# International Journal of Analysis and Applications

### Geometry of Admissible Curves of Constant-Ratio in Pseudo-Galilean Space

# M. Khalifa Saad<sup>1,\*</sup>, H. S. Abdel-Aziz<sup>2</sup>, Haytham A. Ali<sup>2</sup>

<sup>1</sup>Department of Mathematics, Faculty of Science, Islamic University of Madinah, KSA <sup>2</sup>Department of Mathematics, Faculty of Science, Sohag University, 82524 Sohag, Egypt \*Corresponding author: mohammed.khalifa@iu.edu.sa

Abstract. An admissible curve of a pseudo-Galilean space is said to be of constant-ratio if the ratio of the length of the tangent and normal components of its position vector function is a constant. In this paper, we investigate and characterize a spacelike admissible curve of constant-ratio in terms of its curvature functions in the pseudo-Galilean space  $G_3^1$ . Also, we study some special curves of constant-ratio such as T-constant and N-constant types of these curves. Finally, we give some computational examples for constructing the meant curves to demonstrate our theoretical results.

#### 1. Introduction

According to the space curve theory, it is well known that, a curve  $\alpha(s)$  in  $E^3$  lies on a sphere if its position vector lies on its normal plane at each point. If the position vector  $\alpha$  lies on its rectifying plane then  $\alpha(s)$  is called a rectifying curve [1]. Rectifying curves are characterized by the simple equation:

$$\alpha(s) = \lambda(s)T(s) + \mu(s)B(s), \qquad (1.1)$$

where  $\lambda(s)$  and  $\mu(s)$  are smooth functions and T(s) and B(s) are tangent and binormal vector fields of  $\alpha$ , respectively. In [2] the author provided that a twisted curve is congruent to a non constant linear function of s. On the other hand, in the Minkowski 3-space  $E_1^3$ , the rectifying curves were investigated in [3, 4]. Besides, in [4] a characterization of the spacelike, the timelike and the null rectifying curves in the Minkowski 3-space in terms of centrodes were given. The characterization of rectifying curves in three dimensional compact Lee groups as well as in dual spaces were given in [5], [6], respectively. For the study of constant-ratio curves, the authors gave the necessary and sufficient conditions for

Received: Jun. 11, 2023.

<sup>2020</sup> Mathematics Subject Classification. 53A04, 53A17, 53B30.

Key words and phrases. curves of constant-ratio; admissible curves; position vector; pseudo-Galilean space; Frenet frame.

curves in Euclidean and Minkowski spaces to become T-constant or N-constant [7–10]. In analogy with the Euclidean 3-dimensional case, our main goal in this work is to define the spacelike admissible curves of constant-ratio in the pseudo Galilean 3-space as a curve whose position vector always lies in the orthogonal complement  $N^{\perp}$  of its principal normal vector field N. Consequently,  $N^{\perp}$  is given by

$$N^{\perp} = \{ V \in G_3^1 : < V, N >= 0 \}$$

where  $\langle \cdot, \cdot \rangle$  denotes the inner product in  $G_3^1$ . Hence  $N^{\perp}$  is a 2-dimensional plane of  $G_3^1$ , spanned by the tangent and binormal vector fields T and B, respectively. Therefore, the position vector with respect to some chosen origin of a considered curve  $\alpha$  in  $G_3^1$ , satisfies the parametric equation:

$$\alpha(s) = m_o(s)T(s) + m_1(s)N(s) + m_2(s)B(s), \qquad (1.2)$$

for some differential functions  $m_i(s)$ ,  $0 \le i \le 2$ , where s is arc-length parameter. Then, we give the necessary and sufficient conditions for the curve  $\alpha$  in  $G_3^1$  to be a constant-ratio curve.

#### 2. Pseudo-Galilean geometry

In this section, we introduce the basic concepts, familiar definitions and notations on pseudo-Galilean space which are needed throughout this study. The pseudo-Galilean geometry is one of the real Cayley-Klein geometries of projective signature (0,0,+,-). The absolute of the pseudo-Galilean geometry is an ordered triple  $\{w, f, l\}$  where w is the ideal (absolute) plane, f is a line in w and l is the fixed hyperbolic involution of points of f, for more details, we refer to [11, 12]. The geometry of the pseudo-Galilean space is similar (but not the same) to the Galilean space which was presented in [11]. The inner and cross product of two vectors  $\mathbf{x} = (x_1, y_1, z_1)$  and  $\mathbf{y} = (x_2, y_2, z_2)$  in  $G_3^1$  are, respectively defined as follows:

$$g(\mathbf{x}, \mathbf{y}) = \begin{cases} x_1 x_2, & \text{if } x_1 \neq 0 \lor x_2 \neq 0, \\ y_1 y_2 - z_1 z_2 & \text{if } x_1 = 0 \land x_2 = 0, \end{cases}$$

$$\mathbf{x} \times \mathbf{y} = \begin{vmatrix} 0 & -e_2 & e_3 \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

Also the norm of a vector  $\mathbf{x} = (x, y, z)$  is given by

$$\|\mathbf{x}\| = \begin{cases} x , & \text{if } x \neq 0, \\ \sqrt{|y^2 - z^2|} , & \text{if } x = 0. \end{cases}$$
(2.1)

The group of motions of the pseudo-Galilean  $G_3^1$  is a six-parameter group given (in affine coordinates) by

$$\bar{x} = a + x,$$

$$\bar{y} = b + cx + y \cosh \varphi + z \sinh \varphi,$$

$$\bar{z} = d + ex + y \sinh \varphi + z \cosh \varphi.$$

According to the motion group in pseudo-Galilean space, a vector  $\mathbf{x}(x, y, z)$  is said to be non isotropic if  $x \neq 0$ . All unit non-isotropic vectors are of the form (1, y, z). For isotropic vectors, x = 0 holds. There are four types of isotropic vectors: spacelike  $(y^2 - z^2) > 0$ , timelike  $(y^2 - z^2) < 0$ , and two types of lightlike  $(y = \pm z)$  vectors. A non-lightlike isotropic vector is a unit vector if  $y^2 - z^2 = \pm 1$ .

A trihedron  $(T_o; e_1, e_2, e_3)$  with a proper origin  $T_o(x_o, y_o, z_o)$  which is orthonormal in pseudo-Galilean sense if the vectors  $e_1, e_2, e_3$  are of the following form:  $e_1 = (1, y_1, z_1), e_2 = (0, y_2, z_2)$  and  $e_3 = (0, \varepsilon z_2, \varepsilon y_2)$  with  $y^2 - z^2 = \delta$ , where  $\varepsilon$ ,  $\delta$  is +1 or -1. Such trihedron  $(T_o; e_1, e_2, e_3)$  is called positively oriented if for its vectors,  $det(e_1, e_2, e_3) = 1$  holds; that is if  $y^2 - z^2 = \varepsilon$ .

Let  $\alpha(t)$  :  $I \subset R \to G_3^1$  be a curve parameterized by  $\alpha(t) = (x(t), y(t), z(t))$ , where  $x(t), y(t), z(t) \in C^3$  (the set of three-times continuously differentiable functions) and t run through a real interval [12].

**Definition 2.1.** A curve  $\alpha$  given by  $\alpha(t) = (x(t), y(t), z(t))$  is admissible if  $\dot{x}(t) \neq 0$ .

Also, If  $\alpha$  is taken as follows:

$$\alpha(x) = (x, y(x), z(x)),$$
 (2.2)

with the condition

$$y''^{2}(x) - z''^{2}(x) \neq 0,$$
(2.3)

then the arc-length parameter s is defined by

$$ds = |\dot{x}(t)dt| = dx. \tag{2.4}$$

Here, we assume that ds = dx and s = x as the arc-length of the curve  $\alpha$  [12]. The vector

$$T(s) = \alpha'(s),$$

is called the tangent unit vector of  $\alpha$ . Also, the unit vector field is given by

$$N(s) = \frac{\alpha''(s)}{\sqrt{|y''^2(s) - z''^2(s)|}},$$
(2.5)

and the binormal vector is expressed as

$$B(s) = \frac{(0, \varepsilon z''(s), \varepsilon y''(s))}{\sqrt{|y''^2(s) - z''^2(s)|}},$$
(2.6)

and it is orthogonal in pseudo-Galilean sense to the osculating plane of  $\alpha$  spanned by the vectors  $\alpha'(s)$ and  $\alpha''(s)$ . The curve  $\alpha$  given by Eq. (2.2) is a spacelike (resp. timelike) if N(s) is a timelike (resp. spacelike) vector. The principal normal vector or simply normal is spacelike if  $\varepsilon = +1$  and timelike if  $\varepsilon = -1$ . Here  $\varepsilon = +1$  or -1 is chosen by the criterion det(T, N, B) = 1. That means

$$|y''^{2}(s) - z''^{2}(s)| = \varepsilon(y''^{2}(s) - z''^{2}(s)).$$
 (2.7)

**Definition 2.2.** In each point of an admissible curve in  $G_3^1$ , the associated orthonormal (in pseudo-Galilean sense) trihedron  $\{T(s), N(s), B(s)\}$  can be defined. This trihedron is called pseudo-Galilean Frenet trihedron.

For the pseudo-Galilean Frenet trihedron of an admissible curve  $\alpha$ , the Frenet equations are defined as:

$$T' = \kappa N,$$

$$N' = \tau B,$$

$$B' = \tau N.$$
(2.8)

where  $\kappa$  and  $\tau$  are the pseudo-Galilean curvatures of  $\alpha$  defined as follows:

$$\kappa(s) = \sqrt{|y''^2(s) - z''^2(s)|},$$
(2.9)

$$\tau(s) = \frac{y''(s)z'''(s) - y'''(s)z''(s)}{\kappa^2(s)},$$
(2.10)

and the pseudo-Galilean torsion can be written in the form

$$\tau(s) = \frac{\det(\alpha'(s), \alpha''(s), \alpha'''(s))}{\kappa^2(s)}.$$
(2.11)

The Serret-Frenet equations (2.8) can be written in matrix form as

$$\frac{d}{ds} \begin{bmatrix} T \\ N \\ B \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ 0 & 0 & \tau \\ 0 & \tau & 0 \end{bmatrix} \begin{bmatrix} T \\ N \\ B \end{bmatrix}$$

The Pseudo-Galilean sphere with radius r is defined by

$$S_{\pm}^{2} = \{ u \in G_{3}^{1} : g(u, u) = \pm r^{2} \},\$$

## 3. Spacelike curves of constant-ratio in $G_3^1$

Let  $\alpha : I \subset R \to G_3^1$  be an arbitrary spacelike admissible curve. In the light of which introduced in [13–15], we consider the following theorem.

**Theorem 3.1.** The position vector of  $\alpha$  with curvatures  $\kappa(s)$  and  $\tau(s) \neq 0$ , and with respect to the Frenet frame in the pseudo-Galilean space  $G_3^1$ , it can be written as

$$\alpha = (s+c_o)T + e^{-\int \tau(s)ds} \left( c_1 \ e^{2\int \tau(s)ds} + e^{2\int \tau(s)ds} \int \frac{\kappa(s)(s+c_o)}{2} e^{-\int \tau(s)ds} ds - \int \frac{\kappa(s)(s+c_o)}{2} e^{\int \tau(s)ds} ds + c_2 \right) N + e^{-\int \tau(s)ds} \left( c_1 \ e^{2\int \tau(s)ds} + e^{2\int \tau(s)ds} \int \frac{\kappa(s)(s+c_o)}{2} e^{-\int \tau(s)ds} ds + \int \frac{\kappa(s)(s+c_o)}{2} e^{\int \tau(s)ds} ds - c_2 \right) B.$$
(3.1)

where  $c_0$ ,  $c_1$  and  $c_2$  are arbitrary constants.

*Proof.* Let  $\alpha$  be an arbitrary spacelike curve in the pseudo-Galilean space  $G_3^1$ , then we may express its position vector as

$$\alpha(s) = m_o(s)T(s) + m_1(s)N(s) + m_2(s)B(s)$$

Differentiating this equation with respect to the arc-length parameter s and using the Serret-Frenet equations (2.8), we obtain

$$\alpha'(s) = m'_o(s)T(s) + (m'_1(s) + \kappa(s)m_o(s) + \tau(s)m_2(s))N(s) + (m'_2(s) + \tau(s)m_1(s))B(s),$$

it follows that

$$m'_{o}(s) = 1,$$
  

$$m'_{1}(s) + \kappa(s)m_{o}(s) + \tau(s)m_{2}(s) = 0,$$
  

$$m'_{2}(s) + \tau(s)m_{1}(s) = 0.$$
(3.2)

From Eqs. (3.2), we have

$$m_o(s) = s + c_o.$$
 (3.3)

It is useful to change the variable s to the variable  $t = \int \tau(s) ds$ . Therefore all functions of s will transform to the functions of t. Here, we will use dot to denote the derivative with respect to t (where the prime denotes the derivative with respect to s). Also, From Eq. (3.2), we get

$$m_1(t) = -\dot{m}_2(t), \text{ where } \dot{m}_2 = \frac{dm_2}{dt},$$
 (3.4)

it leads to

$$\ddot{m}_2(t) - m_2(t) = \frac{y(t)\kappa(t)}{\tau(t)}, \quad y(t) = m_o(s) = s + c_o.$$
 (3.5)

The general solution of this equation is given by

$$m_2(t) = e^{-t} \left[ c_1 \ e^{2t} + e^{2t} \int \frac{\kappa(t)y(t)}{2\tau(t)} e^{-t} dt + \int \frac{\kappa(t)y(t)}{2\tau(t)} e^t dt - c_2 \right],$$
(3.6)

where  $c_1$  and  $c_2$  are arbitrary constants. From Eqs. (3.4) and (3.6), we obtain the function  $m_1(t)$  as

$$m_1(t) = e^{-t} \left[ c_1 \ e^{2t} + e^{2t} \int \frac{\kappa(t)y(t)}{2\tau(t)} e^{-t} dt - \int \frac{\kappa(t)y(t)}{2\tau(t)} e^t dt + c_2 \right].$$
(3.7)

Hence, Eqs. (3.6) and (3.7) take the following forms:

$$m_{1} = e^{-\int \tau(s)ds} \left[ c_{1} \ e^{2\int \tau(s)ds} + e^{2\int \tau(s)ds} \int \frac{(s+c_{o})\kappa}{2} e^{-\int \tau(s)ds} ds - \int \frac{(s+c_{o})\kappa}{2} e^{\int \tau(s)ds} ds + c_{2} \right], \quad (3.8)$$

$$m_{2} = e^{-\int \tau(s)ds} \left[ c_{1} \ e^{2\int \tau(s)ds} + e^{2\int \tau(s)ds} \int \frac{(s+c_{o})\kappa}{2} e^{-\int \tau(s)ds} ds + \int \frac{(s+c_{o})\kappa}{2} e^{\int \tau(s)ds} ds - c_{2} \right].$$
(3.9)

Substituting from Eqs. (3.3), (3.8) and (3.9) in Eq. (1.2), the result (3.1) is obtained and thus, the proof is completed. 

**Theorem 3.2.** Let  $\alpha : I \subset R \to G_3^1$  be a spacelike curve with  $\kappa \neq 0$  and  $\tau \neq 0$  in  $G_3^1$ . Then the position vector and curvatures of  $\alpha$  satisfy a vector differential equation of third order.

*Proof.* Let  $\alpha : I \subset R \to G_3^1$  be a spacelike curve with curvatures  $\kappa \neq 0$  and  $\tau \neq 0$  in  $G_3^1$ . From Frenet equations (2.8), one can write

$$N = \frac{T'}{\kappa}, \tag{3.10}$$

$$B = \frac{N'}{\tau}.$$
 (3.11)

Substituting Eq. (3.10) in Eq. (2.8), we get

$$B' = \frac{\tau}{\kappa} T'. \tag{3.12}$$

Differentiating Eq. (3.10) with respect to s and substituting in Eq. (3.10), we find

$$B = \frac{1}{\tau} \left[ \left( \frac{1}{\kappa} \right)' T' + \left( \frac{1}{\kappa} \right) T'' \right].$$
(3.13)

Similarly, taking the differentiation of Eq. (3.13) and equalize with Eq. (2.8), we obtain

$$\frac{1}{\tau\kappa}T''' + \left[2\frac{1}{\tau}\left(\frac{1}{\kappa}\right)' - \left(\frac{1}{\tau}\right)'\frac{1}{\kappa}\right]T'' + \left[\frac{1}{\tau}\left(\left(\frac{1}{\kappa}\right)'' - \frac{\tau^2}{\kappa}\right) - \left(\frac{1}{\tau}\right)'\left(\frac{1}{\kappa}\right)'\right]T' = 0. \quad (3.14)$$
e, it completes the proof.

Hence, it completes the proof.

**Theorem 3.3.** The position vector  $\alpha(s)$  of a spacelike admissible curve with curvature  $\kappa(s)$  and torsion au(s) in the pseudo-Galilean space  $G_3^1$  is computed from the intrinsic representation form

$$\alpha(s) = \left(s, -\int \left[\int \kappa(s) \sinh\left[\int \tau(s)ds\right]ds\right]ds, \int \left[\int \kappa(s) \cosh\left[\int \tau(s)ds\right]ds\right]ds\right),$$

with tangent, principal normal and binormal vectors respectively, are given by

$$T(s) = \left(1, -\int \kappa(s) \sinh[\int \tau(s)ds]ds, \int \kappa(s) \cosh[\int \tau(s)ds]ds\right),$$
  

$$N(s) = \left(0, -\sinh[\int \tau(s)ds], \cosh[\int \tau(s)ds]\right),$$
  

$$B(s) = \left(0, -\cosh[\int \tau(s)ds], \sinh[\int \tau(s)ds]\right).$$

Now, for each given  $\alpha : I \subset R \to G_3^1$ , there is a natural orthogonal decomposition of the position vector  $\alpha$  at each point on  $\alpha$ ; namely,

$$\alpha = \alpha^T + \alpha^N, \tag{3.15}$$

where  $\alpha^T$  and  $\alpha^N$  denote the tangential and normal components of  $\alpha$  at the point, respectively. Let  $\|\alpha^T\|$  and  $\|\alpha^N\|$  denote the length of  $\alpha^T$  and  $\alpha^N$ , respectively. In what follows we introduce the notion of constant-ratio curves. So, similar to the Euclidean case [16], we consider the following definitions [17].

**Definition 3.1.** A curve  $\alpha$  of the pseudo-Galilean space  $G_3^1$  is said to be of constant-ratio curve if the ratio  $\|\alpha^T\| : \|\alpha^N\|$  is constant on  $\alpha(I)$ .

Clearly, for a constant-ratio curve in  $G_3^1$ , we have

$$\frac{m_o^2}{m_2^2 - m_1^2} = c_3, \tag{3.16}$$

for some constant  $c_3$ .

**Definition 3.2.** Let  $\alpha : I \subset R \to G_3^1$  be an admissible curve in  $G_3^1$ . If  $\|\alpha^T\|$  is constant, then  $\alpha$  is called *T*-constant curve. Further, *T*-constant curve  $\alpha$  is called of first kind if  $\|\alpha^T\| = 0$ , otherwise is called of second kind.

**Definition 3.3.** Let  $\alpha : I \subset R \to G_3^1$  be an admissible curve in  $G_3^1$ . If  $\|\alpha^N\|$  is constant, then  $\alpha$  is called a N-constant curve. For a N-constant curve  $\alpha$ , either  $\|\alpha^N\| = 0$  or  $\|\alpha^N\| = \mu$  for some non-zero smooth function  $\mu$ . Further, a N-constant curve  $\alpha$  is called of first kind if  $\|\alpha^N\| = 0$ , otherwise it is of second kind.

For N-constant curve  $\alpha$  in  $G_3^1$ , we can write

$$\|\alpha^{N}(s)\|^{2} = m_{2}^{2}(s) - m_{1}^{2}(s) = c_{4},$$
 (3.17)

where  $c_4$  is constant.

In what follows, we characterize the admissible curves in terms of their curvature functions  $m_i(s)$  and give the necessary and sufficient conditions for these curves to be T-constant or N-constant curves.

**Theorem 3.4.** Let  $\alpha : I \subset R \to G_3^1$  be a spacelike curve in  $G_3^1$ . Then  $\alpha$  is of constant-ratio if and only if

$$\left(\frac{\kappa'-\kappa^3 c_3(s+c_o)}{c_3\kappa^2\tau}\right)'=\frac{-\tau}{c_3\kappa}.$$

*Proof.* Let  $\alpha : I \subset R \to G_3^1$  be a spacelike curve given with the invariant parameter s. Then, we have

$$m_o(s) = s + c_o,$$

where  $c_o$  is an arbitrary constant. Also, from Eq. (3.16), the curvature functions  $m_i(s)$ ,  $0 \le i \le 2$  satisfy

$$m_2(s)m'_2(s) - m_1(s)m'_1(s) = \frac{s + c_o}{c_3}.$$
(3.18)

By using Eqs. (3.2) with Eq. (3.18), we obtain

$$m_1=\frac{1}{c_3\kappa},$$

it follows that

$$m_2 = \frac{\kappa' - \kappa^3 c_3(s + c_o)}{c_3 \kappa^2 \tau}$$

thus, the result is clear.

### 3.1. **T-constant spacelike curves in** $G_3^1$ .

**Proposition 3.1.** There are no *T*-constant spacelike curves in pseudo-Galilean space  $G_3^1$ .

*Proof.* Let  $\alpha : I \subset R \to G_3^1$  be a spacelike curve in  $G_3^1$ . Then  $\|\alpha^T\| = m_o$ , where  $m_o$  is equal to zero or a nonzero constant. Since  $m_o = x + c_o$ , this contradicts the fact of value of  $m_o$ .

### 3.2. N-constant spacelike curves in $G_3^1$ .

**Lemma 3.1.** Let  $\alpha : I \subset R \to G_3^1$  be a spacelike curve in  $G_3^1$ . Then  $\alpha$  is N-constant curve if and only if the following condition:

$$m_2(s)m'_2(s) - m_1(s)m'_1(s) = 0$$

holds together Eqs. (3.2), where  $m_i(s)$ ,  $0 \le i \le 2$  are differentiable functions.

**Proposition 3.2.** Let  $\alpha : I \subset R \to G_3^1$  be a spacelike curve in  $G_3^1$ . Then  $\alpha$  is a N-constant curve of first kind if  $\alpha$  is a straight line in  $G_3^1$ .

*Proof.* Suppose that  $\alpha$  is *N*-constant curve of first kind in  $G_3^1$ , then

$$m_2^2(s) - m_1^2(s) = 0.$$

So, we have two cases to be discussed:

Case 1.

$$m_2(s)=m_1(s).$$

Using Eqs. (3.2), we get

 $\kappa = 0.$ 

### Case 2.

$$m_2(s)=-m_1(s).$$

Also, from Eqs. (3.2), we obtain

$$\kappa = 0.$$

It means that the curve  $\alpha$  is a straight line in  $G_3^1$ .

**Theorem 3.5.** Let  $\alpha : I \subset R \to G_3^1$  be a spacelike curve in  $G_3^1$ . If  $\alpha$  is N-constant curve of second kind, then the position vector  $\alpha$  has the parametrization:

$$\alpha(s) = (s + c_o)T(s) + \left[\frac{1}{4}e^{-u(s)}\left(-4c_4 + e^{2u(s)}\right) - \frac{1}{2}e^{u(s)}\right]N(s) + \left[\frac{1}{4}e^{-u(s)}\left(-4c_4 + e^{2u(s)}\right)\right]B(s),$$
(3.19)

where  $u(s) = \int \tau(s) ds + c_5$ ,  $c_5$  is integral constant.

*Proof.* From Eq. (3.3), we have

$$m_o(s) = (s + c_o).$$

Besides, from of Eq. (3.2) and Eq. (3.17), we obtain

$$m_2^{\prime 2}(s) - \tau^2(s)m_2^2(s) - c_4\tau^2(s) = 0,$$

where  $c_4 \neq 0$  is a real constant. The solution of this equation is given by

$$m_2(s) = \frac{1}{4}e^{-u(s)} \left(-4c_4 + e^{2u(s)}\right).$$
(3.20)

If we substitute Eq. (3.3) in Eq. (3.2), we can get

$$m_1(s) = \frac{1}{4}e^{-u(s)} \left(-4c_4 + e^{2u(s)}\right) - \frac{1}{2}e^{u(s)}, \qquad (3.21)$$

hence, in light of Eqs. (3.3), (3.20) and (3.21), we obtain the required result.

**Theorem 3.6.** Let  $\alpha$  be a spacelike curve in  $G_3^1$  with its pseudo-Galilean trihedron  $\{T(s), N(s), B(s)\}$ . If the curve  $\alpha$  lies on a pseudo-Galilean sphere  $S_{\pm}^2$ , then it is N-constant curve of second kind and the center of a pseudo-Galilean sphere of  $\alpha$  at the point c(s) is given by

$$c(s) = \alpha(s) + m_1(s)N(s) + m_2(s)B(s).$$

*Proof.* Let  $S^2_{\pm}$  be a sphere in  $G^1_3$ , then  $S^2_{\pm}$  is given by

$$S_{\pm}^{2} = \{ u \in G_{3}^{1} : g(u, u) = \pm r^{2} \},\$$

where r is the radius of the pseudo-Galilean sphere and it is a constant. Let c be the center of the pseudo-Galilean sphere, then we have

$$g(c(s) - \alpha(s), c(s) - \alpha(s)) = \pm r^2.$$

Differentiating this equation with respect to s, we get

$$g(-T(s), c(s) - \alpha(s)) = 0,$$
 (3.22)

more differentiation yields

$$g(-T'(s), c(s) - \alpha(s)) + g(-T(s), -T(s)) = 0.$$

From Eq. (2.8), we find

$$-\kappa(s)g(N(s), c(s) - \alpha(s)) + 1 = 0, \qquad (3.23)$$

and since  $c(s) - \alpha(s) \in Sp\{T(s), N(s), B(s)\}$ , then we can write

$$c(s) - \alpha(s) = m_o(s)T(s) + m_1(s)N(s) + m_2(s)B(s).$$
(3.24)

Now, from Eq. (3.23) and (3.24), we find

$$\kappa(s)m_1(s)+1=0$$

it follows that

$$m_1(s) = -\frac{1}{\kappa(s)}$$

Also, from Eq. (3.22) and (3.24), one can write

$$g(T(s), c(s) - \alpha(s)) = m_o(s),$$

which gives

$$m_o(s) = 0$$

and then Eq. (3.24) becomes

$$c(s) - \alpha(s) = m_1(s)N(s) + m_2(s)B(s).$$

Besides, the derivation of Eq. (3.23) leads to

$$m_2(s)=\frac{-m_1'(s)}{\tau(s)}.$$

Now, from aforementioned information, we obtain

$$m_2^2(s) - m_1^2(s) = \pm r^2 = const$$

which completes the proof.

**Theorem 3.7.** Let  $\alpha$  be N-constant curve of second kind which lies on a pseudo-Galilean sphere  $S_{\pm}^2$  with constant radius r in  $G_3^1$ . Then

$$m_2'(s) - \tau(s)m_1(s) = 0,$$

where  $m_2(s) \neq 0$ ,  $\tau(s) \neq 0$ .

*Proof.* Let  $\alpha$  be a *N*-constant curve in  $G_3^1$ , then we have

$$m_2^2(s) - m_1^2(s) = \pm r^2$$

since r is constant, then

$$m_2(s)m'_2(s) - m_1(s)m'_1(s) = 0$$

Substituting  $m_2(s) = rac{m_1'(s)}{ au(s)}$  in this equation, we get

$$m_2'(s) - \tau(s)m_1(s) = 0.$$

Thus, the proof is completed.

**Theorem 3.8.** Let  $\alpha(s)$  be a spacelike curve in  $G_3^1$  with  $\kappa(s) \neq 0$ ,  $\tau(s) \neq 0$ . The image of the *N*-constant curve  $\alpha$  lies on a pseudo-Galilean sphere  $S_{\pm}^2$  if and only if for each  $s \in I \subset R$ , its curvatures satisfy the following equalities:

$$s + c_{o} = 0,$$

$$\frac{1}{4}e^{-u(s)}\left(-4c_{4} + e^{2u(s)}\right) - \frac{1}{2}e^{u(s)} = \frac{1}{\kappa(s)},$$

$$\frac{1}{4}e^{-u(s)}\left(-4c_{4} + e^{2u(s)}\right) = \frac{\kappa'(s)}{\kappa^{2}(s)\tau(s)},$$
(3.25)

where  $u(s) = \int \tau(s) ds + c_5$  and  $c_o, c_4$  and  $c_5 \in R$ .

Proof. By assumption, we have

$$g(\alpha(s), \alpha(s)) = r^2$$

for every  $s \in I \subset R$  and r is the radius of the pseudo-Galilean sphere. Differentiating this equation with respect to s gives

$$g(T(s), \alpha(s)) = 0.$$
 (3.26)

Again, differentiation leads to

$$g(N(s), \alpha(s)) = -\frac{1}{\kappa(s)}, \qquad (3.27)$$

and also

$$g(B(s), \alpha(s)) = \frac{\kappa'(s)}{\kappa^2(s)\tau(s)}.$$
(3.28)

Using Eqs. (3.26)-(3.28) in Eq. (3.19), we obtain the required result: Eq. (3.25).

Conversely, we assume that Eq. (3.25) holds, for each  $s \in I \subset R$ , then from Eq. (3.19), the position vector of  $\alpha$  can be expressed as

$$\alpha(s) = -\frac{1}{\kappa(s)}N(s) + \frac{\kappa'(s)}{\kappa^2(s)\tau(s)}B(s)$$

which satisfies the equation:  $g(\alpha(s), \alpha(s)) = r^2$ . It means that the curve  $\alpha$  lies on the pseudo-Galilean sphere  $S_{\pm}^2$ . Hence, the proof is completed.

**Theorem 3.9.** Let  $\alpha$  be a spacelike curve in  $G_3^1$ . If  $\alpha$  is a circle then  $\alpha$  is N-constant curve of second kind.

*Proof.* If  $\alpha$  is a circle, then we have

$$\kappa(s) = const$$
 and  $\tau(s) = 0$ .

Also, from Theorem 3.4, one can write

$$m_1 = rac{1}{c_3\kappa} = const.$$

$$m_2 = \int \left(\frac{-\tau}{c_3\kappa}\right) ds = const.$$

which leads to

$$m_2^2(s) - m_1^2(s) = const.$$

thus, it completes the proof.

#### 4. Examples

In this section, we give some examples to illustrate our main results.

**Example 4.1.** Consider the following spacelike curve  $\alpha : I \subset R \rightarrow G_3^1$ , given by

$$\alpha(s) = \left(s, \frac{s}{6} \left[2\sinh(2\ln s) - \cosh(2\ln s)\right], \frac{s}{6} \left[2\cosh(2\ln s) - \sinh(2\ln s)\right]\right).$$
(4.1)

Differentiating Eq. (4.1), we get

$$\alpha'(s) = \left(1, \frac{1}{2}\cosh(2\ln s), \frac{1}{2}\sinh(2\ln s)\right).$$
(4.2)

Pseudo-Galilean inner product follows that  $\langle \alpha', \alpha' \rangle = 1$ . So the curve is parameterized by the arclength. The tangent vector is

$$T' = \left(0, \frac{1}{s}\sinh(2\ln s), \frac{1}{s}\cosh(2\ln s)\right),$$

by taking the norm of both sides, we have  $\kappa(s) = \frac{1}{s}$ . Thereafter, we have

$$N = (0, \sinh(2\ln s), \cosh(2\ln s)),$$

and the binormal vector is

$$B = (0, -\cosh(2\ln s), -\sinh(2\ln s))$$

From Serret-Frenet equations, one can obtain  $\tau(s) = \frac{-2}{s}$ . Moreover, the curvature functions  $m_i(s)$  are

$$m_o = s, \quad m_1 = \frac{s}{c_3}, \quad m_2 = -\Omega \ s, \ \Omega = \left(\frac{1+c_3}{2c_3}\right) = const.$$

So, from Eq. (3.16), we get

$$\frac{m_o^2}{m_2^2 - m_1^2} = F, \quad F = \frac{4(c_3)^2}{(c_3 + 1)^2 - 4} = const.$$

Under the above considerations,  $\alpha$  is of constant-ratio and the ratio is equal F. Also, since

$$\|\alpha^{N}(s)\|^{2} = m_{2}^{2}(s) - m_{1}^{2}(s) = \left(\frac{(c_{3}+1)^{2}-4}{4(c_{3})^{2}}\right)s^{2} \neq const.$$

then the curve  $\alpha$  is a constant-ratio curve but not N-constant curve, see Fig(1a).

**Example 4.2.** Consider a spacelike curve  $\gamma(s)$  in  $G_3^1$  parameterized by

$$\alpha(s) = \left(s, -a \int \left(\int \sinh(\frac{s^2}{2}) ds\right) ds, a \int \left(\int \cosh(\frac{s^2}{2}) ds\right) ds\right),$$

where  $a \in R$ .

Then we have

$$\gamma'(s) = T(s) = \left(1, -a \int \sinh(\frac{s^2}{2}) ds, a \int \cosh(\frac{s^2}{2}) ds\right),$$
$$T'(s) = \left(0, -a \sinh(\frac{s^2}{2}), a \cosh(\frac{s^2}{2})\right).$$

By a straightforward calculations, we obtain

$$N(s) = \left(0, -\sinh(\frac{s^2}{2}), \cosh(\frac{s^2}{2})\right),$$
$$B(s) = \left(0, -\cosh(\frac{s^2}{2}), \sinh(\frac{s^2}{2})\right),$$

where  $\kappa(s) = a = const$  and  $\tau(s) = s$ .

Since the curve has a constant curvature and non-constant torsion, so it is a Salkowski curve.

From Theorem 3.4, we have the curvature functions:

$$m_1 = \frac{1}{c_3\kappa} = \frac{1}{ac_3},$$
  

$$m_2 = \frac{\kappa' - \kappa^3 c_3 s}{c_3\kappa^2\tau} = -a, \quad a \text{ is constant},$$

which leads to

$$m_2^2(s) - m_1^2(s) = (-a)^2 - \left(\frac{1}{ac_3}\right)^2 = const.$$

It follows that  $\gamma$  is *N*-constant curve but not constant-ratio curve, see Fig(1b).



Figure 1. (A) The constant-ratio curve  $\alpha$ , (B) the N-constant Salkowski curve  $\gamma$ ; a = 2.

#### 5. Conclusion

In the three-dimensional pseudo-Galilean space, spacelike admissible curves of constant-ratio and some special curves such as T-constant and N-constant curves have been studied. Furthermore, the spherical images of these curves have been studied. Some interesting results of N – *constant* curves have been obtained. Finally, as an application for this work, two examples are given and plotted to confirm our main results.

**Acknowledgments:** We gratefully acknowledge the constructive comments from the editor and the anonymous referees. Also, the author (M. Khalifa Saad) would like to express his gratitude to the Islamic University of Madinah.

**Conflicts of Interest:** The authors declare that there are no conflicts of interest regarding the publication of this paper.

### References

- [1] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
- B.Y. Chen, When Does the Position Vector of a Space Curve Always Lie in Its Rectifying Plane?, Amer. Math. Mon. 110 (2003), 147–152. https://doi.org/10.1080/00029890.2003.11919949.
- K. Ilarslan, Ö. Boyacıoğlu, Position Vectors of a Spacelike W-Curve in Minkowski Space E<sub>1</sub><sup>3</sup>, Bull. Korean Math. Soc. 46 (2009), 967-978.
- [4] K. Ilarslan, E. Nesovic, On Rectifying Curves as Centrodes and Extremal Curves in the Minkowski 3-Space E<sub>1</sub><sup>3</sup>, Novi Sad J. Math. 37 (2007), 53-64.
- [5] A. Yücesan, N. Ayyıldız, A. C. Çöken, On Rectifying Dual Space Curves, Rev. Mat. Complut. 20 (2007), 497-506.
- [6] Z. Bozkurt, I. Gök, O.Z. Okuyucu, Characterization of Rectifying, Normal and Osculating Curves in Three Dimensional Compact Lie Groups, Life Sci. J. 10 (2013), 819-823.
- [7] S. Büyükkütük, G. Öztürk, Constant Ratio Curves According to Bishop Frame in Euclidean 3-space E<sup>3</sup>, Gen. Math. Notes. 28 (2015), 81-91.
- [8] S. Büyükkütük, G. Öztürk, Constant Ratio Curves According to Parallel Transport Frame in Euclidean 4-space E<sup>4</sup>, New Trends Math. Sci. 3 (2015), 171-178.
- [9] S. Gürpinar, K. Arslan, G. Öztürk, A Characterization of Constant-ratio Curves in Euclidean 3-Space E<sup>3</sup>, Acta Univ. Apulensis. 44 (2015), 39-51.
- [10] İ. Kişi, G. Öztürk, Constant Ratio Curves According to Bishop Frame in Minkowski 3-Space E<sub>1</sub><sup>3</sup>, Facta Univ. Ser. Math. Inform. 30 (2015), 527-538.
- [11] O. Röschel, Die Geometrie des Galileischen Raumes, Habilitationsschrift, Leoben, 1984.
- [12] B. Divjak, Curves in Pseudo-Galilean Geometry, Ann. Univ. Sci. Budapest. 41 (1998), 117-128.
- [13] A.T. Ali, Position Vectors of Curves in the Galilean Space  $G_3$ , Mat. Vesnik. 64 (2012), 200-210.
- [14] H.S. Abdel-Aziz, M. Khalifa Saad, Smarandache Curves of Some Special Curves in the Galilean 3-Space, Honam Math. J. 37 (2015), 253-264. https://doi.org/10.5831/HMJ.2015.37.2.253.
- [15] M.K. Saad, Spacelike and Timelike Admissible Smarandache Curves in Pseudo-Galilean Space, J. Egypt. Math. Soc. 24 (2016), 416-423. https://doi.org/10.1016/j.joems.2015.09.001.
- [16] B.Y. Chen, Constant Ratio Hypersurfaces, Soochow J. Math. 27 (2001), 353-362.
- [17] B.Y. Chen, Geometry of Position Functions of Riemannian Submanifolds in Pseudo-Euclidean Space, J. Geom. 74 (2002), 61–77. https://doi.org/10.1007/p100012538.