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ABSTRACT: Developing the probability distributions is increasing extensively over the decades but even though the newly 

developed distributions have elegant properties and variety of shapes which are applicable in wide areas of real-life situations 

and a numerous type of data sets. In this article, we introduced a three-parameter positively skewed model named Power 

Nakagami (PN) distribution based on power transformation. Various statistical properties of the Power Nakagami 

distribution are derived, including moments. Some reliability measures such as survival function, hazard function, cumulative 

hazard function and reversed hazard function are discussed also expressions for mills ratio, odd function, elasticity and 

Lorenz and Bonferroni Curve are developed. Graphical representation of probability density function, cumulative density 

function and reliability measures are presented. Maximum likelihood estimation is used to estimate the parameters. The 

distribution is fitted to real life dataset (Tax revenue) to demonstrate the comparison of the new distribution with the base 

distribution. 

 

1. INTRODUCTION 

A flexible lifetime distribution as a function of gamma distribution known as Nakagami distribution 

introduced by [6]. It is a positively skewed distribution with two parameters shape and spread and it 

plays a vital role in communication engineering, medicine, reliability and many areas of real-life 

scenarios. It often applied for modeling the fading of radio signals and model dilution of wireless 

signals pass through several paths.  

If a random variable Y follows Nakagami distribution, then the probability density function and the 

cumulative density function is as follows respectively,  
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where, λ & θ are shape and spread parameters respectively. 

The length biased Nakagami distribution (LBND) was developed by [1]. They derived the posterior 

risk under various loss functions of the proposed distribution and have demonstrated that LBND is 

useful for modeling failure time The parameters of Nakagami distribution were estimated by [2] 

through the method of L moments utilizing simulated data and they suggested that estimates via 

MLM provides better outcomes as a contrast with MOM. The generalized form for the classical 

Nakagami distribution was proposed by [3] and they suggested it as Exponentiated Nakagami 

(ENAK) which is an improvement over beta-Nakagami distribution. They discussed some statistical 

properties and derived observed information matrix of the distribution. Applicability and flexibility of 

the proposed distribution are shown by utilizing the flood dataset. Inferences on exponentiated power 

Lindley distribution with order statistics was proposed by [11]. The cubic spline interpolation was 

used by [8] to obtain the closed form of the inverse cumulative distribution function of the Nakagami-

m distribution. The weighted inverse Nakagami distribution with properties and applications was 

investigated by [10]. The inverse Nakagami distribution was studied by [12] under progressive Type-

II censored data with applications on lifetime data.  

Power transformation presents a more flexible model by inserting an additional new parameter. In 

the literature, some power transformation-based distributions are available such as Power Lomax by 

[9], Power Lindley by [4], power transformation of Half-Logistic distribution by [5]. 

 

2. PROPOSED DISTRIBUTION 

A continuous three-parameter distribution named power transformation Nakagami distribution 

(PND) was formed by using the transformation 
1

X Y = .The pdf of the PN distribution is given by 
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where, , , 0x    and 0.5   

and the cdf of the PN distribution is as follows  
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Figure 1: Probability density function plot of PN distribution for various values of 

β, λ and θ 

 

 

Figure 2: Cumulative distribution function plot of 

PN distribution for various values of β, λ and θ 
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3. RELIABILITY ANALYSIS 

In this section, some measures of reliability of PND have been derived. 

The survival function of PND is given by 
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The hazard function of PND is as follows 
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Figure 3: Survival function plot of PN distribution for various 

values of β, λ and θ 

 
Figure 4: Hazard function plot of PN distribution for various 

values of β, λ and θ 
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The cumulative hazard function of PND is  
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The reversed hazard function of PND is  
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The mills ratio of PND is given by 
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The odd function of PND is  
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The elasticity of PND is given by 
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4. STATISTICAL PROPERTIES 

In this section, we derived the rth moments, variance, coefficient of variation, skewness, and kurtosis 

of the Power Transformation Nakagami distribution.  

The Rth moment about origin of PN distribution is   
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For r =1,2,3 & 4 in equation (4.1) we get first four raw moment 
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Variance of the PN distribution is 
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Third central moments of the PN distribution is given by 
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Forth central moments of the PN distribution is as follows 
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Co-efficient of variation of the PN distribution is 
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Co-efficient of skewness of the PN distribution is 
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Co-efficient of kurtosis of the PN distribution is 
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Rth moment about mean of the PN distribution is 
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where, 1,2,3,...k =  and mean =  

Mode of the PN distribution is 
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Geometric mean of the PN distribution is 
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Harmonic mean of the PN distribution is 
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Table 4.1: For various values of β and θ when λ=0.7 mean and mode for PND 

β θ Mean Mode 

4 

2 0.9990028 1.06402 

4 1.08942 1.160323 

8 1.188021 1.265341 

5 

2 0.996182 1.055379 

4 1.067681 1.131127 

8 1.144313 1.212312 

6 

2 0.995096 1.048331 

4 1.054267 1.110668 

8 1.116957 1.176712 

 

Table 4.2: For various values of β and θ when λ=0.9 mean and mode for PND  

β θ Mean Mode 

4 

2 1.019706 1.070314 

4 1.111998 1.167186 

8 1.212642 1.272825 

5 

2 1.013566 1.059224 

4 1.086313 1.135248 

8 1.164281 1.216729 

6 

2 1.010067 1.050919 

4 1.070129 1.11341 

8 1.133762 1.179617 
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Table 4.3: For various values of β and θ when λ=0.7 variance, co-efficient of 

variation, skewness and kurtosis for PND  

β θ Variance COV Skewness Kurtosis 

4 

2 0.03508632 0.1644412 -0.5502302 -2425.468 

4 0.0417249 0.1507933 -0.5502302 -2425.468 

8 0.04961955 0.138278 -0.5502302 -2425.468 

      

5 

2 0.02321527 0.1377067 -0.6787926 -5479.924 

4 0.02666734 0.1284849 -0.6787926 -5479.924 

8 0.03063273 0.1198806 -0.6787926 -5479.924 

      

6 

2 0.01653862 0.1184105 -0.7709212 -10752.24 

4 0.01856397 0.1117647 -0.7709212 -10752.24 

8 0.02083735 0.1054918 -0.7709212 -10752.24 

 

5. INEQUALITY MEASURES 

In this section, we discuss Lorenz and Bonferroni curve. The Lorenz Curve of the PN distribution is  
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The Bonferroni Curve is as follows  
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6. ORDER STATISTICS 

The distribution of jth order statistic of PND is as follows 
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where, 1,2,3.....,j n= and 0 jx  

Largest order statistic of the PN distribution by substituting j=n in equation (6.1) is 
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Smallest order statistic of the PN distribution by substituting j=1 in equation (6.1) is  
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7. MAXIMUM LIKELIHOOD ESTIMATION 

Let X1, X2, X3, …..., Xn be a n random sample from Power Nakagami distribution. Then the 

Likelihood function (L) of equation (2.1) is given by 
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Now, differentiate log-likelihood w.r.t β, λ and θ respectively, we attain 
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8. SIMULATIONS 

Here, we examine the behavior of estimates derived by the method of Maximum likelihood estimation 

from PND, through simulations study. The performance of the parameters estimated by MLE is 

measured on the basis of their biases.  

For this purpose, we generate, n = 25, 50, 100, 300, 500 samples by 1000 simulations from Power 

Nakagami Distribution (2.1) using Mathematica 11. Table 8.1 and 8.2 are presenting the consistent 

and efficient performance of the estimates and it is evident that, as the sample size increases these 

estimated values of the parameters are close to the trues values of the parameters. 
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Table 8.1. MLE estimates and their biases in parenthesis are calculated at various sample sizes 

𝜷 = 𝟐, 𝜽 = 𝟑 𝒂𝒏𝒅 𝝀 = 𝟎. 𝟕 

Parameters n=25 n=50 n=100 n=300 n=500 

�̂� 
1.9570 1.8817 2.0187 2.0116 2.0104 

(−0.0430) (−0.1183) (0.0187) (0.0116) (0.0104) 

�̂� 
4.0171 3.2433 3.2843 3.2179 3.0974 

(1.0171) (0.2434) (0.2843) (0.2179) (0.0973) 

�̂� 
6.7167 1.3232 0.8409 0.7571 0.718 

(6.0167) (0.6232) (0.1409) (0.0571) (0.018) 

 

Table 8.2. MLE estimates and their biases in parenthesis are calculated at various sample sizes 

𝜷 = 𝟓, 𝜽 = 𝟐 𝒂𝒏𝒅 𝝀 = 𝟏 

Parameters n=25 n=50 n=100 n=300 n=500 

�̂� 
5.8887 5.8198 5.157 5.1105 5.0586 

(0.8886) (0.8198) (0.157) (0.1105) (0.0586) 

�̂� 
3.0424 2.7229 2.3121 2.0384 2.0519 

(1.0424) (0.7229) (0.3121) (0.0384) (0.0519) 

�̂� 
2.1274 1.4813 1.2078 1.0954 1.0187 

(1.1274) (0.4813) (0.2078) (0.0953) (0.0187) 

 

9. APPLICATION 

In this section, the Power Nakagami Distribution is fitted on real life data set to assess the usefulness 

and flexibility.   

We consider the dataset of Egypt monthly actual taxes revenue (in 1000 million Egyptian pounds) 

for the year 2006 to 2010 which consists of 59 observations. This data is taken from [7]. 

5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5, 5.1,6.7, 17, 8.6, 9.7, 39.2, 

35.7, 15.7, 9.7, 10, 4.1, 36, 8.5, 8, 9.2, 26.2, 21.9,16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 

7.7, 18.1, 16.5, 11.9, 7, 8.6,12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 10.8. 

Table 9.1. Descriptive statistics of the tax revenue dataset for PND 

Data 

Statistics 

Mean Median 
Standard 

Deviation 
Variance Skewness Kurtosis 

taxes revenue 

(in 1000 million 

Egyptian pounds) 

13.49 10.60 8.051496 64.82658 1.608296 5.256002 
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Table 9.2.  Estimated values of the parameters of the tax revenue dataset 

Model ML Estimates -2Log L AIC BIC CAIC 

Nakagami 

Distribution 

�̂� = 0.9842 

�̂� = 239.5052 
395.4555 399.4555 398.9972 399.6697 

Power Nakagami 

distribution 

�̂� = 69.4788 

�̂� = 0.1143 

�̂� = 1.7681 

380.717 386.717 392.0295 387.1534 

 

Table 9.2 results indicate that the new distribution (Power Nakagami distribution) is more flexible 

as compared to the base distribution as it gives smaller values of AIC, BIC and CAIC.  

 

10. CONCLUSION 

Nakagami distribution plays a vital role in communication engineering, modeling fading. In this study 

we generalized the Nakagami distribution by using power transformation. Derived some statistical 

properties including moments, geometric mean, harmonic mean, mode, coefficient of variation, 

skewness and kurtosis as well as discussed reliability measures such as survival function, hazard 

function, cumulative hazard function, mills ratio, odd function and elasticity function. Developed the 

expressions of Lorenz and Bonferroni curves. Provide numerical results of mean, variance, skewness 

and kurtosis and conclude as we increase parameter λ & θ mean and mode increases on the other 

hand when we increase β mean and mode decrease. Graphical representation of hazard function 

indicates first increasing then decreasing trend. For the dataset (Tax revenue) results suggest that 

the proposed distribution (PTN) is more flexible as compared to the Nakagami distribution.  
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