International Journal of Analysis and Applications

On Prime *E*-ideals of Almost Distributive Lattices

N. Rafi¹, Y. Monikarchana², Ravikumar Bandaru³, Aiyared lampan^{4,*}

¹Department of Mathematics, Bapatla Engineering College, Bapatla, Andhra Pradesh 522 101, India ²Department of Mathematics, Mohan Babu University, A. Rangampet, Tirupati, Andhra Pradesh 517 102, India

³Department of Mathematics, GITAM(Deemed to be University), Hyderabad Campus, Telangana 502 329, India

⁴Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand

* Corresponding author: aiyared.ia@up.ac.th

Abstract. In an almost distributive lattice (ADL), the idea of E-ideals is introduced, and their properties are discussed. In terms of a congruence, an equivalence is established between the minimal prime E-ideals of an ADL and its quotient ADL. Finally, topological investigations are performed on prime E-ideals and minimal prime E-ideals.

1. Introduction

In the article by Swamy and Rao [9], the concept of an Almost Distributive Lattice (ADL) was introduced as a generalization of Boolean algebras and distributive lattices. This allowed for the abstraction of various ring-theoretic generalizations. They also introduced the notion of an ideal in an ADL, noting that the set of principal ideals in an ADL forms a distributive lattice. This extension of lattice theory notions to ADLs was significant.

The concept of normal lattices was initially introduced by Cornish [2]. Later, Rao and Ravi Kumar presented the concept of a minimal prime ideal belonging to an ideal in an ADL [6]. In another paper by Rao and Ravi Kumar [7], the notion of a normal ADL was defined, providing equivalent

Received: Jun. 7, 2023.

²⁰²⁰ Mathematics Subject Classification. 06D99, 06D15.

Key words and phrases. almost distributive lattice(ADL); prime filter; *E*-ideal; *E*-normal ADL; congruence; compact; Hausdorff space; closure.

conditions for an ADL to be considered normal in terms of its annulets. These papers contributed to the understanding of ADLs and their properties.

The study of *D*-filters in lattices and their properties was carried out by Kumar et al. [4]. They investigated the properties of *D*-filters in lattices, providing valuable insights.

In the same line of research, we investigated the notions of prime E-ideals and E-ideals in an ADL. The properties of these ideals are thoroughly examined, and it is established that every proper E-ideal must satisfy a set of equivalent conditions to become a prime E-ideal. It is also proven that every maximal E-ideal in an ADL is a prime E-ideal.

Furthermore, the paper introduces the concept of $\mathcal{O}^{E}(M)$ as the intersection of all minimal prime *E*-ideals contained in a prime *E*-ideal *M* in an ADL *R*. An ADL is defined as *E*-normal, characterized in terms of relative dual annihilators with respect to an ideal *E*. An equivalence between the minimal prime *E*-ideals of an ADL and its quotient ADL is derived with respect to a congruence. The topological properties of the space of all prime *E*-ideals and the space of all minimal prime *E*-ideals in an ADL are also investigated.

2. Preliminaries

In this section, we recall certain definitions and important results from [5] and [9], those will be required in the text of the paper.

Definition 2.1. [9] An algebra $R = (R, \lor, \land, 0)$ of type (2, 2, 0) is called an Almost Distributive Lattice (abbreviated as ADL), if it satisfies the following conditions:

- (1) $(a \lor b) \land c = (a \land c) \lor (b \land c)$
- (2) $a \land (b \lor c) = (a \land b) \lor (a \land c)$
- $(3) (a \lor b) \land b = b$
- (4) $(a \lor b) \land a = a$
- (5) $a \lor (a \land b) = a$
- (6) $0 \wedge a = 0$
- (7) $a \lor 0 = a$, for all $a, b, c \in R$.

Example 2.1. Every non-empty set X can be regarded as an ADL as follows. Let $x_0 \in X$. Define the binary operations \lor , \land on X by

$$x \lor y = \begin{cases} x & \text{if } x \neq x_0 \\ y & \text{if } x = x_0 \end{cases} \qquad \qquad x \land y = \begin{cases} y & \text{if } x \neq x_0 \\ x_0 & \text{if } x = x_0. \end{cases}$$

Then (X, \lor, \land, x_0) is an ADL (where x_0 is the zero) and is called a discrete ADL.

If $(R, \lor, \land, 0)$ is an ADL, for any $a, b \in R$, define $a \leq b$ if and only if $a = a \land b$ (or equivalently, $a \lor b = b$), then \leq is a partial ordering on R.

(1) $a \lor b = a \Leftrightarrow a \land b = b$ (2) $a \lor b = b \Leftrightarrow a \land b = a$ (3) \land is associative in R (4) $a \land b \land c = b \land a \land c$ (5) $(a \lor b) \land c = (b \lor a) \land c$ (6) $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ (7) $a \land (a \lor b) = a$, $(a \land b) \lor b = b$ and $a \lor (b \land a) = a$ (8) $a \land a = a$ and $a \lor a = a$.

It can be observed that an ADL R satisfies almost all the properties of a distributive lattice except the right distributivity of \lor over \land , commutativity of \lor , commutativity of \land . Any one of these properties make an ADL R a distributive lattice.

As usual, an element $m \in R$ is called maximal if it is a maximal element in the partially ordered set (R, \leq) . That is, for any $a \in R$, $m \leq a \Rightarrow m = a$. The set of all maximal elements of an ADL R is denoted by \mathcal{M} .

As in distributive lattices [1,3], a non-empty subset I of an ADL R is called an ideal of R if $a \lor b \in I$ and $a \land x \in I$ for any $a, b \in I$ and $x \in R$. Also, a non-empty subset F of R is said to be a filter of Rif $a \land b \in F$ and $x \lor a \in F$ for $a, b \in F$ and $x \in R$.

The set $\Im(R)$ of all ideals of R is a bounded distributive lattice with least element $\{0\}$ and greatest element R under set inclusion in which, for any $I, J \in \Im(R), I \cap J$ is the infimum of I and J while the supremum is given by $I \lor J := \{a \lor b \mid a \in I, b \in J\}$. A proper ideal(filter) P of R is called a prime ideal(filter) if, for any $x, y \in R, x \land y \in P(x \lor y \in P) \Rightarrow x \in P$ or $y \in P$. A proper ideal(filter) M of R is said to be maximal if it is not properly contained in any proper ideal(filter) of R. It can be observed that every maximal ideal(filter) of R is a prime ideal(filter). Every proper ideal(filter) of R is contained in a maximal ideal(filter). For any subset S of R the smallest ideal containing S is given by $(S] := \{(\bigvee_{i=1}^{n} s_i) \land x \mid s_i \in S, x \in R \text{ and } n \in \mathbb{N}\}$. If $S = \{s\}$, we write (s] instead of (S] and such an ideal is called the principal ideal of R. Similarly, for any $S \subseteq R$, $[S] := \{x \lor (\bigwedge_{i=1}^{n} s_i) \mid s_i \in S, x \in R \text{ and } n \in \mathbb{N}\}$. If $S = \{s\}$, we write [s] instead of [S] and such an ideal is called the principal ideal of R. Similarly, for any $S \subseteq R$, $[S] := \{x \lor (\bigwedge_{i=1}^{n} s_i) \mid s_i \in S, x \in R \text{ and } n \in \mathbb{N}\}$.

For any $a, b \in R$, it can be verified that $(a] \lor (b] = (a \lor b]$ and $(a] \land (b] = (a \land b]$. Hence the set $(\mathfrak{I}^{PI}(R), \lor, \cap)$ of all principal ideals of R is a sublattice of the distributive lattice $(\mathfrak{I}(R), \lor, \cap)$ of all ideals of R. Also, we have that the set $(\mathfrak{F}(R), \lor, \cap)$ of all filters of R is a bounded distributive lattice.

Theorem 2.2. [6] Let R be an ADL with maximal elements. Then P is a prime ideal of R if and only if $R \setminus P$ is a prime filter of R.

Definition 2.2. [5] An ADL R is said to be an associate ADL, if the operation \lor is associative on R.

Definition 2.3. [8] For any nonempty subset A of an ADL R, define $A^+ = \{x \in R \mid a \lor x \text{ is maximal}, for all a \in A\}$. Here A^+ is called the dual annihilator of A in R.

For any $a \in R$, we have $\{a\}^+ = (a]^+$, where (a] is the principal filter generated by a. An element a of an ADL R is called dual dense element if $(a]^+ = \mathcal{M}$ and the set E of all dual dense elements in an ADL R is an ideal if E is non-empty.

3. E-ideals of ADLs

In this section, we present the concepts of prime *E*-ideals and *E*-ideals in an Abstract Distributive Lattice (ADL) and explore their properties. We observe that any proper *E*-ideal in an ADL can be transformed into a prime *E*-ideal based on a set of equivalent conditions. Additionally, we establish that the intersection of all minimal prime *E*-ideals contained in a prime *E*-ideal *M* is denoted as $\mathcal{O}^{E}(M)$. Furthermore, we introduce the notion of *E*-normal ADLs, which are characterized in relation to the relative dual annihilators with respect to an ideal *E*. We establish an equivalence between the minimal prime *E*-ideals of an ADL and its quotient ADL with respect to a congruence.

Definition 3.1. An ideal G of R is said to be an E-ideal of R if $E \subseteq G$.

Now we have the example of an *E*-ideal of an ADL.

\land	0	а	b	С	d	е	f	g
0	0	0	0	0	0	0	0	0
а	0	а	b	С	d	е	f	g
b	0	а	b	С	d	е	f	g
С	0	С	С	С	0	0	С	0
d	0	d	е	0	d	е	g	g
e	0	d	е	0	d	е	g	g
f	0	f	f	С	g	g	f	g
g	0	g	g	0	g	g	g	g

Example 3.1. Let $R =$	$\{0, a, b, c, d, e, f, g\}$	} and define ∨, ∧	on R as follows:
-------------------------------	------------------------------	-------------------	------------------

V	0	а	b	С	d	е	f	g
0	0	а	b	с	d	е	f	g
а	а	а	а	а	а	а	а	а
b	b	b	b	b	b	b	b	b
с	с	а	b	С	а	b	f	f
d	d	а	а	а	d	d	а	d
е	е	b	b	b	е	е	b	е
f	f	а	b	f	а	b	f	f
g	g	а	b	f	d	е	f	g

Then (R, \lor, \land) is an ADL. Clearly, we have that $E = \{0, g\}$ and $G = \{0, c, f, g\}$ are ideals of R satisfying $E \subseteq G$. Therefore G is an E-ideal of R. Consider an ideal $H = \{0, c\}$ of R, but not an E-ideal.

It is easy to verify the proof of the following result.

Lemma 3.1. For any non-empty subset A of an ADL R, $(A] \lor E$ is the smallest E-ideal of R containing A.

5

We denote $(A] \lor E$ by A^E , i.e., $A^E = (A] \lor E$. For, $A = \{a\}$, we denote simply $(a)^E$ for $\{a\}^E$. Clearly, we have that $(a)^E$ is the smallest *E*-ideal containing *a*, which is known as the principal *E*-ideal generated by *a*.

Lemma 3.2. For any two elements x, y of an ADL R with maximal element m, we have the following:

- (1) $(0)^E = E$ (2) $(m)^E = R$
- (3) $x \le y$ implies $(x)^E \subseteq (y)^E$
- (4) $(x \lor y)^E = (x)^E \lor (y)^E$
- (5) $(x \wedge y)^E = (x)^E \cap (y)^E$
- (6) $(x)^E = E$ if and only if $x \in E$.

Proof. (1) Now $(0)^E = (0] \lor E = E$. (2) Now $(m)^E = (m] \lor E = R \lor E = R$. (3) Let $x \le y$. Then $(x] \subseteq (y]$. Now $(x)^E = (x] \lor E \subseteq (y] \lor E = (y)^E$. Therefore $(x)^E \subseteq (y)^E$. (4) Clearly, we have that $(x \lor y] = (x] \lor (y]$. Now, $(x \lor y)^E = (x \lor y] \lor E = (x] \lor (y] \lor E =$ $((x] \lor E) \lor ((y] \lor E)) = (x)^E \lor (y)^E$. Therefore $(x \lor y)^E = (x)^E \lor (y)^E$. (5) Since $x \land y \le y$ and $y \land x \le x$ and hence $(x \land y] \subseteq (x]$ and $(y \land x] \subseteq (y]$. Since $(x \land y] = (y \land x]$, we get that $(x \land y] \subseteq (x] \cap (y]$. Let $t \in (x] \cap (y]$. Then $t \in (x]$ and $t \in (y]$. That implies $x \land t = t$ and $y \land t = t$. Therefore $x \land y \land t = t$ and hence $t \in (x \land y]$. Thus $(x] \cap (y] \subseteq (x \land y]$, which gives $(x \land y] = (x] \cap (y]$. Now $(x \land y)^E = (x \land y] \lor E = [(x] \cap (y]] \lor E = ((x] \lor E) \cap ((y] \lor E) = (x)^E \cap (y)^E$. Hence $(x \land y)^E = (x)^E \cap (y)^E$. (6) Assume that $(x)^E = E$. Then $(x] \lor E = E$. That implies $(x] \subseteq E$ and hence $x \in E$. Conversely,

assume that $(x)^{e} = E$. Then $(x] \lor E = E$. That implies $(x] \subseteq E$ and hence $x \in E$. Conversely, assume that $x \in E$. Then $(x] \subseteq E$. This implies that $(x] \lor E \subseteq E$. Since $E \subseteq (x] \lor E$, we get that $E = (x] \lor E$. Therefore $(x)^{E} = E$.

We denote $\mathfrak{I}(R), \mathfrak{I}^{E}(R)$ and $\mathfrak{I}^{PEF}(R)$ as the set of all ideals, *E*-ideals and principal *E*-ideals of an ADL *R* respectively.

Theorem 3.1. $\mathfrak{I}^{E}(R)$ forms a distributive lattice contained in $\mathfrak{I}(R)$, and $\mathfrak{I}^{PEF}(R)$ forms a sublattice of $\mathfrak{I}^{E}(R)$.

Definition 3.2. An *E*-ideal *Q* is said to be proper if $Q \subsetneq R$. A proper *E*-ideal *Q* is said to be maximal if it is not properly contained in any proper *E*-ideal of *R*. A proper *E*-ideal *Q* of an ADL *R* is said to be a prime *E*-ideal if *Q* is a prime filter of *R*.

Example 3.2. Consider a distributive lattice $L = \{0, a, b, c, 1\}$ and discrete ADL $A = \{0', a'\}$.

Clearly,

 $R = A \times L = \{(0', 0), (0', a), (0', b), (0', c), (0', 1), (a', 0), (a', a), (a', b), (a', c), (a', 1)\} \text{ is an ADL}$ with zero element (0, 0'). Clearly, the dense set $E = \{(0', 0), (0', a)\}$. Consider the E-ideals: $I_1 = \{(0', 0), (0', a), (0', b)\}$ $I_2 = \{(0', 0), (0', a), (0', c)\}$ $I_3 = \{(0', 0), (0', a), (a', 0), (a', a)\}$ $I_4 = \{(0', 0), (0', a), (0', c), (a', 0), (a', a)(a', c)\}$ $I_5 = \{(0', 0), (0', a), (0', b), (a', 0), (a', a), (a', b)\}$ $I_6 = \{(0', 0), (0', a), (0', b), (0', c), (0', 1)\}$ Clearly, I_4 , I_5 and I_6 are prime E-ideal. But I_1 is not a prime E-ideal, because $(a', b) \land (0', c) = (0', a) \in I_1$, but $(a', b) \notin I_1$. and $(0', c) \notin I_1$. And also, I_2 is not a prime E-ideal, because $(0', b) \land (a', c) = (0', a) \in (0', a) \in I_2$, but $(0', b) \notin I_2$ and $(a', c) \notin I_2$.

Theorem 3.2. For any *E*-ideal *Q* of *R*, the following conditions are equivalent:

- (1) Q is a prime E-ideal
- (2) for any two E-ideals G, H of R, $G \cap H \subseteq Q \Rightarrow G \subseteq Q$ or $H \subseteq Q$
- (3) for any $x, y \in R$, $(x)^E \cap (y)^E \subseteq Q \Rightarrow x \in Q$ or $y \in Q$.

Proof. (1) \Rightarrow (2) Assume (1). Let *G* and *H* be two *E*-ideals of *R* such that $G \cap H \subseteq Q$. We prove that $G \subseteq Q$ or $H \subseteq Q$. Suppose $G \nsubseteq Q$ and $H \nsubseteq Q$. Choose $x, y \in R$ such that $x \in G \setminus Q$ and $y \in H \setminus Q$. By our assumption we have that $x \land y \notin Q$. Since $x \in G, y \in H$, which gives $x \land y \in G \cap H \subseteq Q$. Therefore $x \land y \in Q$, we get a contradiction. Thus $G \subseteq Q$ or $H \subseteq Q$.

(2) \Rightarrow (3) Assume (2). Let $x, y \in R$ with $(x)^E \cap (y)^E \subseteq Q$. Since $(x)^E$ and $(y)^E$ are *E*-ideals of *R*, and by our assumption, we get that $(x)^E \subseteq Q$ or $(y)^E \subseteq Q$. Hence $x \in Q$ or $y \in Q$.

(3) ⇒ (1) Assume (3). Let $x, y \in R$ with $x \land y \in Q$. Since Q is an E-ideal, we have that $(x)^E \cap (y)^E = (x \land y)^E \subseteq Q$. By our assumption, we get that $x \in Q$ or $y \in Q$. Hence Q is prime.

Theorem 3.3. Every maximal E-ideal of an ADL R is a prime E-ideal.

Proof. Let N be a maximal E-ideal of R. Let $a, b \in R$ with $a \notin N$ and $b \notin N$. Then $N \vee (a)^E = R$ and $N \vee (b)^E = R$. That implies $R = N \vee ((a)^E \cap (b)^E) = N \vee (a \wedge b)^E$. If $a \wedge b \in N$ then N = R, we get a contradiction. Therefore $a \wedge b \notin N$ and hence N is prime.

Corollary 3.1. Let $N_1, N_2, N_3, \ldots, N_n$ and N be maximal E-ideals of an ADL R with $\bigcap_{i=1}^n N_i \subseteq N$, then $N_j \subseteq N$, for some $j \in \{1, 2, 3, \ldots, n\}$.

Theorem 3.4. A proper *E*-ideal *Q* of an ADL *R* is a prime *E*-ideal if and only if $R \setminus Q$ is a prime filter such that $(R \setminus Q) \cap E = \emptyset$.

Proof. Assume that Q is a prime E-ideal of R. Clearly, $R \setminus Q$ is a prime filter of R. We prove that $(R \setminus Q) \cap E = \emptyset$. If $(R \setminus Q) \cap E \neq \emptyset$, choose $x \in (R \setminus Q) \cap E$. That implies $x \in E \subseteq Q$, which gives a contradiction. Hence $(R \setminus Q) \cap E = \emptyset$. Conversely, assume that $R \setminus Q$ is a prime filter of R such that $(R \setminus Q) \cap E = \emptyset$. Clearly, Q is a prime ideal of R and $E \subseteq R \setminus (R \setminus Q) = Q$. Therefore Q is a prime E-ideal of R.

Theorem 3.5. Let G be a E-ideal of an ADL R, and K be any non-empty subset of R, which is closed under the operation \land such that $G \cap K = \emptyset$. Then there exists a prime E-ideal Q of R containing G such that $Q \cap K = \emptyset$.

Proof. Let *K* be a non-empty subset of *R*, which is closed under the operation ∧ such that $G \cap K = \emptyset$. Consider $\mathfrak{F} = \{H \mid H \text{ is an } E - \text{ideal of } R, G \subseteq H \text{ and } H \cap K = \emptyset\}$. Clearly, it satisfies the hypothesis of the Zorn's lemma and hence \mathfrak{F} has a maximal element say *Q*. That is, *Q* is an *E*-ideal of *R* such that $G \subseteq Q$ and $Q \cap K = \emptyset$. Let *x*, *y* ∈ *R* be such that $x \land y \in Q$. We prove that $x \in Q$ or $y \in Q$. Suppose that $x \notin Q$ and $y \notin Q$. Then clearly $Q \lor (x)^E$ and $Q \lor (y)^E$ are *E*-ideals of *R* such that $Q \subsetneq Q \lor (x)^E$ and $Q \subsetneq Q \lor (y)^E$. Since *Q* is maximal in \mathfrak{F} , we get that $(Q \lor (x)^E) \cap K \neq \emptyset$ and $(Q \lor (y)^E) \cap K \neq \emptyset$. Choose $s \in (Q \lor (x)^E) \cap K$ and $t \in (Q \lor (y)^E) \cap K$. Then $s \in (Q \lor (x)^E), t \in (Q \lor (y)^E)$ and $s, t \in K$. Since *K* is closed under \land , we get $s \land t \in K$. Now $s \land t = \{Q \lor (x)^E\} \cap \{Q \lor (y)^E\} = Q \lor \{(x)^E \cap (y)^E\} = Q \lor (x \land y)^E$. Since $x \land y \in Q$, we get that $s \land t \in Q$. Since $s \land t \in K$, we get that $s \land t \in Q \cap K$, which is a contradiction to $Q \cap K = \emptyset$. Therefore either $x \in Q$ or $y \in Q$. Thus *Q* is a prime *E*-ideal of *R*.

Corollary 3.2. For any *E*-ideal *G* of an ADL *R* with $x \notin G$, there exists a prime *E*-ideal *Q* of *R* such that $G \subseteq Q$ and $x \notin Q$.

Corollary 3.3. For any *E*-ideal *G* of an ADL *R*, $G = \bigcap \{Q \mid Q \text{ is a prime } E - \text{ ideal of } R \text{ and } G \subseteq Q\}$.

Corollary 3.4. *E* is the intersection of all prime E-ideals of R.

Proof. Let Q be any prime E-ideal of R. Clearly, we have that $E \subseteq \bigcap Q$. Let Q be any prime E-ideal of an ADL R and $x \in \bigcap Q$. Suppose $x \notin E$. Then there exists prime filter N such that $x \in N$ and

 $N \cap E = \emptyset$. That implies $x \notin R \setminus N$ and $E \subseteq R \setminus N$. Therefore $R \setminus N$ is a prime *E*-ideal of *R* and $x \notin R \setminus N$, which is a contradiction. Therefore $x \in E$ and hence $\bigcap Q \subseteq E$. Thus $E = \bigcap Q$.

Theorem 3.6. In an ADL the following are equivalent:

- (1) Every proper E-ideal is prime
- (2) $\mathfrak{I}^{E}(R)$ is a chain
- (3) $\mathfrak{I}^{PEF}(R)$ is a chain.

Proof. (1) \Rightarrow (2) Assume (1). Clearly $(\mathfrak{I}^{E}(R), \subseteq)$ is a poset. Let *S* and *T* be two proper *E*-ideals of *R*. By (1), we have that $S \cap T$ is a prime *E*-ideal of *R*. Since $S \cap T \subseteq S \cap T$, we get $S \subseteq S \cap T \subseteq T$ or $T \subseteq S \cap T \subseteq S$. Hence $\mathfrak{I}^{E}(R)$ is a chain.

 $(2) \Rightarrow (3)$ It is obvious.

(3) ⇒ (1) Assume that (3). Let *G* be a proper *E*-ideal of *R*. We prove that *G* is prime. Let $x, y \in R$ such that $(x)^E \cap (y)^E \subseteq G$. By our assumption, we get that $(x)^E \subseteq (y)^E$ or $(y)^E \subseteq (x)^E$. That implies $x \in (x)^E = (x)^E \cap (y)^E \subseteq G$ or $y \in (y)^E = (x)^E \cap (y)^E \subseteq G$. Therefore *G* is a prime *E*-ideal of *R*.

Now we introduce the concept of a relative dual annihilator in the following definition.

Definition 3.3. For any nonempty subset *S* of *R*, define $(S, E) = \{a \in R \mid s \land a \in E, for all s \in S\}$. We call this set as relative dual annihilator of *S* with respect to the ideal *E*.

For $S = \{s\}$, we denote $(\{s\}, E)$ by (s, E).

Lemma 3.3. If S, T are nonempty subsets of an ADL R, then we have the following:

(1) (R, E) = E = (M, E)(2) (E, E) = R(3) $E \subseteq (S, E)$ (4) (S, E) is a *E*-ideal of *R* (5) $S \subseteq E$ if and only if (S, E) = R(6) if $S \subseteq T$, then $(T, E) \subseteq (S, E)$ and $((S, E), E) \subseteq ((T, E), E)$ (7) $S \subseteq ((S, E), E)$ (8) (((S, E), E), E) = (S, E)(9) (S, E) = ([S), E)(10) $\bigcap_{i \in \Delta} (S_i, E) = (\bigcup_{i \in \Delta} S_i, E)$ (11) $(S, E) \subseteq (S \cap T, (T, E))$ (12) if $S \subseteq T$, then (S, (T, E)) = (S, E)(13) $(S \cup T, E) \subseteq (S, (T, E)) \subseteq (S \cap T, E)$ (14) (S, (S, E)) = (S, E). *Proof.* (1) Let $x \in (R, E)$. Then $a \land x \in E$, for all $a \in R$. That implies $x \land x \in E$. So that $x \in E$. Hence $(R, E) \subseteq E$. Let $x \in E$. Then $a \land x \in E$, for all $a \in R$. Thus $x \in (R, E)$. Therefore $E \subseteq (R, E)$ and hence (R, E) = E. Clearly, we have that $(\mathcal{M}, E) = E$.

(2) Let $x \in E$. Then $x \wedge a \in E$, for all $a \in R$. Since $x \wedge a \in E$, for all $x \in E$, we get that $a \in (E, E)$, for all $a \in R$. Therefore $R \subseteq (E, E)$ and hence R = (E, E).

(3) Let $x \in E$. Then $y \land x \in E$, for all $y \in R$. Then $a \land x \in E$, for all $a \in S \subseteq R$. That implies $x \in (S, E)$. Therefore $E \subseteq (S, E)$.

(4) Let $a, b \in (S, E)$. Then $s \land a, s \land b \in E$, for all $s \in S$. This implies $(s \land a) \lor (s \land b) \in E$. Therefore $s \land (a \lor b) \in E$. Hence $a \lor b \in (S, E)$. Let $a \in (S, E)$ and $b \in R$ with $b \le a$. Then $s \land a \in E$ and $s \land b \le s \land a$, for all $s \in S$. Since $s \land a \in E$ and E is an ideal, we get $s \land b \in E$. Hence $b \in (S, E)$, for all $s \in S$. Thus (S, E) is an ideal of R. Since $E \subseteq (S, E)$, we get that (S, E) is an E-ideal of R.

(5) Suppose (S, E) = R. Let $m \in M$. Then $m \in (S, E)$. That implies $a = m \land a \in E$, for all $a \in S$. Hence $a \in E$, for all $a \in S$. Therefore $S \subseteq E$. Conversely, assume that $S \subseteq E$. Let $x \in R$. Since E is an ideal, we get $a \land x \in E$, for all $a \in S \subseteq E$. Hence $x \in (S, E)$. Therefore (S, E) = R.

(6) Suppose $S \subseteq T$. Let $a \in (T, E)$. Then $t \wedge a \in E$, for all $t \in T$. Since $S \subseteq T$, we get that $s \wedge a \in E$, for all $s \in S$. That implies $a \in (S, E)$. Therefore $(T, E) \subseteq (S, E)$ and hence $((S, E), E) \subseteq ((T, E), E)$. (7) Let $x \in (S, E)$. Then $s \wedge x \in E$, for all $s \in S$. That implies $x \wedge s \in E$, for all $x \in (S, E)$. That implies $s \in ((S, E), E)$, for all $s \in S$. Thus $S \subseteq ((S, E), E)$.

(8) By (7), we have that $(((S, E), E), E) \subseteq (S, E)$. Let $x \notin (((S, E), E), E)$. Then there exists an element $a \notin ((S, E), E)$ such that $a \land x \notin E$. Since $S \subseteq ((S, E), E)$, we have that $a \notin S$. So that $a \land x \notin E$ and $s \notin S$. Therefore $x \notin (S, E)$, it concludes that $(S, E) \subseteq (((S, E), E), E)$. Thus (((S, E), E), E) = (S, E).

(9) Since $S \subseteq (S]$, we get that $((S], E) \subseteq (S, E)$. Let $x \in (S, E)$. Then $a \land x \in E$, for all $a \in S \subseteq (S]$. That implies $x \in ((S], E)$. Therefore $(S, E) \subseteq ((S], E)$. Therefore $(S, E) \subseteq ((S], E)$. Hence (S, E) = ((S], E).

(10) Since $S_i \subseteq \bigcup_{i \in \Delta} S_i$, for all $i \in \Delta$, we get that $(\bigcup_{i \in \Delta} S_i, E) \subseteq (S_i, E)$, for all $i \in \Delta$. That implies $(\bigcup_{i \in \Delta} S_i, E) \subseteq \bigcap_{i \in \Delta} (S_i, E)$. Let $x \in \bigcap_{i \in \Delta} (S_i, E)$. Then $x \in (S_i, E)$, for all $i \in \Delta$. That implies $a \land x \in E$, for all $a \in S_i \subseteq \bigcup S_i$. That implies $\bigcap_{i \in \Delta} (S_i, E) \subseteq (\bigcup_{i \in \Delta} S_i, E)$. Therefore $\bigcap_{i \in \Delta} (S_i, E) = (\bigcup_{i \in \Delta} S_i, E)$. (11) Since E is an ideal in R, we have that $E \subseteq (T, E)$ and hence we get that $(S, E) \subseteq (S, (T, E))$. Since $S \cap T \subseteq S$, we get that $(S, (T, E)) \subseteq (S \cap T, (T, E))$. Therefore $(S, E) \subseteq (S \cap T, (T, E))$. (12) Let S, T be two non empty subsets of R such that $S \subseteq T$. Since $E \subseteq (T, E)$, we have that $(S, E) \subseteq (S, (T, E))$. Let $x \in (S, (T, E))$. Then $a \land x \in (T, E)$, for all $a \in S$. That implies $a \land x \in (S, E)$, for all $a \in S$. Since $a \land x \in (S, E)$, we get that $s \land (a \land x) \in E$, for all $s \in S$ and hence $a \land x \in E$, for all $a \in S$. Therefore $x \in (S, E)$ and hence $(S, (T, E)) \subseteq (S, E)$. Thus (S, (T, E)) = (S, E).

(13) Clearly, we have that $(S \cup T, E) \subseteq (S, E)$ and $E \subseteq (T, E)$. So that $(S, E) \subseteq (S, (T, E))$. Also

 $S \cap T \subseteq S$. It follows that $(S, (T, E)) \subseteq (S \cap T, E)$. Therefore $(S \cup T, E) \subseteq (S, (T, E)) \subseteq (S \cap T, E)$. (14) It is clear by (12).

Proposition 3.1. Let S and T be any two ideals of and ADL R. Then we have the following:

- (1) $(S, E) \cap ((S, E), E) = E$
- (2) $(S \lor T, E) = (S, E) \cap (T, E)$
- (3) $((S \cap T, E), E) \subseteq ((S, E), E) \cap ((T, E), E).$

Proof. (1) We have that $E \subseteq (S, E) \cap ((S, E), E)$. Let $x \in (S, E) \cap ((S, E), E)$. Then $x \in (S, E)$ and $x \in ((S, E), E)$. Since $x \in ((S, E), E)$), we have that $a \wedge x \in E$, for all $a \in (S, E)$. Since $x \in (S, E)$, we get that $x \in E$ and hence $(S, E) \cap ((S, E), E) \subseteq E$. Thus $(S, E) \cap ((S, E), E) = E$.

(2) Clearly, $S \subseteq S \lor T$ and $T \subseteq S \lor T$. Then $((S \lor T), E) \subseteq (S, E)$ and $((S \lor T), E) \subseteq (T, E)$. That implies $((S \lor T), E) \subseteq (S, E) \cap (T, E)$. Let $x \in (S, E) \cap (T, E)$. Then $x \in (S, E)$ and $x \in (T, E)$. That implies $s \land x \in E$, for all $s \in S$ and $t \land x \in E$, for all $t \in T$. That implies $(s \land x) \lor (t \land x) \in E$ and have $(s \lor t) \land x \in E$. Since $s \in S$ and $t \in T$, we get $s \lor t \in S \lor T$. Therefore $(s \lor t) \land x \in E$, for all $s \lor t \in S \lor T$. That implies $x \in (S \lor T, E)$. Therefore $(S, E) \cap (T, E) \subseteq (S \lor T, E)$. Hence $(S, E) \cap (T, E) = (S \lor T, E)$.

(3) Since $S \cap T \subseteq S$ and $S \cap T \subseteq T$, we get that $(S, E) \subseteq (S \cap T, E)$ and $(T, E) \subseteq (S \cap T, E)$. That implies $((S \cap T, E), E) \subseteq ((S, E), E)$ and $((S \cap T, E), E) \subseteq ((T, E), E)$. Hence $((S \cap T, E), E) \subseteq ((S, E), E) \cap ((T, E), E)$.

Theorem 3.7. For any non-empty subset S of an ADL R, $(S, E) = \bigcap_{s \in S} ((s], E)$.

Proof. Let $x \in \bigcap_{s \in S} ((s], E)$. Then $x \in ((s], E)$, for all $s \in S$. That implies $t \land x \in E$, for all $t \in (s]$ and for all $s \in S$. It follows that $s \land x \in E$ for all $s \in S$. Therefore $x \in (S, E)$. Hence $x \in \bigcap_{s \in S} ((s], E) \subseteq (S, E)$. Let s be any element of S. Take $t \in (s]$. Then $s \land t = t$. Now, $x \in (S, E)$. That implies $s \land x \in E$, for all $s \in S$. So that $t \land x = t \land s \land x \in E$, for all $t \in (s]$ and for all $s \in S$. Therefore $x \in ((s], E)$, for all $s \in S$. Therefore $x \in \bigcap_{s \in S} ((s], E)$, for all $s \in S$. Therefore $x \in \bigcap_{s \in S} ((s], E)$, and hence $(S, E) \subseteq \bigcap_{s \in S} ((s], E)$. Thus $(S, E) = \bigcap_{s \in S} ((s], E)$.

Corollary 3.5. Let $x \in R$ and S be arbitrary subset of R. Then $(S, (x]) = \bigcap_{a \in S} (a, (x])$.

Corollary 3.6. For any $x, y \in R$ we have the following:

(1) ((x], E) = (x, E)(2) $x \le y \Rightarrow (y, E) \subseteq (x, E)$ (3) $(x \lor y, E) = (x, E) \cap (y, E)$ (4) $((x \land y, E), E) = ((x, E), E) \cap ((y, E), E)$ (5) $(x, E) = R \Leftrightarrow x \in E.$ **Theorem 3.8.** Let G be an E-ideal of an ADL R. Then

- (1) $G \cap (G, E) = E$
- (2) $((G \lor (G, E)), E) = E.$

Proof. (1) It is clear.

(2) Clearly, $((G \lor (G, E)), E) \subseteq (G, E) \cap ((G, E), E)$. Let $a \in (G, E) \cap ((G, E), E)$. Let $b \in G \lor (G, E)$. Then $b = c \lor d$, for some $c \in G$ and $d \in (G, E)$. That implies $a \land c \in E$ and $a \land d \in E$. Now $a \land b = a \land (c \lor d) = (a \land c) \lor (a \land d) \in E$, for all $b \in G \lor (G, E)$. Therefore $a \in ((G \lor (G, E)), E)$ and hence $(G, E) \cap ((G, E), E) \subseteq ((G \lor (G, E)), E)$. Thus $E = (G, E) \cap ((G, E), E) = ((G \lor (G, E)), E)$.

Consider two ADLs R_1 and R_2 with zero elements 0 and 0' respectively. Let \mathcal{M} and \mathcal{M}' be denotes the set of all maximal elements of ADLs R_1 and R_2 respectively.

Lemma 3.4. Let R_1 and R_2 be two ADLs with $m \in M$ and $m' \in M'$. Then for any $(x, y) \in R_1 \times R_2$, we have the following:

- (1) $(x, y)^+ = (a)^+ \times (y)^+$
- (2) $(x, y)^+ = (m, m')$ if and only if $(x)^+ = M$ and $(y)^+ = M'$
- (3) $((x, y), E) = (a, E) \times (y, E).$

Let E_1 and E_2 be dual dense sets of R_1 and R_2 respectively. From the above result, it can be concluded that $E = E_1 \times E_2$ is a dual dense set of $R_1 \times R_2$. Further, every dual dense set of $R_1 \times R_2$ is form the form $E_1 \times E_2$.

Theorem 3.9. Let M_i be a prime E_i -ideals of ADLs R_i , for i = 1, 2. Then $M_1 \times R_2$ and $R_1 \times M_2$ are prime *E*-ideals of $R_1 \times R_2$.

Proof. Since $E_1 \subseteq M_1$ and $E_2 \subseteq M_2$, we get $E_1 \times E_2 \subseteq M_1 \times R_2$ and $E_1 \times E_2 \subseteq R_1 \times M_2$. That implies $M_1 \times R_2$ and $R_1 \times M_2$ are *E*-ideals of $R_1 \times R_2$. Let $(a, b), (c, d) \in R_1 \times R_2$ with $(a, b) \wedge (c, d) \in M_1 \times R_2$. Then $a \wedge c \in M_1$. Since M_1 is a prime E_1 -ideal of R_1 , we get $a \in M_1$ or $c \in M_1$. Thus $(a, b) \in M_1 \times R_2$ or $(c, d) \in M_1 \times R_2$. Therefore $M_1 \times R_2$ is a prime *E*-ideal of $R_1 \times R_2$.

Theorem 3.10. Let R_1 and R_2 be two ADLs with zero elements 0 and 0' respectively. For any prime *E*-ideal *P* of $R_1 \times R_2$, *P* is of the form $P_1 \times R_2$ or $R_1 \times P_2$, where P_i is a prime E_i -ideal of R_i , for i = 1, 2.

Proof. Let *P* be a prime *E*-ideal of $R_1 \times R_2$. Consider $P_1 = \pi_1(P) = \{x_1 \in R_1 \mid (x_1, x_2) \in P, \text{ for some } x_2 \in R_2\}$ and $P_2 = \pi_2(P) = \{x_2 \in R_2 \mid (x_1, x_2) \in P, \text{ for some } x_1 \in R_1\}$. It is easy to verify that P_i is E_i -ideals of R_i , for i = 1, 2. We first show that P_i is prime E_i -ideals of R_i , for i = 1, 2. We first show that P_i is prime E_i -ideals of R_i , for i = 1, 2. We first show that P_i is prime E_i -ideals of R_i , for i = 1, 2. Suppose $P_1 = R_1$ and $P_2 = R_2$. Let $(a, b) \in R_1 \times R_2$. Then there exist $x \in R_1$ and $y \in R_2$ such that $(a, y) \in P$ and $(x, b) \in P$. Since $(a, 0') \land (a, y) \in P$ and $(0, b) \land (x, b) \in P$, we get $(a, 0') \in P$.

and $(0, b) \in P$. Therefore $(a, b) = (a, 0') \lor (0, b) \in P$. Hence $P = R_1 \times R_2$, which is a contradiction to that P is proper. Next suppose that $P_1 \neq R_1$ and $P_2 \neq R_2$. Choose $a \in R_1 \setminus P_1$ and $b \in R_2 \setminus P_2$. Then $(a, y) \notin P$ for all $y \in R_2$ and $(x, b) \notin P_1$ for all $x \in R_1$. In particular, $(a, 0') \notin P$ and $(0, b) \notin P$. Since P is prime, we get $(0, 0') \notin P$, which is a contradiction. From the above observations, we get that either $P_1 = R_1$ and $P_2 \neq R_2$ or $P_1 \neq R_1$ and $P_2 = R_2$.

Case (i): Suppose $P_1 = R_1$ and $P_2 \neq R_2$. Let $x_2, y_2 \in R_2$ be such that $x_2 \wedge y_2 \in P_2$. Then there exists $a \in R_1 = P_1$ such that $(a, x_2 \wedge y_2) \in P$. Therefore $(a, x_2) \wedge (a, y_2) = (a \wedge a, (x_2 \wedge y_2)) = (a, x_2 \wedge y_2) \in P$. Since P is prime, we get $(a, x_2) \in P$ or $(a, y_2) \in P$. Hence $x_2 \in P_2$ or $y_2 \in P_2$. Therefore P_2 is a prime E_2 -ideal of R_2 . We now show that $P = R_1 \times P_2$. Clearly $P \subseteq R_1 \times P_2$. On the other hand, suppose $(a, y) \in R_1 \times P_2$. Since $P_1 = R_1$, there exists $b \in R_2$ such that $(a, b) \in P$ and there exists $x \in R_1$ such that $(x, y) \in P$. Since $(a, 0') \wedge (a, b) = (a, 0')$ and $(0, y) \wedge (x, y) = (0, y)$, we get $(a, 0') \in P$ and $(0, y) \in P$. Since P is an ideal, it gives $(a, y) = (a, 0') \vee (0, y) \in P$. Hence $R_1 \times P_2 \subseteq P$. Therefore $P = R_1 \times P_2$.

Case (ii): Suppose $P_1 \neq R_1$ and $P_2 = R_2$. Similarly, we can prove that P_1 is prime E_1 -ideal of R_1 and $P = P_1 \times R_2$.

Theorem 3.11. Let *S* be a sub ADL of an ADL *R* and *P* is a prime *E*-ideal of *S*. Then there exists a prime *E*-ideal *Q* of *R* such that $Q \cap S = P$.

Proof. Let *P* be a prime *E*-ideal of *S*. Then $S \setminus P$ is a prime filter of *S*. Consider I = (P]. Then $P \subseteq I \cap S$. Suppose $I \cap (S \setminus P) \neq \emptyset$. Choose $x \in I \cap (S \setminus P)$. Then $x \in I$ and $x \in (S \setminus P)$. Since $x \in I = (P]$, there exists $a_1 \lor a_2 \lor \ldots \lor a_n \in P$ such that $x = y \land (a_1 \lor a_2 \lor \ldots \lor a_n)$. Since *P* is an ideal of *S*, we get $a_1 \lor a_2 \lor \ldots \lor a_n \in P$ and hence $x \in P$. Since $x \in (S \setminus P)$, we get a contradiction. Hence $I \cap (S \setminus P) = \emptyset$. Then there exists a prime *E*-ideal *Q* of *R* such that $I \subseteq Q$ and $Q \cap (S \setminus P) = \emptyset$. Since $I \subseteq Q$, we get $I \cap S \subseteq Q \cap S$. Since $Q \cap (S \setminus P) = \emptyset$, we get $Q \subseteq P$. Hence, both observations lead to $P \subseteq I \cap S \subseteq Q \cap S \subseteq P \cap S \subseteq P$. Therefore $P = Q \cap S$.

Now, we have the following definition.

Definition 3.4. A prime E-ideal M of an ADL R containing an E-ideal G is said to be a minimal prime E-ideal belonging to G if there exists no prime E-ideal N such that $G \subseteq N \subseteq M$.

Note that if we take E = G in the above definition then we say that M is a minimal prime E-ideal.

Example 3.3. From the Example 3.2, we have that I_6 is a prime E-ideal and I_1 is a E-ideal of R. Clearly $I_1 \subseteq I_6$. Clearly there is no E-ideal N of R such that $I_1 \subseteq N \subseteq I_6$. Hence I_6 is a minimal prime E-ideal belonging to I_1 .

Proposition 3.2. Let G be an E-ideal and M, a prime E-ideal of R with $G \subseteq M$. Then M is a minimal prime E-ideal belonging to G if and only if $R \setminus M$ is a maximal filter with $(R \setminus M) \cap G = \emptyset$.

Proof. Clearly, $R \setminus M$ is a proper filter and we have $(R \setminus M) \cap G = \emptyset$. We prove that $R \setminus M$ is maximal. Let N be any proper filter of R such that $N \cap G = \emptyset$ and $R \setminus M \subseteq N$. Then $G \subseteq R \setminus N \subseteq M$. By the minimality of M, we get $R \setminus N = M$. Therefore $R \setminus M$ is a maximal filter with respect to the property $(R \setminus M) \cap G = \emptyset$. Conversely, assume that $R \setminus M$ be a maximal filter with respect to the property $(R \setminus M) \cap G = \emptyset$. We prove that M is minimal. If N is any prime E-ideal of R such that $E \subseteq G \subseteq N \subseteq M$. Clearly, $R \setminus N$ is a filter such that $R \setminus M \subseteq R \setminus N$ and $(R \setminus N) \cap G = \emptyset$, which is a contradiction. Therefore M is a minimal prime E-ideal belonging to G.

Theorem 3.12. Let G be an E-ideal and M, a prime E-ideal of R with $G \subseteq M$. Then M is a minimal prime E-ideal belonging to G if and only if for any $a \in M$, there exists $b \notin M$ such that $a \land b \in G$.

Proof. Assume that M is a minimal prime E-ideal belonging to G. Then $R \setminus M$ is a maximal filter with respect to the property that $(R \setminus M) \cap G = \emptyset$. Let $a \in M$. Then $a \notin R \setminus M$. That implies $R \setminus M \subset (R \setminus M) \vee [a)$. By the maximality of $R \setminus M$, we get that $((R \setminus M) \vee [a)) \cap G \neq \emptyset$. Choose $s \in ((R \setminus M) \vee [a)) \cap G$. Then there exists $b \in R \setminus M$ such that $s = b \wedge a$ and $s \in G$. Therefore $b \wedge a \in G$. Conversely, assume that for any $a \in M$, there exists $b \notin M$ such that $a \wedge b \in G$. Suppose M is not a minimal prime E-ideal belonging to G. Then there exists a prime E-ideal N of R such that $E \subseteq G \subseteq N \subseteq M$. Choose $a \in M \setminus N$. Then, by the our assumption, there exists $b \notin M$ such that $a \wedge b \in G \subseteq N$. Since $a \notin N$, we get that $b \in N \subseteq M$, which is a contradiction. Therefore M is a minimal prime E-ideal belonging to G.

Corollary 3.7. A prime *E*-ideal *M* of an ADL *R* is minimal if and only if for any $a \in M$ there exists $b \notin M$ such that $a \land b \in E$.

Definition 3.5. For any prime *E*-ideal *M* of *R*, define the set $\mathcal{O}^{E}(M)$ as follows:

 $\mathcal{O}^{E}(M) = \{ x \in R \mid x \in (y, E), \text{ for some } y \notin M \}.$

Clearly, observe that $\mathcal{O}^{E}(M) = \bigcup_{y \notin M} (y, E).$

Lemma 3.5. Let M be prime E-ideal of an ADL R. Then $\mathcal{O}^{E}(M)$ is an E-ideal such that $\mathcal{O}^{E}(M)$ is contained in M.

Proof. Let $a, b \in \mathcal{O}^{E}(M)$. There exist elements $s \notin M$ and $t \notin M$ such that $a \in (s, E)$ and $b \in (t, E)$. That implies $((s, E), E) \subseteq (a, E)$ and $((t, E), E) \subseteq (b, E)$. So that $((s \land t, E), E) = ((s, E), E) \cap ((t, E), E) \subseteq (a, E) \cap (b, E) = (a \lor b, E)$. Hence $a \lor b \in ((a \lor b, E), E) \subseteq (((s \land t, E), E), E) = (s \land t, E)$. Since $s \land t \notin M$, we get that $a \lor b \in \mathcal{O}^{E}(M)$. Let $a \in \mathcal{O}^{E}(M)$ and $b \leq a$. There exists $s \notin M$ such that $a \in (s, E)$. Since (s, E). Since (s, E) is an ideal, we get that $b \in (s, E)$. Therefore $b \in \mathcal{O}^{E}(M)$ and hence $\mathcal{O}^{E}(M)$ is an ideal of R. Clearly, we have that $E \subseteq \mathcal{O}^{E}(M)$. Thus $\mathcal{O}^{E}(M)$ is an E-ideal of R. Let $a \in \mathcal{O}^{E}(M)$. Then there exists $s \notin M$ such that $a \in (s, E)$. That implies $a \land s \in E \subseteq M$. Since M is prime, we get that $a \in M$. Hence $\mathcal{O}^{E}(M) \subseteq M$. □ **Corollary 3.8.** For any prime E-ideal M of R, M is minimal if and only if $\mathcal{O}^{E}(M) = M$.

Theorem 3.13. Every minimal prime E-ideal of R belonging to $\mathcal{O}^{E}(M)$ is contained in M.

Proof. Let *N* be any minimal prime *E*-ideal belonging to $\mathcal{O}^{E}(M)$. We prove that $N \subseteq M$. Suppose $N \nsubseteq M$. Choose $a \in N \setminus M$. Then there exists $b \notin N$ such that $a \wedge b \in \mathcal{O}^{E}(M)$. Hence $a \wedge b \in (s, E)$, for some $s \notin M$. That implies $b \wedge (a \wedge s) \in E \subseteq M$. Since $a \notin M, s \notin M$, and *M* is prime, we get $a \wedge s \notin M$. Therefore $b \in \mathcal{O}^{E}(M) \subseteq N$, which is a contradiction. Hence $N \subseteq M$.

Theorem 3.14. For any prime E-ideal M of an ADL R, $\mathcal{O}^{E}(M)$ is the intersection of all minimal prime E-ideals contained in M.

Proof. Let *M* be a prime *E*-ideal of *R*. By Zorn's lemma, *M* contains a minimal prime *E*-ideal. Let $\{S_{\alpha}\}_{\alpha\in\Delta}$ be the set of all minimal prime *E*-ideals contained in *M*. Let $x \in \mathcal{O}^{E}(M)$. Then $x \in (a, E)$, for some $a \notin M$. Since each $S_{\alpha} \subseteq M$, we have that $a \notin S_{\alpha}$, for all $\alpha \in \Delta$. Since $x \land a \in E \subseteq S_{\alpha}$ and $a \notin S_{\alpha}$, for all $\alpha \in \Delta$, we get $x \in S_{\alpha}$ for all $\alpha \in \Delta$. Hence $x \in \bigcap_{\alpha \in \Delta} S_{\alpha}$. Therefore $\mathcal{O}^{E}(M) \subseteq \bigcap_{\alpha \in \Delta} S_{\alpha}$. Let $x \notin \mathcal{O}^{E}(M)$. Consider $S = (R \setminus M) \lor [x]$. Suppose $E \cap S \neq \emptyset$. Choose $a \in E \cap S$. Since $a \in S$, we get $a = t \land x$, for some $t \in R \setminus M$. Since $a \in E$, we get that $t \land x \in E$. Hence $x \in (t, E)$, where $t \notin M$. Thus $x \in \mathcal{O}^{E}(M)$, which is a contradiction. Therefore $S \cap E = \emptyset$. Let *M* be a maximal filter such that $S \subseteq M$ and $M \cap E = \emptyset$. Then $R \setminus M$ is a minimal prime *E*-ideal such that $R \setminus M \subseteq M$ and $x \notin R \setminus M$, since $x \in S \subseteq M$. Hence $x \notin \bigcap_{\alpha \in \Delta} S_{\alpha}$. Therefore $\bigcap_{\alpha \in \Delta} S_{\alpha} \subseteq \mathcal{O}^{E}(M)$.

Proposition 3.3. Let M_1 and M_2 be two prime *E*-ideals in an ADL *R* with $M_1 \subseteq M_2$. Then $\mathcal{O}^E(M_2) \subseteq \mathcal{O}^E(M_1)$.

Proof. Let $x \in \mathcal{O}^{E}(M_{2})$. Then there exists an element $a \notin M_{2}$ such that $x \in (a, E)$. That implies $x \in (a, E)$ and $a \notin M_{1}$. So that $x \in \mathcal{O}^{E}(M_{1})$. Therefore $\mathcal{O}^{E}(M_{2}) \subseteq \mathcal{O}^{E}(M_{1})$.

Proposition 3.4. For any non zero element $a \in R$ with $a \notin E$, there is a minimal prime *E*-ideal not containing *a*.

Proof. Let *a* be any non zero element of *R* with $a \notin E$. By Corollary 3.2, there exists a prime *E*-ideal *P* of *R* such that $a \notin P$. Consider $\mathfrak{F} = \{Q \mid Q \text{ is a prime } E - \text{ ideal of } R, a \notin Q \text{ and } Q \subseteq P\}$. It satisfies the hypothesis of Zorn's Lemma. So that \mathfrak{F} has a minimal element say *M*. i.e. *M* is minimal and $a \notin M$.

Theorem 3.15. For any prime E-ideal M of an ADL R, the following are equivalent:

- (1) *M* is minimal prime *E*-ideal
- (2) $M = \mathcal{O}^E(M)$
- (3) for any $x \in R$, M contains precisely one of x or (x, E).

Proof. (1) \Rightarrow (2) Assume (1). Let $x \in M$. Then there exists $y \notin M$ such that $x \land y \in E$. This implies that $x \in \mathcal{O}^{E}(M)$. So that $M \subseteq \mathcal{O}^{E}(M)$. Since $\mathcal{O}^{E}(M) \subseteq M$, we get that $M = \mathcal{O}^{E}(M)$.

(2) \Rightarrow (3) Assume (2). Let $x \in R$. Suppose $x \notin M$. Let $a \in (x, E)$. Then $a \land x \in E$. That implies $a \land x \in M$. So that $a \in M$. Since $x \notin M$. Therefore $(x, E) \subseteq M$.

(3) ⇒ (1) Let *Q* be any prime *E*-ideal of *R* with $Q \subsetneq M$. Then choose $x \in M$ such that $x \notin Q$. That implies $(x, E) \subseteq Q \subsetneq M$. So that $(x, E) \subsetneq M$ which is a contradiction.

Corollary 3.9. Let P be a minimal prime E-ideal of an ADL R and $a \in R$. Then $a \in P$ if and only if $((a, E), E) \subseteq P$.

Proof. Assume that $a \in P$. Then $(a, E) \nsubseteq P$. Let $t \in ((a, E), E)$. Then $(a, E) \subseteq (t, E)$. Suppose $t \notin P$. Then $(a, E) \subseteq (t, E) \subseteq P$, which is a contradiction. That implies $t \in P$, which gives $((a, E), E) \subseteq P$. The converse follows from the fact that $a \in ((a, E), E)$.

Definition 3.6. An ADL R with maximal elements is called an E- semi complemented if for each non maximal element $x \in R$, there exists a non zero element $y \notin E$ such that $x \land y \in E$.

Example 3.4. From the Example 3.2, clearly we have that R is an E-semi complemented ADL.

Theorem 3.16. Let R be an ADL with maximal elements. Then R is E-semi complemented if and only if the intersection of all maximal filters disjoint with E is M.

Proof. Assume that *R* is *E*-semi complemented. Consider

 $K = \bigcap \{ M \mid M \text{ is a maximal filter of } R \text{ and } M \cap E = \emptyset \}.$

We have to prove that $K = \mathcal{M}$. Let $x \in K$ with x is not a maximal element. Then $x \in M$, for all maximal filter M disjoint with E. Then $x \notin E$. Since x is non maximal and R is E- semi complemented, there exists a non zero element $y \notin E$ such that $x \wedge y \in E$. Then $x \wedge y \notin M$. That implies $M \vee [x \wedge y) = R$. Since $y \notin E$, there exists a minimal prime E-ideal N of R such that $y \notin N$. That implies $y \in R \setminus N$ and $(R \setminus N) \cap E = \emptyset$, where $R \setminus N$ is maximal filter of R. So that $x, y \in R \setminus N$. We have $x \wedge y \in R \setminus N$. Therefore $(R \setminus N) \cap E \neq \emptyset$, which is a contradiction. Therefore x is a maximal element. Hence $K = \mathcal{M}$. Conversely, assume that $\bigcap \{M \mid M \text{ is a maximal filter of } R \text{ and } M \cap E = \emptyset \} = \mathcal{M}$. Let x be any non maximal element of R. Then there exists a maximal filter M such that $x \notin M$ and $M \cap E = \emptyset$. That implies $M \vee [x) = R$. So that $a \wedge x = 0$, for some $a \in M$. Since $a \in M$ and $M \cap E = \emptyset$, we get $a \notin E$. Clearly, $a \wedge x \in E$. That is, for any non maximal element x of R, there exists a non zero element $a \notin E$ such that $a \wedge x \in E$. Hence R is E-semi complemented.

Definition 3.7. An ADL R is said to be E-normal if for any $a, b \in R$ such that $a \land b \in E$, there exists $x \in (a, E)$ and $y \in (b, E)$ such that $x \lor y$ is maximal.

From the Example 3.2, clearly we have that R is a D-normal ADL. The following result is a direct consequence of the above definition.

Theorem 3.17. *R* is *E*-normal if and only if $(a, E) \lor (b, E) = R$, for any $a, b \in R$, with $a \land b \in E$.

Definition 3.8. Two *E*-ideals G_1 and G_2 of *R* are said to be co-maximal if $G_1 \lor G_2 = R$.

Example 3.5. From the Example 3.2, we have that I_2 , I_3 , I_4 , I_5 are *E*-ideals of *R*. Clearly, $I_4 \lor I_5 = R$. Therefore I_4 and I_5 are co-maximal. Also, we have $I_2 \lor I_3 \neq R$. Therefore I_2 , I_3 are not co-maximal.

Theorem 3.18. In an ADL R, the following are equivalent:

- (1) for any $a, b \in R$ with $a \wedge b \in E$, $(a, E) \lor (b, E) = R$
- (2) for any $a, b \in R$, $(a, E) \lor (b, E) = (a \land b, E)$
- (3) any two distinct minimal prime E-ideals are co-maximal
- (4) every prime E-ideal contains a unique minimal prime E-ideal
- (5) for any prime *E*-ideal *P*, $\mathcal{O}^{E}(P)$ is prime.

Proof. (1) \Rightarrow (2) Assume (1). Let $a, b \in R$ with $x \in (a \land b, E)$. Then $x \land (a \land b) \in E$ and hence $(x \land a) \land (x \land b) \in E$. By (1), we have that $(x \land a, E) \lor (x \land b, E) = R$. That implies $x \in (x \land a, E) \lor (x \land b, E)$. Then there exists $r \in (x \land a, E)$ and $s \in (x \land b, E)$ such that $x = r \lor s$. Since $r \in (x \land a, E)$, $s \in (x \land b, E)$ we get that $r \land x \in (a, E)$ and $s \land x \in (b, E)$. That implies $(x \land r) \lor (x \land s) \in (a, E) \lor (b, E)$ and hence $x \land (r \lor s) \in (a, E) \lor (b, E)$. Since $x = r \lor s$, we get that $x \in (a, E) \lor (b, E)$. Therefore $(a \land b, E) \subseteq (a, E) \lor (b, E)$. Since $(a, E) \lor (b, E) \subseteq (a \land b, E)$, we get that $(a, E) \lor (b, E) = (a \land b, E)$, for all $a, b \in R$.

 $(2) \Rightarrow (3)$ Assume (2). Let *M* and *N* be two distinct minimal prime *E*-ideals of *R*. Choose elements $x, y \in R$ such that $x \in M \setminus N$ and $y \in N \setminus M$. Since *M* and *N* are minimal, $x \land a \in E$, $y \land b \in E$, for some $a \notin M$, $b \notin N$. That implies $x \land a \land y \land b \in E$ and hence $R = (x \land a \land y \land b, E)$. By (2), we get that $(x \land b, E) \lor (a \land y, E) = R$. Since $a \notin M$ and $y \notin M$, we get that $a \land y \notin M$. That implies $(a \land y, E) \subseteq M$. Similarly, we have that $(x \land b, E) \subseteq N$. That implies $((x \land b) \land (a \land y), E) \subseteq M \lor N$ and hence $R = M \lor N$. Therefore *M* and *N* are co-maximal.

(3) \Rightarrow (4) Assume (3). Let *M* be a prime *E*-ideal of *R*. Suppose *M* contains two distinct minimal prime *E*-ideals, say N_1 and N_2 . By (3), we get that $R = N_1 \vee N_2 \subseteq M$, we get a contradiction. Therefore every prime *E*-ideal contains a unique minimal prime *E*-filter.

(4) \Rightarrow (5) Assume that every prime *E*-ideal of *R* contains a unique minimal prime *E*-ideal. Then by Corollary 3.8, we get that $\mathcal{O}^{E}(P)$ is a prime *E*-ideal.

(5) ⇒ (1) Assume (5). Let $a, b \in R$ be such that $a \land b \in E$. Suppose $(a, E) \lor (b, E) \neq R$. Then there exists a maximal *E*-ideal *M* such that $(a, E) \lor (b, E) \subseteq M$. That implies $(a, E) \subseteq M$ and $(b, E) \subseteq M$. That implies $a \notin \mathcal{O}^{E}(M)$ and $b \notin \mathcal{O}^{E}(M)$. Since $\mathcal{O}^{E}(M)$ is prime, we get $a \land b \notin \mathcal{O}^{E}(M)$. So that $E \notin \mathcal{O}^{E}(M)$, which is a contradiction. Therefore $(a, E) \lor (b, E) = R$.

Theorem 3.19. In an ADL R with maximal elements, the following conditions are equivalent:

(1) R is E-normal

- (2) for any two distinct maximal filters G_1 and G_2 of R with $G_1 \cap E = \emptyset$, $G_2 \cap E = \emptyset$ there exist $a \notin G_1$ and $b \notin G_2$ such that $a \lor b$ is maximal
- (3) for any maximal filter G with $G \cap E = \emptyset$, G is the unique maximal filter containing $R \setminus \mathcal{O}^{E}(P)$.

Proof. (1) \Rightarrow (2) Assume that *R* is *E*-normal.

Let G_1 and G_2 be two distinct maximal filters of R with $G_1 \cap E = \emptyset$, $G_2 \cap E = \emptyset$. Then $R \setminus G_1$ and $R \setminus G_2$ are distinct minimal prime E-ideals of R. By our assumption, we get $R \setminus G_1$ and $R \setminus G_2$ are co-maximal. That is, $(R \setminus G_1) \vee (R \setminus G_2) = R$. Then, there exist $a \in R \setminus G_1$ and $b \in R \setminus G_2$ such that $a \vee b$ is maximal.

(2) \Rightarrow (3) Assume (2). Let *G* be any maximal filter of *R* with $G \cap E = \emptyset$ and $R \setminus \mathcal{O}^{E}(P) \subseteq G$. Let G_1 be any maximal filter of *R* with $G_1 \cap E = \emptyset$ and $R \setminus \mathcal{O}^{E}(P) \subseteq G_1$. We prove that $G = G_1$. Suppose $G \neq G_1$. By our assumption, there exists $a \notin G$ and $b \notin G_1$ such that $a \lor b$ is maximal. That implies $a, b \notin R \setminus \mathcal{O}^{E}(P)$. So that $a, b \in \mathcal{O}^{E}(P)$. This implies that $a \lor b \in \mathcal{O}^{E}(P)$. Therefore $\mathcal{O}^{E}(P) = R$, which is a contradiction. We conclude that $G = G_1$.

(3) \Rightarrow (1) For any maximal filter G with $G \cap E = \emptyset$, G is the unique maximal filter containing $R \setminus \mathcal{O}^{E}(P)$. Let P be a prime E-ideal of R. Suppose P contains two minimal prime E-ideals say Q_1 and Q_2 . That is, $Q_1 \subseteq P$ and $Q_2 \subseteq P$. That implies $\mathcal{O}^{E}(P) \subseteq \mathcal{O}^{E}(Q_1)$ and $\mathcal{O}^{E}(P) \subseteq \mathcal{O}^{E}(Q_2)$. We get $P \subseteq \mathcal{O}^{E}(Q_1)$ and $P \subseteq \mathcal{O}^{E}(Q_2)$. So that $Q_2 \subseteq Q_1$ and $Q_1 \subseteq Q_2$. This concludes that $Q_1 = Q_2$.

Let *F* be a filter of *R*. For any $x, y \in R$, define a binary relation ϕ_F on *R* as $\phi_F = \{(x, y) \in R \times R \mid x \land a = y \land a$, for some $a \in F\}$.

Proposition 3.5. For any filter F of an associative ADL R, ϕ_F is a congruence relation on R.

For any ADL *R*, it can be easily verified that the quotient R/ϕ_F is also an ADL with respect to the following operations: $[a]_{\phi_F} \wedge [b]_{\phi_F} = [a \wedge b]_{\phi_F}$ and $[a]_{\phi_F} \vee [b]_{\phi_F} = [a \vee b]_{\phi_F}$ where $[a]_{\phi_F}$ is the congruence class of *a* modulo ϕ_F . It can be routinely verified that the mapping $\Phi : R \to R/\phi_F$ defined by $\Phi(a) = [a]_{\phi_F}$ is a homomorphism.

Theorem 3.20. In an ADL R, we have the following:

- (1) if x is a dual dense element of R, then $[x]_{\phi_F}$ is a dual dense element of R/ϕ_F
- (2) if G is a E-ideal of R/ϕ_F , then $\Phi^{-1}(G)$ is a E-ideal of R
- (3) if G is a prime E-ideal of R/ϕ_F , then $\Phi^{-1}(G)$ is a prime E-ideal of R.

Definition 3.9. Let F be a filter of an ADL R. For any ideal G of R, define $\widetilde{G} = \{[a]_{\phi_F} \mid a \in G\}$.

The following result can be proved easily.

Lemma 3.6. Let G be an E-ideal of R. Then G is an E-ideal of R/ϕ_F .

Proposition 3.6. Let *G* be a prime *E*-ideal and *F* a filter of an ADL *R* such that $G \cap F = \emptyset$. We have the following:

- (1) $x \in G$ if and only if $[x]_{\phi_F} \in \widetilde{G}$
- (2) $\widetilde{G} \cap \widetilde{F} = \emptyset$
- (3) if G is a prime E-ideal of R, then \widetilde{G} is a prime E-ideal of $R/_{\phi_F}$.

Proof. (1) Assume that $x \in G$. Then we have $[x]_{\phi_F} \in \widetilde{G}$. Conversely assume that $[x]_{\phi_F} \in \widetilde{G}$. Then there exists $y \in G$ such that $[x]_{\phi_F} = [y]_{\phi_F}$. That implies $(x, y) \in \phi_F$. So there exists $a \in F$ such that $x \land a = y \land a \in G$. Since $G \cap F = \emptyset$, we get $a \notin G$. Since $x \land a \in G$ and $a \notin G$, we get that $x \in G$. (2) Suppose $\widetilde{G} \cap \widetilde{F} \neq \emptyset$. Then choose an element $x \in R$ such that $[x]_{\phi_F} \in \widetilde{G} \cap \widetilde{F}$. Then $[x]_{\phi_F} \in \widetilde{G}$ and $[x]_{\phi_F} \in \widetilde{F}$. Since $[x]_{\phi_F} \in \widetilde{G}$ and by (1), we get $x \in G$. Since $[x]_{\phi_F} \in \widetilde{F}$, there exists $y \in F$ such that $[x]_{\phi_F} = [y]_{\phi_F}$. Then $(x, y) \in \phi_F$. So there exist $a \in F$ such that $x \land a = y \land a$. Since $y \land a \in F$, we get that $x \land a \in F$. Since $x \in G$, we have that $x \land a \in G \cap F$. That implies $G \cap F \neq \emptyset$, we get a contradiction. Hence $\widetilde{G} \cap \widetilde{F} = \emptyset$.

(3) Clearly, we have that \widetilde{G} is a proper ideal of $R/_{\phi_F}$. Let $[x]_{\phi_F} \in \widetilde{E}$. Then $x \in E \subseteq G$. That implies $[x]_{\phi_F} \in G$ and hence \widetilde{G} is an *E*-ideal of $R/_{\phi_F}$. Let $[x]_{\phi_F}, [y]_{\phi_F} \in R/_{\phi_F}$ such that $[x]_{\phi_F} \wedge [y]_{\phi_F} \in \widetilde{G}$. Then $[x \wedge y]_{\phi_F} \in \widetilde{G}$. By (1) we have that $x \wedge y \in G$. Since *G* is prime, we get that $x \in G$ or $y \in G$. Again by(1) we get that $[x]_{\phi_F} \in \widetilde{G}$ or $[y]_{\phi_F} \in \widetilde{G}$. Hence \widetilde{G} is a prime *E*-ideal in $R/_{\phi_F}$.

Proposition 3.7. Let *F* be a filter of an ADL *R*. Then there is an order isomorphism of the set of all prime *E*-ideals of *R* disjoint from *F* onto the set of all prime *E*-ideals of $R/_{\phi_F}$.

Proof. Let *G* and *H* be two prime *E*-ideals of *R* such that $G \cap F = \emptyset$ and $H \cap F = \emptyset$. Then by Proposition 3.6(1), we get that $G \subseteq H$ if and only if $\tilde{G} \subseteq \tilde{H}$. Let *G* be a prime *E*-ideal of *R* with $G \cap F = \emptyset$. Then by Proposition 3.6(3), we get that \tilde{G} is a prime *E*-ideal of R/ϕ_F . Let *Q* be a prime *E*-ideal of R/ϕ_F . Consider $G = \{a \in R | [a]\phi_F \in Q\}$. Since *Q* is a *E*-ideal of R/ϕ_F , we get that *G* is a *E*-ideal of *R*. Let *a*, *b* \in *R* with $a \wedge b \in G$. Then $[a]\phi_F \wedge [b]\phi_F = [a \wedge b]\phi_F \in Q$. Since *Q* is prime, we get $[a]_{\phi_F} \in Q$ or $[b]_{\phi_F} \in Q$. Therefore $a \in G$ or $b \in G$. Hence *G* is a prime *E*-ideal of *R*. Clearly $\tilde{G} = Q$. Suppose $G \cap F \neq \emptyset$. Then choose an element $s \in G \cap F$. That implies $[s]_{\phi_F} \in Q$ and $s \in F$. Let $[b]_{\phi_F} \in R/\phi_F$. Since $s \in F$ and $b \wedge s = b \wedge s \wedge s$, we get that $(b, b \wedge s) \in F$. That implies $[b]_{\phi_F} = [b \wedge s]_{\phi_F} = [b]_{\phi_F} \wedge [s]_{\phi_F} \in Q$. Therefore $[b]_{\phi_F} \in Q$. and hence $R/\phi_F = Q$, which is a contradiction. Thus $G \cap F = \emptyset$.

Corollary 3.10. Let *R* be an ADL. Then the above map induces a one-to-one correspondence between the set of all minimal prime *E*-ideals of *R* which are disjoint from *F* and the set of all minimal prime *E*-ideals of $R/_{\phi_E}$.

Theorem 3.21. For any filter F of an ADL R, the following are equivalent:

- (1) any two distinct minimal prime E-ideals of R are co-maximal
- (2) any two distinct minimal prime E-ideals of $R/_{\phi_F}$ are co-maximal.

Proof. (1) \Rightarrow (2) Assume (1). Let G_1, G_2 be two distinct minimal prime *E*-ideals of R/ϕ_F . Then by the corollary 3.10, there exist two minimal prime *E*-ideals H_1 and H_2 of *R* such that $H_1 \cap F = \emptyset$ and $H_2 \cap F = \emptyset$. Also $\widetilde{H_1} = G_1$ and $\widetilde{H_2} = G_2$. Since G_1 and G_2 are distinct, we get that H_1 and H_2 are distinct. By the assumption, we have $H_1 \vee H_2 = R$. Let $a \in R$. There exist $a_1 \in H_1$ and $a_2 \in H_2$ such that $a = a_1 \vee a_2$. Since $a_1 \in H_1$ and $a_2 \in H_2$ we get $[a_1]_{\phi_F} \in \widetilde{H_1} = G_1$ and $[a_2]_{\phi_F} \in \widetilde{H_2} = G_2$. Now, $[a]_{\phi_F} = [a_1 \vee a_2]_{\phi_F} = [a_1]_{\phi_F} \vee [a_2]_{\phi_F} \in G_1 \vee G_2$. That implies $[a]_{\phi_F} \in G_1 \vee G_2$, for all $a \in R$. Therefore $G_1 \vee G_2 = R/\phi_F$. (2) \Rightarrow (1) Assume (2). Let *P* be a prime *E*-ideal of *R*. Suppose *P* contains two distinct minimal prime

(2) \Rightarrow (1) Assume (2). Let *P* be a prime *E*-ideal of *R*. Suppose *P* contains two distinct minimal prime *E*-ideals, say G_1 and G_2 . Consider $K = R \setminus P$. Clearly *K* is a filter of *R* and $G_1 \cap K = \emptyset = G_2 \cap K$. By Corollary 3.10, we get that $\widetilde{G_1}$ and $\widetilde{G_2}$ are distinct minimal prime *E*-ideals of $R/_{\phi_F}$ such that $\widetilde{G_1}, \widetilde{G_2} \subseteq \widetilde{P}$. That implies \widetilde{P} is containing two distinct minimal prime *E*-ideals of $R/_{\phi_F}$, which is a contradiction. Hence *P* contains a unique minimal prime *E*-ideal. By Theorem 3.18, any two distinct minimal prime *E*-ideals of *R* are co-maximal.

4. On the space prime E-ideals

In this section, some topological properties of the space of all prime *E*-ideals and the space of all minimal prime *E*-ideals of an ADL are studied.

Let us denote the set of all prime *E*-ideals of an ADL *R* by $Spec_{I}^{E}(R)$. For any $A \subseteq R$, define $\alpha(A) = \{P \in Spec_{I}^{E}(R) | A \notin P\}$ and for any $a \in R$, $\alpha(a) = \{P \in Spec_{I}^{E}(R) | a \notin P\}$. Then we have the following result whose proof is straightforward.

Lemma 4.1. Let R be an ADL and $a, b \in R$. Then the following conditions hold:

(1) $\bigcup_{a \in R} \alpha(a) = Spec_{I}^{E}(R)$ (2) $\alpha(a) \cap \alpha(b) = \alpha(a \land b)$ (3) $\alpha(a) \cup \alpha(b) = \alpha(a \lor b)$ (4) $\alpha(a) = \emptyset \text{ if and only if } a \in E$ (5) $\alpha(a) = Spec_{I}^{E}(R) \text{ if and only if } a \in \mathcal{M}.$

From the above result, it can be easily observed that the collection $\{\alpha(a)|a \in R\}$ forms a base for a topology on $Spec_{I}^{E}(R)$. The topology generated by this base is precisely $\{\alpha(A \mid A \subseteq R\}$ and is called the hull-kernel topology on $Spec_{I}^{E}(R)$. Under this topology, we have the following result.

Theorem 4.1. In an ADL R, we have the following:

- (1) for any $a \in R$, $\alpha(a)$ is compact in $Spec_{L}^{E}(R)$
- (2) if C is a compact open subset of $Spec_{L}^{E}(R)$, then $C = \alpha(a)$ for some $a \in R$
- (3) $Spec_{I}^{E}(R)$ is a T_{0} -space
- (4) the map $a \mapsto \alpha(a)$ is an epimorphism from R onto the lattice of all compact open subsets of $Spec_{l}^{E}(R)$.

Proof. (1) Let $a \in R$. Let $X \subseteq R$ be such that $\alpha(a) \subseteq \bigcup_{x \in X} \alpha(x)$. Let J be a E-ideal generated by the set X. Suppose $a \notin J$. Then there exists a prime E-ideal P such that $J \subseteq P$ and $a \notin P$. Since $X \subseteq J \subseteq P$, we get $P \notin \alpha(x)$ for all $x \in X$. Since $a \notin P$, we get $P \in \alpha(a)$, which is a contradiction. Hence $a \in J$. So we can write $a = (\bigvee_{i=1}^{n} x_i) \wedge a$ for some $x_1, x_2, \ldots, x_n \in X$ and $n \in N$. Then, we get $\alpha(a) = \alpha((\bigvee_{i=1}^{n} x_i) \wedge a) \subseteq \alpha(\bigvee_{i=1}^{n} x_i) = \bigcup_{i=1}^{n} \alpha(x_i)$ which is finite subcover for $\alpha(a)$. Therefore $\alpha(a)$ is compact.

(2) Let *C* be a compact open subset of $Spec_{I}^{E}(R)$. Since *C* is open, we get $C = \bigcup_{x \in X} \alpha(x)$ for some $X \subseteq R$. Since *C* is compact, there exist $x_{1}, x_{2}, \ldots, x_{n} \in X$ such that $C = \bigcup_{i=1}^{n} \alpha(x_{i}) = \alpha(\bigvee_{i=1}^{n})$ Therefore $C = \alpha(x)$ for some $x \in R$.

(3) Let *P* and *Q* be two distinct prime *E*-ideals of *R*. Without loss of generality, assume that $P \nsubseteq Q$. Choose $x \in R$ such that $x \in P$ and $x \notin Q$. Hence $P \notin \alpha(x)$ and $Q \in \alpha(x)$. Therefore $Spec_{I}^{E}(R)$ is a T_{0} -space.

(4) It can be obtained from (1), (2) and by the above lemma.

Proposition 4.1. In an ADL R, the following are equivalent:

- (1) $Spec_{l}^{E}(R)$ is a Hausdorff space
- (2) for each $P \in Spec_{L}^{E}(R)$, P is the unique member of $Spec_{L}^{E}(R)$ such that $\mathcal{O}^{E}(P) \subseteq P$
- (3) every prime E-ideal is minimal
- (4) every prime E-ideal is maximal.

Proof. (1) \Rightarrow (2) Assume (1). Let $P \in Spec_{I}^{E}(R)$. Clearly $\mathcal{O}^{E}(P) \subseteq P$. Suppose $Q \in Spec_{I}^{E}(R)$ such that $Q \neq P$ and $\mathcal{O}^{E}(P) \subseteq Q$. Since $Spec_{E}^{I}(R)$ is Hausdorff, there exists $a, b \in R$ such that $P \in \alpha(a), Q \in \alpha(b)$ and $\alpha(a \wedge b) = \alpha(a) \cap \alpha(b) = \emptyset$. Hence $a \notin P, b \notin Q$ and $a \wedge b \in E$. Therefore $b \in \mathcal{O}^{E}(P) \subseteq Q$, which is a contradiction to that $b \notin Q$. Hence P = Q. Therefore P is the unique member of $Spec_{I}^{E}(R)$ such that $\mathcal{O}^{E}(P) \subseteq P$.

(2) \Rightarrow (3) Assume (2). Let *P* be a prime *E*-ideal of *R*. Let *Q* be a prime *E*-ideal in *R* such that $Q \subseteq P$. Hence $\mathcal{O}^E(Q) \subseteq Q \subseteq P$. Therefore *P* is a minimal prime *E*-ideal of *R*.

 $(3) \Rightarrow (4)$ It is clear.

(4) \Rightarrow (1) Assume (4). Let *P* and *Q* be two distinct elements of $Spec_{I}^{E}(R)$. Hence $\mathcal{O}^{E}(Q) \notin P$. Choose $a \in \mathcal{O}^{E}(Q)$ such that $a \notin P$. Since $a \in \mathcal{O}^{E}(Q)$, there exists $b \notin Q$ such that $a \in (b, E)$. Hence $a \wedge b \in E$. Thus it yields, $P \in \alpha(a), Q \in \alpha(b)$. Since $a \wedge b \in E$, we get that $\alpha(a) \cap \alpha(b) = \alpha(a \wedge b) = \emptyset$. Therefore $Spec_{I}^{E}(R)$ is Hausdorff.

Theorem 4.2. For any *E*-ideal *G* of an ADL *R*, $(G, E) = \bigcap \{P \in Spec_l^E(R) \mid G \notin P\}$.

Proof. Let G be an E-ideal of L. Consider $K = \bigcap \{P \in Spec_I^E(R) \mid G \nsubseteq P\}$. Let $P \in \alpha(G)$. Then $G \nsubseteq P$. Since $G \cap (G, E) = E \subseteq P$ and P is prime, we get $(G, E) \subseteq P$. Hence every prime E-ideal

P of R such that $G \not\subseteq P$ contains (G, E). Therefore $(G, E) \subseteq K$. Let $x \notin (G, E)$. Then there exists $y \in G$ such that $x \wedge y \notin E$. Let $\mathcal{K} = \{G \mid G \text{ is an } E - \text{ideal of } L \text{ and } x \wedge y \notin G\}$. Clearly, $E \in \mathcal{K}$ and so $P = \emptyset$. Clearly, (\mathcal{K}, \subseteq) is a partially ordered set and it satisfies the hypothesis of the Zorn's lemma, \mathcal{K} has a maximal element, say N. Then N is an E-ideal of R and $x \wedge y \notin N$. Therefore $x \notin N$ and $y \notin N$. Since $y \in G$, we get $G \nsubseteq N$. We now show that N is prime. Let $a, b \in R$ with $a \notin N$ and $b \notin N$. Then $N \subsetneq N \lor (a)^E$ and $N \subsetneq N \lor (b)^E$. By the maximality of N, we get $x \land y \in N \lor (a)^E$ and $x \wedge y \in N \vee (b)^E$. Hence, $x \wedge y \in \{N \vee (a)^E\} \cap \{N \vee (b)^E\} = N \vee \{(a)^E \cap (b)^E\} = N \vee (a \wedge b)^E$. If $a \wedge b \in N$, then $x \wedge y \in N$ which is a contradiction. Thus N is a prime E-ideal of R such that $G \not\subseteq N$ and $x \notin N$. Therefore $x \notin K$. Hence $K \subseteq (G, E)$.

Corollary 4.1. For any ADL R and $a \in R$, $(a, E) = \bigcap \{P \in Spec_L^E(R) \mid a \notin P\}$.

Let $Min_{L}^{E}(R)$ denote the set of all minimal prime E-ideals of ADL R. For any $a \in R$, write $\alpha_m(x) = \alpha(x) \cap Min_L^E(R).$

Theorem 4.3. For any ADL R, the following conditions hold in R :

- (1) Every prime E-ideals contains a minimal prime E-ideal
- (2) $\bigcap_{P \in Min_{l}^{E}(R)} P = E$ (3) for any subset A with $E \subseteq A$, $(A, E) = \bigcap_{P \in \alpha_{m}(A)} (P)$.

Proof. (1) Let P be a prime E-ideal of R. Consider $X = \{N \in Spec_L^E(R) \mid N \subseteq P\}$. Clearly X is a partially ordered set under set inclusion and hence it satisfies the hypothesis of the Zorn's lemma, Xhas a minimal element say M. Clearly M will be the required minimal prime E-ideal of R.

(2) Since E is contained in every minimal prime E-ideal of R and so contained in the intersection of all minimal prime E-ideals. Let $x \notin E$. Then there exists a prime E-ideal P of L such that $x \notin P$. By (1), there exists a minimal prime E-ideal of R such that $M \subseteq P$. Since $x \notin P$, we get $x \notin M$. That implies M is a minimal prime E-ideal of R such that $x \notin M$. Hence x is not in the intersection of all minimal prime. Thus intersection of all minimal prime E-ideals of R is equal to E.

(3) Let $P \in Min_{I}^{E}(R)$ such that $A \nsubseteq P$. Choose $x \in A$ such that $x \notin P$. Then $(A, E) \subseteq (x, E) \subseteq$ P. That implies (A, E) is contained in every minimal prime E-ideal of R such that $A \not\subseteq P$. Hence $\bigcap_{x \in A} (P)$. Let $x \notin (A, E)$. Then $x \land y \notin E$, for some $y \in A$. By the condition (2), there $(A, E) \subseteq$ $P \in \alpha_m(A)$ exists a minimal prime *E*-ideal *P* of *R* such that $x \land y \notin P$. That implies $x \notin P$ and $y \notin P$. Therefore $x \notin \bigcap_{P \in \alpha_m(A)} P$ and hence $(A, E) = \bigcap_{P \in \alpha_m(A)} P$.

Lemma 4.2. For any $a, b \in R$, we have following:

- (1) $(a, E) \subseteq (b, E)$ if and only if $\alpha_m(b) \subseteq \alpha_m(a)$
- (2) $\alpha_m(a) = \emptyset$ if and only if $a \in E$
- (3) $\alpha_m(a) = Min_L^E(R)$ if and only if (a, E) = E.

Proof. (1) Let $a, b \in R$. Assume that $(a, E) \subseteq (b, E)$. Let $P \in \alpha_m(b)$ Then $b \notin P$. That implies $(a, E) \subseteq (b, E) \subseteq P$. Therefore $a \notin P$ and hence $P \in \alpha_m(a)$. Thus $\alpha_m(b) \subseteq \alpha_m(a)$. Conversely, assume that $\alpha_m(b) \subseteq \alpha_m(a)$. Now, $(a, E) = \bigcap_{P \in \alpha_m(a)} P \subseteq \bigcap_{P \in \alpha_m(b)} P = (b, E)$. Hence $(a, E) \subseteq (b, E)$. (2) Suppose $Min_l^E(R) = \emptyset$. Then $a \in P$ for all $P \in Min_l^E(R)$. That implies $a \in \bigcap_{P \in Min_l^E(R)} P$. Since

 $a \in \bigcap_{P \in Min_l^E(R)} P = E$, we get $a \in E$. The converse is clear.

(3) Assume $\alpha_m(a) = Min_I^E(R)$. Then $(a, E) = \bigcap_{P \in \alpha_m(a)} P = \bigcap_{P \in Min_I^E(R)} P = E$. Therefore(a, E) = E.

Conversely, assume (a, E) = E. Then $(a, E) = E \subseteq P$. That implies $a \notin P$, for all $P \in Min_I^E(R)$. Therefore $\alpha_m(a) = Min_I^E(R)$.

For any *E*-ideal *G* of an ADL *R*, define $\beta_m(G) = \{P \in Min_l^E(R) \mid G \subseteq P\}$.

Lemma 4.3. Let G be an E-ideal of an ADL R. If $\beta_m(G) = \emptyset$, then (G, E) = E.

Proof. Let $\beta_m(G) = \emptyset$. Then $\beta_m(G) = Min_l^E(R)$. That implies $(G, E) = \bigcap_{P \in \alpha_m(F)} P \subseteq \bigcap_{P \in Min_l^E(R)} P = E$.

For any ADL R, define $K = \{x \in R \mid (x, E) = E\}$.

Lemma 4.4. For any ADL R, K is a filter of R.

Proof. Clearly, we have that for any $m \in M$, $m \in K$. Let $x, y \in K$. Then $((x \land y, E), E) = ((x, E), E) \cap ((y, E), E) = (E, E) \cap (E, E) = R \cap R = R$. That implies $((x \land y), E) = (R, E) = E$. Therefore $x \land y \in K$. Let $x \in K$. Then (x, E) = E. Let $y \in R$. Now, $(x \lor y, E) = (x, E) \cap (y, E) = E \cap (y, E) = E$. Therefore $x \lor y \in K$. Hence K is a filter of R.

Theorem 4.4. Let G be an E-ideal of an ADL R. Then $Min_I^E(R)$ is compact if and only if $\beta_m(G) = \emptyset$ implies $G \cap K \neq \emptyset$.

Proof. Assume that $Min_{I}^{E}(R)$ is compact. Let G be an E-ideal R such that $\beta_{m}(G) = \emptyset$. Then $\alpha_{m}(G) = Min_{I}^{E}(R)$. Since $Min_{I}^{E}(R)$ is compact, there exists $a \in G$ such that $\alpha_{m}(a) = Min_{I}^{E}(R)$. That implies (a, E) = E. Therefore $a \in K$ and hence $G \cap K \neq \emptyset$. Conversely, assume that for any E-ideal G of $R, \beta_{m}(G) = \emptyset$ implies $G \cap K \neq \emptyset$. Let $A \subseteq R$ be such that $Min_{I}^{E}(R) = \bigcup_{a \in A} \alpha_{m}(A) = \alpha_{m}(A) = \alpha_{m}(G)$ where $G = A^{E}$. Since $Min_{I}^{E}(R) = \alpha_{m}(G)$, we get $\beta_{m}(G) = \emptyset$. By the assumption, we get $G \cap E \neq \emptyset$. Choose $d \in G \cap K$. Since $d \in G$ and $G = A^{E}$, there exists $a_{1}, a_{2}, \ldots, a_{n} \in A$ such that $d = (a_{1} \lor a_{2} \lor \ldots \lor a_{n}) \land d$. Since $d \in E$, $Min_{I}^{E}(R) = \alpha_{m}(d) \subseteq \alpha_{m}(\bigvee_{i=1}^{n} a_{i}) = \bigcup_{i=1}^{n} \alpha_{m}(a_{i})$. Hence $Min_{I}^{E}(R)$ is compact.

Theorem 4.5. Let R be an ADL. For any $Y \subseteq Min_I^E(R)$, the closure of Y in $Min_I^E(R)$ is $\beta_m(\bigcap_{P \in Y} P)$ and, in particular, $\overline{\alpha_m(F)} = \beta_m((G, E))$, for any $E \subseteq G \subseteq R$. Proof. Let $Y \subseteq Min_{I}^{E}(R)$. Then \overline{Y} in $Min_{I}^{E}(R) = \{\overline{Y} \text{ in } Spec_{I}^{E}(R)\} \cap Min_{I}^{E}(R) = H(\bigcap_{P \in Y} P) \cap Min_{I}^{E}(R) = \beta_{m}(\bigcap_{P \in Y} P)$. In particular, for any $E \subseteq G \subseteq R$, we have $\overline{\alpha_{m}(G)} = \beta_{m}(\bigcap_{P \in \alpha_{m}(G)} P) = \beta_{m}(\bigcap_{I \notin P, P \in Min_{I}^{E}(R)} P) = \beta_{m}((F, E))$.

Proposition 4.2. Let F, G be two E-ideals of an ADL R. Then the following are equivalent:

- (1) $G \subseteq (F, E)$
- (2) $G \cap F = E$
- (3) $\alpha_m(G) \cap \alpha_m(F) = \emptyset$.

Proof. (1) \Rightarrow (2) Assume that $G \subseteq (F, E)$. Then $G \cap F \subseteq (F, E) \cap F = E$. Therefore $G \cap F = E$. (2) \Rightarrow (3) Assume that $G \cap F = E$. Let $P \in \alpha_m(G) \cap \alpha_m(F) = \alpha_m(G \cap F)$. Then $E = G \cap F \nsubseteq P$, which is a contradiction. Therefore $\alpha_m(G) \cap \alpha_m(F) = \emptyset$.

(3) \Rightarrow (1) Assume that $\alpha_m(G) \cap \alpha_m(F) = \emptyset$. Let $x \in G$. Suppose $x \notin (F, E)$. Then there exists $y \in F$ such that $x \wedge y \notin E$. Then there exists $P \in Min_I^E(R)$ such that $x \wedge y \notin P$. That implies $x \notin P$ and $y \notin P$. Hence $G \nsubseteq P$ and $F \nsubseteq P$. Therefore $P \in \alpha_m(G)$ and $P \in \alpha_m(F)$. Therefore $P \in \alpha_m(G) \cap \alpha_m(F)$, which is a contradiction. So $x \in (F, E)$. Therefore $G \subseteq (F, E)$.

Corollary 4.2. Let *G* be an *E*-ideal of an ADL *R* and $x \in R$. Then $x \in (G, E)$ if and only if $\alpha_m(x) \cap \alpha_m(G) = \emptyset$.

Proof. By taking $G = \{x\}$, in the above proposition.

Theorem 4.6. Every open subset of $Min_I^E(R)$ is closed if and only if for any *E*-ideal of *R*, (*G*, *E*) = *E* implies $\beta_m(G) = \emptyset$.

Proof. Assume that every open set of $Min_{I}^{E}(R)$ is closed. Let G be an E-ideal of R. Then $\beta_{m}(G)$ is an open set in $Min_{I}^{E}(R)$. Now, $\beta_{m}(G) \neq \emptyset$. Then there exists $x \in R \setminus E$ such that $\alpha_{m}(x) \subseteq \beta_{m}(G)$. That implies $\alpha_{m}(x) \cap \alpha_{m}(G) = \emptyset$. Therefore $x \in (G, E)$ and $x \notin E$. Hence $(G, E) \neq E$. Thus (G, E) = E, which gives $\beta_{m}(G) = \emptyset$. Conversely, assume that the condition holds. Let H be an open subset of $Min_{I}^{E}(R)$. Then $H = \alpha_{m}(G)$, for some E-ideal G of L. By Theorem 4.5, we have $\overline{\alpha_{m}(G)} = \beta_{m}((G, E))$. It is enough to show that $\beta_{m}((G, E)) = \alpha_{m}(G)$. Since $((G \lor (G, E)), E) = E$, by the assumption, we get $\beta_{m}(G \lor (G, E)) = \emptyset$. Now, for any $P \in Min_{I}^{E}(R)$, we have $P \in \alpha_{m}(G) \Leftrightarrow$ $G \nsubseteq P \Leftrightarrow (G, E) \subseteq P \Leftrightarrow P \in \beta_{m}(G)$. Hence $\alpha_{m}(G) = \beta_{m}(G)$. Therefore H is closed in $Min_{I}^{E}(R)$. \Box

Theorem 4.7. In an ADL R, $Min_{i}^{E}(R)$ is a Hausdorff space.

Proof. Let *P* and *Q* be distinct elements of $Min_I^E(R)$. Then there exists $a \in P$ such that $a \notin Q$. Since *P* is minimal, we get $(a, E) \notin P$. Then there exists $b \in (a, E)$ such that $b \notin P$. That implies $a \wedge b \in E$ and hence $\alpha_m(a) \cap \alpha_m(b) = \emptyset$. Since $a \notin Q$ and $b \notin P$, we get $Q \in \alpha_m(a)$ and $P \in \alpha_m(b)$. Therefore $Min_I^E(R)$ is a Hausdorff space.

Acknowledgment: This research project was supported by the Thailand Science Research and Innovation Fund and the University of Phayao (Grant No. FF66-UoE017).

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- [1] G. Birkhoff, Lattice theory, Colloq. Publ. XXV, Amer. Math. Soc. Providence, 1967.
- [2] W.H. Cornish, Normal lattices, J. Aust. Math. Soc. 14 (1972), 200-215. https://doi.org/10.1017/ s1446788700010041.
- [3] G. Grätzer, General lattice theory, Birkhäuser, Basel, 1978. https://doi.org/10.1007/978-3-0348-7633-9.
- [4] A.P. Phaneendra Kumar, M. Sambasiva Rao, K. Sobhan Babu, Generalized prime D-filters of distributive lattices, Arch. Math. 57 (2021), 157-174. https://doi.org/10.5817/AM2021-3-157.
- [5] G.C. Rao, Almost distributive lattices, Doctoral Thesis, Department of Mathematics, Andhra University, Visakhapatnam, 1980.
- [6] G.C. Rao, S. Ravi Kumar, Minimal prime ideals in an ADL, Int. J. Contemp. Math. Sci. 4 (2009), 475-484
- [7] G.C. Rao, S. Ravi Kumar, Normal almost distributive lattices, Southeast Asian Bull. Math. 32 (2008), 831-841.
- [8] G.C. Rao, M. Sambasiva Rao, Annulets in almost distributive lattices, Eur. J. Pure Appl. Math. 2 (2009), 58-72.
- [9] U.M. Swamy, G.C. Rao, Almost distributive lattices, J. Aust. Math. Soc. 31 (1981), 77-91. https://doi.org/10. 1017/s1446788700018498.