € G. Then [a]g. A [blg, = [a A bl € Q. Since Q is
prime, we get [a]s, € Q or [b]g, € Q. Therefore a € G or b € G. Hence G is a prime E-ideal of R.
Clearly G=Q. Suppose G N F # (). Then choose an element s € G N F. That implies [s]y, € Q
and s € F. Let [b]g, € R/¢.. Since s € Fand bAs=bAsAs, weget that (b,bAs) € F. That
implies [blg, = [b A slg. = [bler A [slgr € Q. Therefore [blg,. € Q. and hence R/g, = Q, which is a
contradiction. Thus GN F = 0. O

Corollary 3.10. Let R be an ADL. Then the above map induces a one-to-one correspondence between
the set of all minimal prime E-ideals of R which are disjoint from F and the set of all minimal prime
E-ideals of R/ .

Theorem 3.21. For any filter F of an ADL R, the following are equivalent:

(1) any two distinct minimal prime E-ideals of R are co-maximal

(2) any two distinct minimal prime E-ideals of R/g, are co-maximal.
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Proof. (1) = (2) Assume (1). Let Gy, Go be two distinct minimal prime E-ideals of R/g.. Then by
the corollary 3.10, there exist two minimal prime E-ideals H; and Hs of R such that H; N F = @ and
H>NF =0. Also Flz = G7 and l‘/:I; = Go. Since Gy and G, are distinct, we get that H; and H> are
distinct. By the assumption, we have H1V Hy, = R. Let a € R. There exist a; € H1 and a» € H> such
that a = a1 V ap. Since a; € Hy and a> € H> we get [a1]g, € ﬁl = G and [a2]g, € 172 = G». Now,
[alg, = [a1 V @2]g, = [a1le, V [a2]¢, € G1V Go. That implies [a]g, € G1 V Go, for all a € R.Therefore
G1V Go =R/,

(2) = (1) Assume (2). Let P be a prime E-ideal of R. Suppose P contains two distinct minimal prime
E-ideals, say G; and Go. Consider K = R\ P. Clearly K is a filter of Rand Gi N K =0 = Go N K.
By Corollary 3.10, we get that @vl and é; are distinct minimal prime E-ideals of R/g. such that
Z—?vl, é; - P. That implies Pis containing two distinct minimal prime E-ideals of R/4. , which is a
contradiction. Hence P contains a unique minimal prime E-ideal. By Theorem 3.18, any two distinct

minimal prime E-ideals of R are co-maximal. O

4. On the space prime E-ideals

In this section, some topological properties of the space of all prime E-ideals and the space of all
minimal prime E-ideals of an ADL are studied.

Let us denote the set of all prime E-ideals of an ADL R by Spec,E(R). For any A C R, define
a(A) = {P € SpecF(R)|A ¢ P} and for any a € R, a(a) = {P € SpecF(R)|a ¢ P}. Then we have

the following result whose proof is straightforward.

Lemma 4.1. Let R be an ADL and a, b € R. Then the following conditions hold:
(1) U a(a) = Specf(R)
aeR
(2) a(a)Na(b) =a(aAnb)
(3) a(a)Ua(b) =a(aV b)
(4) a(a) =0 ifand only ifa € E
(5) a(a) = SpecF(R) if and only if a € M.

From the above result, it can be easily observed that the collection {a(a)|a € R} forms a base for
a topology on Spec,E(R). The topology generated by this base is precisely {a(A | A C R} and is
called the hull-kernel topology on Spec,E(R). Under this topology, we have the following result.

Theorem 4.1. /n an ADL R, we have the following:
(1) for any a € R, a(a) is compact in Specf (R)
(2) if C is a compact open subset of Specf (R), then C = a(a) for some a € R
(3) SpecE(R) is a To-space
(4) the map a+— a(a) is an epimorphism from R onto the lattice of all compact open subsets of
SpecE(R).
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Proof. (1) Let a € R. Let X C R be such that a(a) C |J a(x). Let J be a E-ideal generated by
xeX
the set X. Suppose a ¢ J. Then there exists a prime E-ideal P such that J C P and a ¢ P. Since

X CJC P weget P& a(x) forall x e X. Since a ¢ P, we get P € a(a), which is a contradiction.
n

Hence a € J So we can write a = (\/ x;) A a for some x1, X2, . . ., Xp € X and n € N. Then, we get
i=1
n n n
aa) =a((V x) Aa) Ca(V x) = U alx;) which is finite subcover for a(a). Therefore a(a) is
=1 =1 =1
compact. I I I

(2) Let C be a compact open subset of SpecF(R). Since C is open, we get C = |J a(x) for some

xeX
n n

X C R. Since C is compact, there exist x1, X2, . . ., Xp € X such that C = U a(x) = a('\/ ) Therefore
C = a(x) for some x € R. - -

(3) Let P and Q be two distinct prime E-ideals of R. Without loss of generality, assume that P € Q.
Choose x € R such that x € P and x ¢ Q. Hence P ¢ a(x) and Q € a(x). Therefore SpecF(R) is a
To-space.

(4) It can be obtained from (1), (2) and by the above lemma. O

Proposition 4.1. In an ADL R, the following are equivalent:
(1) SpecE(R) is a Hausdorff space
(2) for each P € Specf (R), P is the unique member of SpecF (R) such that OF(P) C P
(3) every prime E-ideal is minimal

(4) every prime E-ideal is maximal.

Proof. (1) = (2) Assume (1). Let P € Specf(R). Clearly OF(P) C P. Suppose Q € Specf(R)
such that Q # P and OF(P) C Q. Since SpecL(R) is Hausdorff, there exists a, b € R such that
P e a(a),Q € a(b) and a(anb) =a(a)Na(b) =0. Hence a¢ P,b ¢ Q and aA b € E. Therefore
b € OF(P) C @, which is a contradiction to that b ¢ Q. Hence P = Q. Therefore P is the unique
member of Specf(R) such that OF(P) C P.

(2) = (3) Assume (2). Let P be a prime E-ideal of R. Let Q be a prime E-ideal in R such that
Q C P. Hence OF(Q) € Q C P. Therefore P is a minimal prime E-ideal of R.

(3) = (4) Itis clear.

(4) = (1) Assume (4). Let P and Q be two distinct elements of SpecF(R). Hence OE(Q) ¢ P.
Choose a € OF(Q) such that a ¢ P. Since a € OF(Q), there exists b ¢ Q such that a € (b, E). Hence
aAb € E. Thusityields, P € a(a),Q € a(b). Since aAb € E, we get that a(a)Na(b) = a(aAb) = 0.
Therefore Specf (R) is Hausdorff. O

Theorem 4.2. For any E-ideal G of an ADL R, (G, E) = ("{P € SpecF(R) | G ¢ P}.

Proof. Let G be an E-ideal of L. Consider K = ({P € SpecF(R) | G ¢ P}. Let P € a(G). Then
G ¢ P.Since GN(G,E) = E C P and P is prime, we get (G, E) C P. Hence every prime E-ideal
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P of R such that G € P contains (G, E). Therefore (G, E) C K. Let x ¢ (G, E). Then there exists
y € Gsuchthat xAy ¢ E. Let K ={G | G isan E —ideal of L and x Ay ¢ G}. Clearly, E € K
and so P = (). Clearly, (K, C) is a partially ordered set and it satisfies the hypothesis of the Zorn's
lemma, K has a maximal element, say N. Then N is an E-ideal of R and x Ay ¢ N. Therefore x ¢ N
and y ¢ N. Since y € G, we get G € N. We now show that N is prime. Let a, b € R with a ¢ N and
b¢ N. Then N C NV (a)f and N C NV (b)E. By the maximality of N, we get x Ay € NV (a)f and
xAy €NV (b)E. Hence, xAy € {NV(a)F}n{NV (B)E}Y =NV {(a)En(b)E} =NV (anb)E.If
aAbe N, then x Ay € N which is a contradiction. Thus N is a prime E-ideal of R such that G ¢ N
and x ¢ N. Therefore x ¢ K. Hence K C (G, E). O

Corollary 4.1. For any ADL R and a € R, (a, E) = (\{P € SpecE(R) | a ¢ P}.

Let MinE(R) denote the set of all minimal prime E-ideals of ADL R. For any a € R, write
am(x) = a(x) N MinE(R).

Theorem 4.3. For any ADL R, the following conditions hold in R :

(1) Every prime E-ideals contains a minimal prime E-ideal

2 N P=E
PeMinf (R)
(3) for any subset Awith EC A, (A E)= [ (P).

PECXm(A)

Proof. (1) Let P be a prime E-ideal of R. Consider X = {N € SpecE(R) | N C P}. Clearly X is a
partially ordered set under set inclusion and hence it satisfies the hypothesis of the Zorn's lemma, X
has a minimal element say M. Clearly M will be the required minimal prime E-ideal of R.

(2) Since E is contained in every minimal prime E-ideal of R and so contained in the intersection of
all minimal prime E-ideals. Let x ¢ E. Then there exists a prime E-ideal P of L such that x ¢ P. By
(1), there exists a minimal prime E-ideal of R such that M C P. Since x ¢ P, we get x ¢ M. That
implies M is a minimal prime E-ideal of R such that x ¢ M. Hence x is not in the intersection of all
minimal prime. Thus intersection of all minimal prime E-ideals of R is equal to E.

(3) Let P € MinE(R) such that A ¢ P. Choose x € A such that x ¢ P. Then (A E) C (x,E) C
P. That implies (A, E) is contained in every minimal prime E-ideal of R such that A ¢ P. Hence
(AAE)C () (P).Letx¢ (A E). Then xAy ¢ E, for some y € A. By the condition (2), there

PEO(m(A)
exists a minimal prime E-ideal P of R such that x Ay ¢ P. That implies x ¢ P and y ¢ P. Therefore
x¢ () Pandhence (AE)= () P O
PEam(A) Peam(A)

Lemma 4.2. For any a,b € R, we have following:
(1) (a,E) C (b, E) if and only if am(b) C am(a)
(2) am(a) =0 ifand only ifa € E
(3) am(a) = MinE(R) if and only if (a, E) = E.
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Proof. (1) Let a,b € R. Assume that (a, E) C (b, E). Let P € a(b) Then b ¢ P. That implies
(a,E) C (b,E) C P. Therefore a ¢ P and hence P € an,(a). Thus am(b) € amn(a). Conversely,
assume that am(b) C am(a). Now, (a,E)= (1 PC () P=(b E). Hence(a,E)C (b E).

Peam(a) Peam(b)
(2) Suppose MinE(R) = 0. Then a € P for all P € Minf(R). That implies a € N  P. Since
PeMinE(R)
ae N P = E, we get a € E. The converse is clear.
PeMinE(R)
(3) Assume am(a) = MinE(R). Then (3, E)= () P= (1 P = E. Therefore(a, E) = E.
Peam(a) PeMinE(R)
Conversely, assume (a, E) = E. Then (a, E) = E C P. That implies a ¢ P, for all P € Minf(R).
Therefore ay,(a) = MinE(R). O

For any E-ideal G of an ADL R, define 8,(G) = {P € MinF(R) | G C P}.
Lemma 4.3. Let G be an E-ideal of an ADL R. If B,(G) =0, then (G,E) =E.

Proof. Let Bm(G) = 0. Then Bm(G) = MinE(R). That implies (G, E)= () PC N P=
Peam(F) PeMinE(R)
E. Therefore (G,E) = E. O

For any ADL R, define K ={x € R | (x,E) = E}.
Lemma 4.4. For any ADL R, K is a filter of R.

Proof. Clearly, we have that forany m € M, m € K. Letx,y € K. Then ((xAy, E), E) = ((x, E), E)N
((y,E),E) = (E,E)N(E,E) = RN R = R. That implies ((x A y), E) = (R, E) = E. Therefore
xA\y € K.Letx € K. Then (x,E) = E. Lety € R. Now, (xVy,E) = (x, E)n(y,E)=ENn(y,E) =E.
Therefore x Vy € K. Hence K is a filter of R. O

Theorem 4.4. Let G be an E-ideal of an ADL R. Then MinE (R) is compact if and only if Bm(G) = 0
implies G N K # .

Proof. Assume that MinE(R) is compact. Let G be an E-ideal R such that 8,(G) = 0. Then
am(G) = MinE(R). Since MinE(R) is compact, there exists a € G such that a,(a) = Minf(R).
That implies (a, E) = E. Therefore a € K and hence G N K # (). Conversely, assume that for any

E-ideal G of R,Bm(G) = 0 implies GN K # (). Let A C R be such that MinE(R) = | am(A) =
acA
am(A) = am(G) where G = AE. Since Minf(R) = am(G), we get B,(G) = (). By the assumption,

we get GN E # (). Choose d € GN K. Since d € G and G = AE, there exists a1, as, . . ., an € A such
n n

that d = (a1 VayV...Vap)Ad. Since d € E, Minf(R) = am(d) C am(\/ a,-) = |J am(a;). Hence
i=1 i=1

MinE (R) is compact. O

Theorem 4.5. Let R be an ADL. For any Y C MinE(R), the closure of Y in MinE(R) is Bm( () P)
Pey

and, in particular, am(F) = Bm((G, E)), for any E C G C R.
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Proof. Let Y C MinE(R). Then Y in Minf(R) = {Y in SpecE(R)} n MinE(R) = H( N P)N

Pey

MinE(R) = Bm( (N P). In particular, for any E C G C R, we have an(G) = Bn( () P) =
PeYy Peam(G)

ﬁm( ﬂ P) :ﬁm((Fv E)) U

IZP, PEMInE(R)
Proposition 4.2. Let F, G be two E-ideals of an ADL R. Then the following are equivalent:
(1) G S (F E)
(2) GNF=E
(3) am(G)Nam(F) =10.

Proof. (1) = (2) Assume that G C (F,E). Then GNF C (F,E)NF = E. Therefore GNF =E.
(2) = (3) Assume that GNF = E. Let P € an(G)Nam(F) =an(GNF). Then E=GNF ¢ P,
which is a contradiction. Therefore o, (G) Nam(F) = 0.

(3) = (1) Assume that am(G) Nam(F) = (. Let x € G. Suppose x ¢ (F, E). Then there exists
y € F such that x Ay ¢ E. Then there exists P € MinE(R) such that x Ay ¢ P. That implies
x ¢ Pandy ¢ P Hence G € P and F ¢ P. Therefore P € an(G) and P € am(F). Therefore
P € am(G)Nan(F), which is a contradiction. So x € (F, E). Therefore G C (F, E). O

Corollary 4.2. Let G be an E-ideal of an ADL R and x € R. Then x € (G, E) if and only if
am(x) Nam(G) = 0.

Proof. By taking G = {x}, in the above proposition. O

Theorem 4.6. Every open subset of MinE (R) is closed if and only if for any E-ideal of R, (G, E) = E
implies Bm(G) = 0.

Proof. Assume that every open set of MinE(R) is closed. Let G be an E-ideal of R. Then B,,(G) is
an open set in Minf(R). Now, B,(G) # (. Then there exists x € R\ E such that am(x) C Bm(G).
That implies am(x) N am(G) = 0. Therefore x € (G,E) and x ¢ E. Hence (G,E) # E. Thus
(G, E) = E, which gives B,,(G) = 0. Conversely, assume that the condition holds. Let H be an
open subset of MinF(R). Then H = a,(G), for some E-ideal G of L. By Theorem 4.5, we have
am(G) = Bm((G, E)). It is enough to show that 8,((G, E)) = am(G). Since (G V (G,E)),E) = E,
by the assumption, we get Bm(G V (G, E)) = ). Now, for any P € Minf(R), we have P € an(G) <
GZ P« (G E)C P« PefBn(G). Hence am(G) = Bm(G). Therefore H is closed in Minf(R). O

Theorem 4.7. In an ADL R, MinE(R) is a HausdorfF space.

Proof. Let P and Q be distinct elements of MinE(R). Then there exists a € P such that a ¢ Q.
Since P is minimal, we get (a, E) € P. Then there exists b € (a, E) such that b ¢ P. That implies
aAb € E and hence ap(a) Nam(b) = 0. Since a¢ Q and b ¢ P, we get Q € ap(a) and P € ap(b).
Therefore Minf (R) is a Hausdorff space. O
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