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Abstract. The eight new concepts of picture fuzzy sets in UP (BCC)-algebras are introduced by
Kankaew et al. in 2022. This idea is extended to the lower and upper level subsets of picture fuzzy
sets in UP (BCC)-algebras. Moreover, we define a picture fuzzy set in the same way as a characteristic

function and study its characterizations from the related subset.

1. Introduction

Among many algebraic structures, algebras of logic form important class of algebras. Examples
of these are BCK-algebras [16], BCl-algebras [17], BE-algebras [23], UP-algebras [11], fully UP-
semigroups [12], topological UP-algebras [28], UP-hyperalgebras [14], extension of KU/UP-algebras
[27] and others. They are strongly connected with logic. For example, BCl-algebras introduced by
Iséki [17] in 1966 have connections with BCl-logic being the BCl-system in combinatory logic which
has application in the language of functional programming. BCK and BCl-algebras are two classes of
logical algebras. They were introduced by Imai and Iséki [16,17] in 1966 and have been extensively

investigated by many researchers.
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The concept of fuzzy sets was first considered by Zadeh [38] in 1965. The fuzzy set theories
developed by Zadeh and others have found many applications in the domain of mathematics and
elsewhere. After the introduction of the concept of fuzzy sets by Zadeh [38], Atanassov [3,4] defined
a new concept called an intuitionistic fuzzy set which is a generalization of fuzzy set. The concept of
picture fuzzy sets was first considered by Cuong and Kreinovich [6] in 2013, which is direct extensions of
the fuzzy sets and the intuitionistic fuzzy sets. The picture fuzzy set is characterized by three functions
expressing the degree of membership, the degree of neutral membership, and the degree of non-
membership. The only constraint is that the sum of the three degrees must not exceed 1. Cuong [5]
presented the concept of picture fuzzy sets in the Journal of Computer Science and Cybernetics
in 2014. Some operations on picture fuzzy sets with some properties are considered. The Zadeh
Extension Principle, picture fuzzy relations, and picture fuzzy soft sets are studied. Several researches
were conducted on the generalizations of the concept of picture fuzzy sets in a variety of different
fields and its application to a decision-making problem. In 2015, Singh [33] presented a geometrical
interpretation of picture fuzzy sets. The author proposed correlation coefficients for picture fuzzy sets
which considers the degree of positive membership, degree of neutral membership, degree of negative
membership and the degree of refusal membership. In 2017, Wei [35] presented another form of
eight similarity measures between picture fuzzy sets based on the cosine function between picture
fuzzy sets by considering the degree of positive membership, degree of neutral membership, degree of
negative membership and degree of refusal membership in picture fuzzy sets. The author applied these
weighted cosine function similarity measures between picture fuzzy sets to strategic decision making.
In 2018, Wei and Gao [37] presented some novel Dice similarity measures of picture fuzzy sets and the
generalized Dice similarity measures of picture fuzzy sets and indicate that the Dice similarity measures
and asymmetric measures (projection measures) are the special cases of the generalized Dice similarity
measures in some parameter values. Wei [36] presented some novel process to measure the similarity
between picture fuzzy sets. The author applied these similarity measures between picture fuzzy sets
to building material recognition and minerals field recognition. In 2020, Ganie et al. [8] introduced
two correlation coefficients of picture fuzzy sets. These correlation coefficients of picture fuzzy sets
are better than existing ones and effective in expressing the nature of correlation (positive or negative
correlation). In 2022, Jun et al. [18] have shown that the concept of UP-algebras (see [11]) and
the concept of BCC-algebras (see [24]) are the same concept. Therefore, in this article and future
research, our research team will use the name BCC instead of UP in honor of Komori, who first defined
it in 1984.

In this paper, we applied the concept of picture fuzzy sets in BCC-algebras to introduce the eight
new concepts of picture fuzzy sets: picture fuzzy BCC-subalgebras, picture fuzzy near BCC-filters,
picture fuzzy BCC-filters, picture fuzzy implicative BCC-filters, picture fuzzy comparative BCC-filters,
picture fuzzy shift BCC-filters, picture fuzzy BCC-ideals, and picture fuzzy strong BCC-ideals. Also,
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we discuss the relationship between the eight new concepts of picture fuzzy sets in BCC-algebras.
This idea is extended to the lower and upper level subsets of picture fuzzy sets in BCC-algebras.
Moreover, we define a picture fuzzy set in the same way as a characteristic function and study its

characterizations from the related subset.

2. Basic results on BCC-algebras
The concept of BCC-algebras (see [24]) can be redefined without the condition (2.6) as follows:

Definition 2.1. [10] An algebra X = (X, -,0) of type (2,0) is called a BCC-algebra, where X is a
nonempty set, - is a binary operation on X, and 0 is a fixed element of X (i.e., a nullary operation) if

it satisfies the following axioms:

(Vxy,ze X)((y-2) - ((x-y)-(x-2)) =0), (2.1)
(Vx € X)(0 - x = x), (2.2)
(Vx € X)(x-0=0), (2.3)
(Vx,y € X)(x-y =0,y -x=0=x=y). (2.4)

From [11], we know that the concept of BCC-algebras is a generalization of KU-algebras (see [26]).
The binary relation < on a BCC-algebra X = (X, -, 0) is defined as follows:

(Vx,ye X)(x<y<ex-y=0) (2.5)

and the following assertions are valid (see [11,12]).

(Vx € X)(x < x), (2.6)
(Vx,y,z€ X)(x<y y<z=x<2z), (2.7)
(Vx,y,z€X)x<y=2z-x<z-y), (2.8)
(W, vy, zeX)x<y=y - z<x-2), (2.9)
(Vx,y,z € X)(x < y-x, in particular, y -z < x - (y - 2)), (2.10)
(Vx,y € X)y -x < x e x=y-x), (2.11)
(Vx,y € X)(x <y-y) (2.12)
(Va,x,y,ze X)(x-(y-z) <x-((a-y)-(a-2))), (2.13)
(Vax,y,ze X)(((a-x)-(a-y))-z<(x-y)-2), (2.14)
(Y, y,ze X)((x-y)-z<y-2z), (2.15)
(W, v, ze€X)x<y=x<z-y), (2.16)
(W y,ze X)((x-y) - z<x-(y-2)), (2.17)

(Va,x,y,ze X)((x-y)-z<y-(a-2)). (2.18)
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Example 2.1. [30] Let U be a nonempty set and let X € P(U) where P(U) means the power set
of U. Let Px(U) = {A € P(U) | X C A}. Define a binary operation A on Px(U) by putting
AN B=BnN(ACUX) forall A, B € Px(U) where A means the complement of a subset A. Then
(Px(U), &, X) is a BCC-algebra. Let PX(U) = {A € P(U) | AC X}. Define a binary operation A on
PX(U) by putting AAB = BU(ASNX) forall A, B € PX(U). Then (PX(U), A, X) is a BCC-algebra.

Example 2.2. [7] Let Z* be the set of all nonnegative integers. Define two binary operations o and

n ifm<n,
(YmneZ*) [ mon= '
0 otherwise

(v EZ*)( {n ifm>norm=0,>
m, n m+n= )

0 otherwise

* on Z* by:

and

Then (Z*,0,0) and (Z*, =, 0) are BCC-algebras.

For more examples of BCC-algebras, see [1,2,12,15,25,29-32].
For a nonempty subset S of a BCC-algebra X = (X, -, 0) which satisfies the following condition:

(Wx,yeX)(yeS=x-yebS). (2.19)
Then the constant 0 of X isin S. Indeed, let x € S. By (2.6) and (2.19), we have 0 = x - x € S.
Definition 2.2. [9,11,13,19-21,34] A nonempty subset S of a BCC-algebra X = (X, -,0) is called
(1) a BCC-subalgebra of X if it satisfies the following condition:
(Vx,y € S)(x-y €5), (2.20)

(2) a near BCC-filter of X if it satisfies the condition (2.19),
(3) a BCC-filter of X if it satisfies the following conditions:

the constant 0 of X isin S, (2.21)
(Wx,yeX)(x-yeS xeS=yecS), (2.22)
(4) an implicative BCC-filter of X if it satisfies the condition (2.21) and the following condition:
(Vx,y,zeX)(x-(y-2) €S, x-yeS=x-z€5), (2.23)
(5) a comparative BCC-filter of X if it satisfies the condition (2.21) and the following condition:
(Vx,y,zeX)(x-((y-2) - y) €S, x€S=yeES), (2.24)

(6) a shift BCC-filter of X if it satisfies the condition (2.21) and the following condition:

(W, y,zeX)(x-(y-2)eS,xeS=((z-y)-y)-z€S), (2.25)
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(7) a BCC-ideal of X if it satisfies the condition (2.21) and the following condition:
(Vx,y,zeX)(x-(y-2) €S, yeS=x-z€85), (2.26)
(8) a strong BCC-ideal of X if it satisfies the condition (2.21) and the following condition:
(W, y,zeX)(z-y)-(z-x) €S, ye S=x¢€8). (2.27)

Guntasow et al. [9] proved that the only strong BCC-ideal of a BCC-algebra X is X.

The following theorem is easy to verify.

Theorem 2.1. Let .7 be a nonempty family of BCC-subalgebras (resp., near BCC-filters, BCC-filters,
implicative BCC-filters, comparative BCC-filters, shift BCC-filters, BCC-ideals, strong BCC-ideals)
of a BCC-algebra X = (X,-,0). Then (% is a BCC-subalgebra (resp., near BCC-filter, BCC-filter,
implicative BCC-filter, comparative BCC-filter, shift BCC-filter, BCC-ideal, strong BCC-ideal) of X.

3. PFSs in BCC-algebras

In 2013, Cuong and Kreinovich [6] introduced the concept of picture fuzzy sets as the following
definition.

A picture fuzzy set (briefly, PFS) in a nonempty set X is a structure of the form:

P = {(x,rp(x), gp(x), bp(x)) | x € X},

where rp © X — [0,1] is a positive membership, gp : X — [0,1] is a neutral membership, and

bp : X — [0, 1] is a negative membership satisfy the following condition:
(Vx € X)(re(x) + gp(x) + bp(x) < 1).

For our convenience, we will denote a PFS as P = (X, rp, gp, bp).
A PFS P in X is said to be constant if P is a constant function from X to [0, 1]3. That is, rp, gp,

and bp are constant functions from X to [0, 1].
In what follows, let X denote a BCC-algebra (X, -, 0) unless otherwise specified.

Kankaew et al. [22] introduced the eight new concepts of PFSs in BCC-algebras: picture fuzzy
BCC-subalgebras, picture fuzzy near BCC-filters, picture fuzzy BCC-filters, picture fuzzy implicative
BCC-filters, picture fuzzy comparative BCC-filters, picture fuzzy shift BCC-filters, picture fuzzy BCC-

ideals, and picture fuzzy strong BCC-ideals.

Definition 3.1. A PFS P in X is called
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(1) a picture fuzzy BCC-subalgebra of X if it satisfies the following conditions:

(Vx,y € X)(re(x - y) > min{rp(x), re(¥)}), (3.1)
(Vx,y € X)(gp(x - y) = min{gp(x), gp(¥)}). (3.2)
(Vx,y € X)(bp(x - y) < max{bp(x), bp(y)}). (3.3)

(2) a picture fuzzy near BCC-filter of X if it satisfies the following conditions:

(Vx,y € X)(re(x-y) > rp(y)), (3.4)
(Vx,y € X)(gp(x-y) > gp(y)), (3.5)
(Vx,y € X)(bp(x-y) < bp(y)). (3.6)

(3) a picture fuzzy BCC-filter of X if it satisfies the following conditions:

(vVx € X)(rp(0) = rp(x)), (3.7)

(Vx € X)(gp(0) = gp(x)), (3.8)

(Vx € X)(bp(0) < bp(x)), (3.9)

(Vx,y € X)(rp(y) = min{rp(x - y), re(x)}), (3.10)
(Vx,y € X)(gp(y) = min{gr(x - y), gp(x)}), (3.11)
(Vx,y € X)(bp(y) < max{bp(x - y), bp(x)}), (3.12)

(4) a picture fuzzy implicative BCC-filter of X if it satisfies the following conditions: (3.7), (3.8),
(3.9), and

(¥, .2 € X)(rolx - 2) = min{rp(x - (v - 2)). re(x - ¥)}), (3.13)
(vx, v, 2 € X)(gp(x - 2) > min{gp(x- (v - 2)). gp(x - ¥)}), (3.14)
(¥, .2 € X)(bp(x - 2) < max{bp(x - (v - 2)), bp(x - V)}), (3.15)

(5) a picture fuzzy comparative BCC-filter of X if it satisfies the following conditions: (3.7),
(3.8), (3.9), and

(Vx,y,z € X)(rp(y) = min{rp(x - ((v - 2) - y)), rp(x)}), (3.16)
(vx,y,z € X)(gp(y) = min{gp(x - ((v - 2) - ¥)). 9p(x)}), (3.17)
(Vx,y.z € X)(bp(y) < max{bp(x - ((y - 2) - ¥)). bp(x)}). (3.18)
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(6) a picture fuzzy shift BCC-filter of X if it satisfies the following conditions: (3.7), (3.8), (3.9),

and
(Vx,y,z € X)(re(((z-y) - ¥) - 2) = min{rp(x - (v - 2)). re(x)}), (3.19)
(Vx,y,z € X(gp(((z-y)-y)-z) = min{gp(x - (y - 2)), 9p(x)}). (3.20)
(Vx,y,z € X)(bp(((z-y) - ¥) - 2) < max{bp(x - (v - 2)), bp(x)}), (3.21)

(7) a picture fuzzy BCC-ideal of X if it satisfies the following conditions: (3.7), (3.8), (3.9), and

(vx,y,z € X)(rp(x - 2) Z min{rp(x - (v - 2)). rp(¥)}), (3.22)
(Vx,y, z € X)(gp(x - 2) = min{gp(x - (v - 2)), gp(¥)}). (3.23)
(Vx,y,z € X)(bp(x - z) < max{bp(x - (y - 2)), bp(¥)}), (3.24)

(8) a picture fuzzy strong BCC-ideal of X if it satisfies the following conditions: (3.7), (3.8),

(3.9), and
(Vx,y,z € X)(re(x) = min{re((z - y) - (z- X)), re(¥)}). (3.25)
(Vx, ¥,z € X)(gp(x) =2 min{gp((z - y) - (z- X)), gp(¥)}). (3.26)
(Vx,y,z € X)(bp(x) < max{bp((z-y) - (z- X)), bp(y)}). (3.27)

Kankaew et al. [22] proved the generalization that the concept of picture fuzzy BCC-subalgebras
is a generalization of picture fuzzy near BCC-filters, picture fuzzy near BCC-filters is a generalization
of picture fuzzy BCC-filters, picture fuzzy BCC-filters is a generalization of picture fuzzy comparative
BCC-filters, picture fuzzy BCC-filters is a generalization of picture fuzzy shift BCC-filters, picture
fuzzy BCC-filters is a generalization of picture fuzzy BCC-ideals, picture fuzzy BCC-ideals is a gen-
eralization of picture fuzzy implicative BCC-filters, and picture fuzzy implicative BCC-filters, picture
fuzzy comparative BCC-filters, and picture fuzzy shift BCC-filters is a generalization of picture fuzzy
strong BCC-ideals. Moreover, they proved that picture fuzzy strong BCC-ideals and constant PFSs
coincide.

In this part, we define a PFS in the same way as a characteristic function and study its characteri-
zations from the related subset.

For any fixed numbers r™, r—, g%, g, b", b~ € [0,1] such that r* > r~,g" > g, b" > b~ and a

+

nonempty subset G of X, a PFS PG[ff'gfjgl] = (X, rS["], gg[gt], bS[E.]) in X where rS["], gple-1,

and bg 2;] are functions on X which are given as follows:

o
N rt ifxeqG,
rEIC1) = |
r~ otherwise,



8 Int. J. Anal. Appl. (2023), 21:75

I
+ gt ifxeq,
9812 1(x) = |
g~ otherwise,
_ b~ ifxeaq,
bRl 1(x) =

bt  otherwise.

Lemma 3.1. /f the constant O of X is in a nonempty subset G of X, then the PFS PG[r, g, Z+] in X
satisfies the conditions (3.7), (3.8), and (3.9).

Proof. If 0 € G, then rg[ﬁf](O) = r+,gg[gt](0) = g™, and bE[2:](0) = b~. Thus

rSIE1(0) = rt > rSIT)(x)
(¥x € X) | g8I971(0) = g* > gS[2](x)
bE[21(0) = b= < BE[Z](x)

Hence, PG[ . g | satisfies the conditions (3.7), (3.8), and (3.9). O

Lemma 3.2. /f the PFS PG[r, g, [1;+] in X satisfies the condition (3.7) (resp., (3.8), (3.9)), then the

constant 0 of X is in a nonempty subset G of X.

Proof. Assume that the PFS PG[r 97D in X satisfies the condition (3.7). Then rg [f+](0) >

g b+
[r 1(x) for all x € X. Since G is nonempty, there exists g € G. Thus rg [r 1(g9) = r™ and so
rS[7°10) > rS[°1(g) = r* > rS[I°1(0), that is, rS[I"](0) = r*. Hence, 0 € G. O

Theorem 3.1. The PFS PG[ _ g b+] in X Is a picture fuzzy BCC-subalgebra of X if and only if a
nonempty subset G of X is a BCC-subalgebra of X.

Proof. Assume that PG[r 9" b7 | is a picture fuzzy BCC-subalgebra of X. Let x,y € G. Then

r=,9=.b*

rg [ﬁf](x) =rt=rg [;f](y). By (3.1), we have
110 y) = min{rE 100, 1)} = min{rt, ) = 1 > i8] (x - y)
and so rg[ﬁf](x -y)=rT. Thus x-y € G. Hence, G is a BCC-subalgebra of X.

Conversely, assume that G is a BCC-subalgebra of X. Let x,y € X.
Case 1: x,y € G. Then

1) =t = rEI(),
g8121(x) = g" = oS 1),
bE[E](x) = b~ = bS[Z1(y).



Int. J. Anal. Appl. (2023), 21:75 9

Thus
min{rg[["](x), B (1))} = min{r*, rt} = rF,
mm{gp[g 1(x). 9B12 ()} = min{g*, gt} = g*
max{b3[£:](x), B[4 1()} = max{b~, b} = b~

Since G is a BCC-subalgebra of X, we have x -y € G and so r5 [ Ax-y) =rt, g[gt](x-y) =g,
and bg[w](x-y) = b~. Hence,

S0 y) = rt > it = min{rE 1100, 110}
gl ](x y) =g > g" = min{gf[Z"1(x). gE1Z"1(v)},
B[ 1(x - y) = b~ < b~ = max{bS[5.1(x), bE[5 1)}
Case 2: xZ G or y ¢ G. Then
Bl = or iBlly) =1
gg [210x) =g~ or 6812 1(¥) =g,
SE1(x) = b+ or E[E.1(y) = b*

Thus
min{rE[2)(x). i [-1 )} = r,
min{gg[ (), gp[g IW}r=9",
max{b3[3:1(x), b33 1(¥)} = b
Therefore,
80 y) > rm = min{rE 1), 110}
gp[gf](x-y) >g = min{gp[gf](X).gp[gf](Y)},
bRIE1(x - y) < bT = max{bB[3:1(x), bE[5:1(¥)}-
Hence, PG[?Z:Z;] is a picture fuzzy BCC-subalgebra of X. O

Theorem 3.2. The PFS P¢ [; g g+] in X is a picture fuzzy near BCC-filter of X if and only if a
nonempty subset G of X is a near BCC-filter of X.

Proof. Assume that PG[r g b o+ is picture fuzzy near BCC-filter of X. Let x € X and y € G. Then
S 1(y) = rt. By (3.4), we have

IO y) > BN y) = T > S (x - )

and so rS ﬁf](x -y)=rT. Thus x-y € G. Hence, G is a near BCC-filter of X.



10 Int. J. Anal. Appl. (2023), 21:75

Conversely, assume that G is a near BCC-filter of X. Let x,y € X.

Case 1: y € G. Then rS["](y) = r*, g8 [g J(y) = g", and bE[2.](y) = b~. Since G is a near
BCC-filter of X, we have x-y € G and so rg[g,](x y)=rt, gg[gf](x-y) =g", and bE[2 ] (x-y) = b™.
Thus

Bl y) =t >t = 8IR),
+ +
GBI I y) =g > gt = 6B 1),
bE[5](x - y) = b~ < b = bR ().
Case 2: y ¢ G. Then rg[r (y)=r" gP[ ](y) =g, and b§ g;](y) = b*. Thus
B0 y) 2 = R),
+ _ +
GBI 10 y) 2 g7 = gBII1v),
bEIG(x- y) < bt = bR[.1(y).
Hence, PG[;t:g:g;] is a picture fuzzy near BCC-filter of X. O
Theorem 3.3. The PFS PG[ Tgtb | in X is a picture fuzzy BCC-filter of X if and only if a nonempty

.g~.bt
subset G of X is a BCC-filter of X.

Proof. Assume that PG[r_ g_ 2+ is a picture fuzzy BCC-filter of X. Since P® [r_ g_ g+] satisfies the

condition (3.7), it follows from Lemma 3.2 that 0 € G. Next, let x,y € X be such that x-y €Gand
x € G. Then rS[I"1(x - y) = r* = r§["](x). By (3.10), we have

BlE1y) 2 min{r8 (710 ), B IE100Y = min{r, it =t > rET()
and so rg [r J(y)=rT. Thus y € G. Hence, G is a BCCilter of X.

Conversely, assume that G is a BCC-filter of X. Since 0 € G, it follows from Lemma 3.1 that
PG[r g b .+] satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y € X.
Case 1. x-y€GandxeG. Then

B0 y) = rt = rgI](x),
g8l 1(x ) = g% = gBIL1(),
bE[51(x - y) = b~ = bE[1(x).
Thus
min{rg[["1(x - y), B 100} = min{r*, rt} = rF,
min{gB[S](x - ¥), 9B [S-](x)} = min{g", g"} = g*,
max{b3[3:](x - ¥), BR[3:](X)} = max{b~, b~} = b™.
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Since G is a BCCilter of X, we have y € G and so rS[/"](y) = r*, g[gf](y) =gT, and bS[L](y) =
b~. Thus
S ) = rt >t = min{rS [0 y), rSIE 100
gBl2 () = g* > g* = min{gB[Z 1(x - ¥), 9B IS 1(x)},
bEILI(y) = b~ < b~ = max{bE[2:1(x - y), bE[E](x)}.
Case 2: x-y € Gorx¢G. Then
8l (x-y) = or rE[EL)(x) = 7,
g8 1(x-y) =g~ or gS[L1(x) = g™,
bEIE](x - y) = b+ or bE[5.1(x) = b*.

Thus
min{rE[/110x - ). rS 1)} = 7,
min{g8[2"](x ). g8 (2 1(x)} = g™,
max{bE[5:1(x - y), b2[5-1(x)} = b*.
Therefore,
Sy = rm = min{r8 710 y), S0
gf19'1(y) > g~ = min{gB[2 ] (x - ¥). 9812 1(:)},
bEIE1(v) < b = max{bE[E]1(x - ¥), BE[5:1(x)}.
Hence, PG[?Z:';;] is a picture fuzzy BCC-filter of X. O

Theorem 3.4. The PFS PG[ s b+] in X is a picture fuzzy implicative BCC-filter of X if and only if
a nonempty subset G of X is an /mp//cat/ve BCC-filter of X.

Proof. Assume that PG[;:Z:E] is a picture fuzzy implicative BCC-filter of X. Since PG[f:gf:z;]

satisfies the condition (3.7), it follows from Lemma 3.2 that 0 € G. Next, let x,y,z € X be such
that x-(y-z) € Gand x-y € G. Then rg[ff](x (y-z)=rt= rg[ﬁf](xy). By (3.13), we have

B0 2) = mind [ 10x - (v - 2), B[ 1(x - )}

= min{r™, rt} =rt > rS[7](x - 2)
and so rg [r J(x-z)=rT. Thus x -z € G. Hence, G is an implicative BCC-filter of X.

Conversely, assume that G is an implicative BCC-filter of X. Since 0 € G, it follows from Lemma
3.1 that PG[r_ g_ g+] satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y,z € X.
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Case 1: x-(y-z)€Gand x-y € G. Then
I (v 2) = rt =S (x - y),
gBIL1(x - (v-2)) = g" = gB[I1(x - y),
BE(x - (v 2)) = b~ = bE[51(x - y).
Thus
min{rS[[11(x - (v - 2)), rS [ (x - )} = min{r*, rF} = T,
min{g8[2"1(x - (v - 2)). 98 (2 1(x - )} = min{g™, g"} = g™,
max{bE[51(x - (v - 2)), bE[ 1 (x - )} = max{b~, b~} = b™.
Since G is an implicative BCC-filter of X, we have x-z € G and so r§ [;f](x-z) =rt g% [gf](x-z) =gT,
and bg g;](x -z)=b". Thus
N (x-2) = rt >t =min{rS [ (x - (v - 2)), rS 10 )}
gfl9)(x - 2) = g > g" =min{gf[%1(x- (v - 2)). 981 1(x - »)}.
bE[p-1(x - z) = b~ < b” = max{bF[2.1(x - (v - 2)), bR[2-1(x - )}
Case 2: x-(y-z)¢Gorx-y¢&G. Then
Bl (v-2) = or i) y) =1
g8 )(x-(y-2) =g or gf[L)(x-y) =g,

bR[R1(x - (v~ 2)) = bT or b3[J.](x y) = b*.

Thus
min{rg [ 1(x - (v - 2)), B[] y)} =7,
min{g8[S 10x- (v 2)). 681 1(x - »)} = g™,
max{bE[5.1(x - (v - 2)), bE[5 1 (x - y)} = b*.
Therefore,
Bl 2) = = min{r8[)(x - (v - 2)) B 1y
gBlZ(x-2) > g~ = min{gBlI 1(x- (v - 2)), gBII10x - V),
bR[5:1(x - 2) < b* = max{bB[5](x - (v - 2)), bB[R:](x - )}
Hence, PC [::gf:g;] is a picture fuzzy implicative BCC-filter of X. O

Theorem 3.5. The PFS P® [::Z:Z;] in X is a picture fuzzy comparative BCC-filter of X if and only
if a nonempty subset G of X is a comparative BCC-filter of X.
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o
Proof. Assume that PG[:;gf’f;

satisfies the condition (3.7), it follows from Lemma 3.2 that 0 € G. Next, let x,y,z € X be such
that x - ((y - z)-y) € G and x € G. Then r§["](x- ((y - 2) - y)) = r* = rS["](x). By (3.16), we

have

] is a picture fuzzy comparative BCC-filter of X. Since PG[if'gf’Z;]

BL1) = min{rg (710 (v 2) - y)), B[00} = min{r*, 77} = > iR[7()
and so rg[ﬁf](y) = rT. Thus y € G. Hence, G is a comparative BCC-filter of X.

Conversely, assume that G is a comparative BCC-filter of X. Since 0 € G, it follows from Lemma

3.1 that PG[?gf'g;] satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y, z € X.

Case 1l: x-((y-z)-y) € Gand x € G. Then

B (y-2) - y) = rt = r8[1](x),

GBI 10 ((v-2) - v) = g7 = GBS 1),

bRIE(x - ((y-2)-y)) = b~ = bE[5.1(x).

Thus

min{r8[10x - (v - 2) - y)) 821 (x)} = min{rt, rt} =,
min{gB[Z](x ((v - 2) - ¥)), gB[I1()} = min{g*, g} = g™,
max{bB [0 1(x - ((y - 2) - ). bR[E1(X)} = max{b™, b} = b".

Since G is a comparative BCC-filter of X, we have y € G and so rg[;f](y) = r+,gg[gj](y) =g,
and b§[2,](y) = b~. Thus

B =t >t = min{rB 10 (- 2) - ) B 1100
gBl9 () = g" > g* = min{gBlI )(x- (v - 2) - ¥)). GBIZ 1)},
bR[b1(y) = b~ < b™ = max{bB[](x - (v - 2) - ¥)). bR[E-1(x)}.
Case 2: x-((y-z)-y)€Gorx¢&G. Then
PN ((v-2) - 9)) = r or if 110 =7,
gl Nx - ((y-2)-y)) =g or gBIZ1(x) =g,
B[ (x - (v - 2) - y)) = b" or bE[R](x) = b
Thus
min{rg [ 1(x- (v -2)-y). rf 100} = r7,
min{g8[Z 1(x- (v -2) - ¥)). B[S 1)} = g~

max{bR[p:1(x - ((v - 2) - ¥)), R[5+ 1 ()} = b
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Therefore,
BIE) 2 e = min{rB 10 (v -2) - ), rBIE100),
GBI 1(y) = g~ = min{gB[S10x- ((v - 2) - ¥)). GBI 100},
bR[5-1(v) < b* = max{bE[1(x - (v - 2) - ¥)). BRI 1(x)}.
Hence, PC [i:gf:g;] is a picture fuzzy comparative BCC-filter of X. Il

Theorem 3.6. The PFS PG[f:g:g;] in X is a picture fuzzy shift BCC-filter of X if and only if a

nonempty subset G of X is a shift BCC-filter of X.

Proof. Assume that PG[;J::g:ZI] is a picture fuzzy shift BCC-filter of X. Since P® [::gj:g;] satisfies

the condition (3.7), it follows from Lemma 3.2 that 0 € G. Next, let x,y,z € X be such that
x-(y-z)€GandxeG. Then rg[ff](x (y-z)=rt= rg[ﬁf](x) By (3.19), we have
Bz y) - y) - 2) 2 min{rg[F]0x- (v - 2)). rB17100)
=min{r*, it} = rt 2 G712 9) ) - 2)
and so rS ﬁf](((z-y) y)-z)=rT. Thus ((z-y)-y)-z € G. Hence, G is a shift BCC-filter of X.

Conversely, assume that G is a shift BCC-filter of X. Since 0 € G, it follows from Lemma 3.1 that

PG[::gjzgl] satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y, z € X.

Case 1: x-(y-z)e Gand x€ G. Then
S x (v - 2)) = rt = rS[71(0),
GBI (x- (v 2) = g = GBI ](%),
bR 1(x - (v -2)) = b~ = bE[H1(%).
Thus
min{rS[7 (- (v - 2)), rE 110} = min{r*, rt} = rt,
min{gf[9"1(x - (v - 2)). 98[2°1(x)} = min{g™, g*} = g*,
max{bE[5.1(x - (v - 2)), bE[5.1(x)} = max{b~, b™} = b™.
Since G is a shift BCC-filter of X, we have ((z-y)-y)-z € G and so rg[;f](((z cy)y)-z) =
rt g810 (2 y) y)-2) =gt and bEL](((z+y) -y) - 2) = b™. Thus
SNz y) y)-2) = rT 2 T =min{rS[](x- (v - 2)). rE [ 1(x)},
FBIN((z-y) ¥)-2) = g" > " = min{gB[L)(x - (v - 2)), B 1)},

bR[EN(((z-y) - y) - 2) = b~ < b™ = max{bB[3:](x - (v - 2)), bR[3:1(x)}.
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Case 2: x-(y-z)¢Gorx¢G. Then

U (ve2) = or B[ =,
gle)(x (v 2) =g or g8[2](x) =g,
b[p:10x - (v - 2)) = b* or bE[RLI(x) = b™.

Thus
min{rS[I1(x - (v - 2)). rS 1)} =
min{gg[J 1(x - (v - 2)). 9812 1)} = g™,
max{bE[5-1(x - (v - 2)). bE[S1(x)} = b*.
Therefore,
Bz y) y) - 2) = rm = min{r8[[1(x - (v - 2)), B[]0},
g1z y) - y) 2) = g~ =min{g8[L](x - (v - 2)), g8[S] (=)},
BEIEN(((z - y) - y) - 2) < b =max{bE[5:1(x - (v - 2)), bES1()}.
Hence, P° [i:gf:g;] is a picture fuzzy shift BCC-filter of X. O

Theorem 3.7. The PFS P® [r g Z+ in X is a picture fuzzy BCC-ideal of X if and only if a nonempty

subset G of X is a BCC-ideal ofX.

Proof. Assume that PG[r,g g+] is a picture fuzzy BCC-ideal of X. Since PG[r, 9, g+] satisfies the

condition (3.7), it follows from Lemma 3.2 that 0 € G. Next, let x,y,z € X be such that x-(y-z) € G
and y € G. Then rg [’ (x-(y-2)=rt= [ﬁf](y). By (3.22), we have

SN0 2) > min{rS 11 (x - (v - 2)) SN w)} = min{rt, kit =t > 81 (x - 2)
and so rg [r |(x-z)=rT. Thus x-z € G. Hence, G is a BCC-ideal of X,

Conversely, assume that G is a BCC-ideal of X. Since 0 € G, it follows from Lemma 3.1 that

PG[r, 9, 2+] satisfies the conditions (3.7), (3.8), and (3.9). Next, let x,y,z € X.

Case 1: x-(y-z)eGand y € G. Then

I x-(v-2) =t =81 1(),
gl (x- (v 2) =g = g8[L 1),
S ](x - (v-2)) = b~ = bS[L](¥).
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Thus
min{rS[[1(x - (v - 2)), B 11} = min{rt, rT} = rt,
min{g8[I1(x - (v - 2)), 98I 1)} = min{g*, g} = g*,
max{bS[](x - (v - 2)), bEI2 ()} = max{b~, b~} = b,
Since G is a BCC-ideal of X, we have x -z € G and so rg [r |(x-z)=rt, g[gf](x -z) = g", and
bG b+](x z)=b". Thus
I 2) =t > rt = min{rS [0 (x - (v - 2)), rE 10}
gBle1(x-2) = gt > g" = min{gB[L](x- (v - 2)), 9B 1)},
bE[5.1(x - 2) = b~ < b~ = max{bE[51(x - (v - 2)). bE[L1(V)}.

Case 2: x-(y-z)¢Gory ¢&G. Then

I x (v 2)) = r or SN (y) = 17,
gl x-(y-2) =g or gBl2)(¥) =g,
bR[p:1(x - (v - 2)) = b¥ or bR[2:](v) = bT.

Thus
min{rg (110 (v - ) B I)} = 17,
min{gB[Z](x - (v - 2)), 981 1)} = g™,
max{bE[L1(x - (v - 2)), (1)} = b
Therefore,
Bl 2) = rm = min{rE[710x - (v - 2)), rIE 1)},
g8l 1(x - 2) > g~ = min{gB[I1(x - (v~ 2)), 9B 1T 1)},
bR[5](x - 2) < b = max{bR[5:1(x - (v - 2)). bR[-](V)}.
Hence, PG[;t:g:g;] is a picture fuzzy BCC-ideal of X. O

Theorem 3.8. The PFS PG[r, g, Z+ in X is a picture fuzzy strong BCC-ideal of X if and only if a

nonempty subset G of X is a strong BCC-ideal of X.
Proof. Assume that PG[’, 9, Z+ is a picture fuzzy strong BCC-ideal of X. Then PG[r, 9, g+ is
constant, that is, rg [r | is constant. Since G is nonempty, we have rg [r 1(x) = r* for all x € X.
Thus G = X. Hence, G is a strong BCC-ideal of X.
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Conversely, assume that G is a strong BCC-ideal of X. Then G = X, so

S0 = rt
(¥x € X) | g8[2)(x) = g*
BE[E.1(x) = b~

+

Thus rg[""], gg[gf], and bZ[P.] are constant, that is, pe[ratb gty

r=,9=.b* r=,g=,b*
is a picture fuzzy strong BCC-ideal of X. Il

is constant. Hence, PC[

4. Level subsets of a PFS

In this section, we discuss the relationships between picture fuzzy BCC-subalgebras (resp., picture
fuzzy near BCC-filters, picture fuzzy BCC-filters, picture fuzzy implicative BCC-filters, picture fuzzy
comparative BCC-filters, picture fuzzy shift BCC-filters, picture fuzzy BCC-ideals, and picture fuzzy
strong BCC-ideals) of BCC-algebras and their level subsets.

Definition 4.1. [34] Let f be a fuzzy set in X. For any t € [0, 1], the sets

U(Fit) = {x € X | f(x) > t},
UT(f:t) ={xe X | f(x) >t}
L(f;t)={xe X |f(x) <t}
L=(f:t) ={x e X | f(x) < t},
E(f;t)={xe X |f(x) =t}

are called an upper t-level subset, an upper t-strong level subset, a lower t-level subset, a lower

t-strong level subset and an equal t-level subset of f, respectively.

Theorem 4.1. A PFS P in X is a picture fuzzy BCC-subalgebra of X if and only if for all t € [0, 1],
the sets U(rp; t), U(gp; t), and L(bp; t) are BCC-subalgebras of X if U(rp; t), U(gp; t), and L(bp;t)

are nonempty.

Proof. Assume that P is a picture fuzzy BCC-subalgebra of X. Let t € [0,1] be such that
U(rp; t),U(gp; t), and L(bp;t) are nonempty.

Let x,y € U(rp; t). Then rp(x) > t and rp(y) > t, so t is a lower bound of {rp(x), rp(y)}. By
(3.1), we have rp(x - y) > min{rp(x), rp(y)} > t. Thus x-y € U(rp; t).

Let x,y € U(gp; t). Then gp(x) >t and gp(y) > t, so t is a lower bound of {gp(x), gr(y)}. By
(3.2), we have gp(x - y) = min{gp(x), gp(y)} = t. Thus x -y € U(gp: t).

Let x,y € L(bp;t). Then bp(x) < t and bp(y) < t, so t is an upper bound of {bp(x), bp(y)}.
By (3.3), we have bp(x - y) < max{bp(x), bp(y)} < t. Thus x-y € L(bp; t).

Hence, U(rp;t),U(gp; t), and L(bp;t) are BCC-subalgebras of X.



18 Int. J. Anal. Appl. (2023), 21:75

Conversely, assume that for all t € [0,1], the sets U(rp;t),U(gp;t), and L(bp;t) are BCC-
subalgebras of X if U(rp;t), U(gp; t), and L(bp; t) are nonempty.

Let x,y € X. Then rp(x), rp(y) € [0,1]. Choose t = min{rp(x), rp(y)}. Thus rp(x) > t and
rp(y) > t, so x,y € U(rp; t) # (). By assumption, we have U(rp; t) is a BCC-subalgebra of X and so
x-yeU(rp;t). Thus rp(x-y) >t =min{rp(x), rp(y)}.

Let x,y € X. Then gp(x), gp(y) € [0,1]. Choose t = min{gp(x), gp(¥)}. Thus gp(x) >t and
gp(y) > t,so x,y € U(gp; t) # 0. By assumption, we have U(gp; t) is a BCC-subalgebra of X and
sox -y € U(gp;t). Thus gp(x-y) >t =min{gp(x), gp(y)}.

Let x,y € X. Then bp(x), bp(y) € [0,1]. Choose t = max{bp(x), bp(y)}. Thus bp(x) <t and
bp(y) <t,so x,y € L(bp;t) # (. By assumption, we have L(bp;t) is a BCC-subalgebra of X and
sox-y € L(bp;t). Thus bp(x-y) <t =max{bp(x), bp(y)}.

Therefore, P is a picture fuzzy BCC-subalgebra of X. O

Theorem 4.2. If P is a picture fuzzy BCC-subalgebra of X, then for all t € [0,1], the sets
Ut(rp;t), UM (gp; t), and L~ (bp; t) are BCC-subalgebras of X if Ut (rp; t), Ut (gp; t), and L~ (bp; t)

are nonempty.

Proof. Assume that P is a picture fuzzy BCC-subalgebra of X. Let t € [0,1] be such that
Ut (rp;t), Ut (gp; t), and L= (bp; t) are nonempty.

Let x,y € UT(rp; t). Then rp(x) > t and rp(y) > t, so t is a lower bound of {rp(x), rp(y)}. By
(3.1), we have rp(x - y) > min{rp(x), rp(y)} > t. Thus x -y € Ut (rp; t).

Let x,y € Ut (gp;t). Then gp(x) > t and gp(y) > t, so t is a lower bound of {gp(x), gp(¥)}.
By (3.2), we have gp(x - y) > min{gp(x),gp(y)} > t. Thus x-y € UM (gp; t).

Let x,y € L= (bp;t). Then bp(x) < t and bp(y) < t, so t is an upper bound of {bp(x), bp(y)}.
By (3.3), we have bp(x - y) < max{bp(x), bp(y)} < t. Thus x-y € L= (bp; t).

Hence, Ut (rp; t),UT(gp; t), and L~ (bp; t) are BCC-subalgebras of X. O

Theorem 4.3. A PFS P in X is a picture fuzzy near BCC-filter of X if and only if for all t € [0, 1],
the sets U(rp; t), U(gp; t), and L(bp; t) are near BCC-filters of X if U(rp;t),U(gp;t), and L(bp;t)

are nonempty.

Proof. Assume that P is a picture fuzzy near BCC-filter of X. Let t € [0,1] be such that
U(rp; t), U(gp; t), and L(bp; t) are nonempty.

Let x € X and y € U(rp; t). Then rp(y) > t. By (3.4), we have rp(x - y) > rp(y) > t. Thus
x-yeU(rp;t).

Let x € X and y € U(gp;t). Then gp(y) > t. By (3.5), we have gp(x-y) > gp(y) > t. Thus
x-y € U(gp: t).

Let x € X and y € L(bp;t). Then bp(y) < t. By (3.6), we have bp(x-y) < bp(y) < t. Thus
x-y € L(bp;t).
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Hence, U(rp;t),U(gp; t), and L(bp;t) are near BCC-filters of X.

Conversely, assume that for all t € [0, 1], the sets U(rp; t), U(gp; t), and L(bp;t) are near BCC-
filters of X if U(rp; t), U(gp; t), and L(bp; t) are nonempty.

Let x,y € X. Then rp(y) € [0,1]. Choose t = rp(y). Thus rp(y) > t, so y € U(rp;t) # 0. By
assumption, we have U(rp; t) is a near BCC-filter of X and so x-y € U(rp;t). Thus rp(x-y) >t =
rp(y).

Let x,y € X. Then gp(y) € [0,1]. Choose t = gp(y). Thus gp(y) > t, soy € U(gp; t) # 0. By
assumption, we have U(gp; t) is a near BCC-filter of X and so x-y € U(gp; t). Thus gp(x-y) >t =
gp(y).

Let x,y € X. Then bp(y) € [0,1]. Choose t = bp(y). Thus bp(y) <t,soy € L(bp;t)# 0. By
assumption, we have L(bp; t) is a near BCC-filter of X and so x-y € L(bp;t). Thus bp(x-y) <t =

bp(y).
Therefore, P is a picture fuzzy near BCC-filter of X. O

Theorem 4.4. If P is a picture fuzzy near BCC-filter of X, then for all t € [0,1], the sets
Ut(rp;t), UM (gp; t), and L= (bp; t) are near BCC-filters of X if Ut (rp; t), Ut (gp;t), and L~ (bp; t)

are nonempty.

Proof. Assume that P is a picture fuzzy near BCC-filter of X. Let t € [0,1] be such that
Ut (rp; t),UT(gp; t), and L~ (bp; t) are nonempty.

Let x € X and y € Ut (rp;t). Then rp(y) > t. By (3.4), we have rp(x - y) > rp(y) > t. Thus
x-y € UT(rp;t).

Let x € X and y € UT(gp; t). Then gp(y) > t. By (3.5), we have gp(x - y) > gp(y) > t. Thus
x-y €U (gp;t).

Let x € X and y € L= (bp; t). Then bp(y) < t. By (3.6), we have bp(x-y) < bp(y) < t. Thus
x-y €L (bp;t).

Hence, Ut (rp; t),UT(gp; t), and L~ (bp; t) are near BCC-filters of X. O

Theorem 4.5. A PFS P in X is a picture fuzzy BCC-filter of X if and only if for all t € [0, 1], the sets
U(rp; t), U(gp; t), and L(bp; t) are BCC-filters of X if U(rp; t), U(gp; t), and L(bp;t) are nonempty.

Proof. Assume that P is a picture fuzzy BCC-filter of X. Let t € [0, 1] be such that U(rp; t), U(gp; t),
and L(bp; t) are nonempty.

Let x € U(rp;t). Then rp(x) > t. By (3.7), we have rp(0) > rp(x) > t. Thus 0 € U(rp; t).
Next, let x,y € X be such that x-y € U(rp; t) and x € U(rp; t). Then rp(x-y) > t and rp(x) > t,
so t is a lower bound of {rp(x-y), rp(x)}. By (3.10), we have rp(y) > min{rp(x - y), rp(x)} > t.
Thus y € U(rp; t).

Let x € U(gp; t). Then gp(x) > t. By (3.8), we have gp(0) > gp(x) > t. Thus 0 € U(gp; t).
Next, let x, y € X be such that x-y € U(gp; t) and x € U(gp; t). Then gp(x-y) >t and gp(x) > t,
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so t is a lower bound of {gp(x-y), gp(x)}. By (3.11), we have gp(y) > min{gp(x - y), gp(x)} > t.
Thus y € U(gp; t).

Let x € L(bp;t). Then bp(x) < t. By (3.9), we have bp(0) < bp(x) < t. Thus 0 € L(bp;t).
Next, let x,y € X be such that x-y € L(bp;t) and x € L(bp;t). Then bp(x-y) <t and bp(x) < t,
so t is an upper bound of {bp(x-y), bp(x)}. By (3.12), we have bp(y) < max{bp(x-y), bp(x)} < t.
Thus y € L(bp; t).

Hence, U(rp;t),U(gp; t), and L(bp;t) are BCC-filters of X.

Conversely, assume that for all t € [0, 1], the sets U(rp; t), U(gp; t), and L(bp; t) are BCC-filters
of X if U(rp;t),U(gp; t), and L(bp;t) are nonempty.

Let x € X. Then rp(x) € [0,1]. Choose t = rp(x). Thus rp(x) > t, so x € U(rp;t) # (. By
assumption, we have U(rp;t) is a BCC-filter of X and so 0 € U(rp;t). Thus rp(0) > t = rp(x).
Next, let x,y € X. Then rp(x-y), rp(x) € [0, 1]. Choose t = min{rp(x-y), rp(x)}. Thus rp(x-y) >t
and rp(x) > t,so x-y,x € U(rp; t) # (. By assumption, we have U(rp; t) is a BCC-filter of X and
soy € U(rp;t). Thus rp(y) >t =min{rp(x-y), rp(x)}.

Let x € X. Then gp(x) € [0,1]. Choose t = gp(x). Thus gp(x) > t, so x € U(gp;t) # 0. By
assumption, we have U(gp; t) is a BCC-filter of X and so 0 € U(gp;t). Thus gp(0) > t = gp(x).
Next, let x,y € X. Then gp(x-y),gp(x) € [0,1]. Choose t = min{gp(x - y),gp(x)}. Thus
gp(x-y) > tand gp(x) > t, so x-y,x € U(gp;t) # 0. By assumption, we have U(gp;t) is a
BCC-filter of X and so y € U(gp;t). Thus gp(y) > t = min{gp(x-y), gp(x)}.

Let x € X. Then bp(x) € [0,1]. Choose t = bp(x). Thus bp(x) < t, so x € L(bp;t) # 0. By
assumption, we have L(bp;t) is a BCC-filter of X and so 0 € L(bp;t). Thus bp(0) < t = bp(x).
Next, let x,y € X. Then bp(x -y),bp(x) € [0,1]. Choose t = max{bp(x - y), bp(x)}. Thus
bp(x-y) < tand bp(x) < t, so x-y,x € L(bp;t) # (. By assumption, we have L(bp;t) is a
BCC-filter of X and so y € L(bp;t). Thus bp(y) < t = max{bp(x-y), bp(x)}.

Therefore, P is a picture fuzzy BCC-filter of X. Il

Theorem 4.6. If P is a picture fuzzy BCC-filter of X, then for all t € [0,1], the sets
Ut (rp; t),UT(gp;t), and L~ (bp; t) are BCC-filters of X if UT(rp; t),UT(gp;t), and L~ (bp;t) are

nonempty.

Proof. Assume that P is a picture fuzzy BCC-filter of X. Let t € [0,1] be such that
Ut(rp;t), UM (gp; t), and L~ (bp;t) are nonempty.

Let x € Ut (rp; t). Then rp(x) > t. By (3.7), we have rp(0) > rp(x) > t. Thus 0 € UT(rp; t).
Next, let x, y € X be such that x-y € UM (rp; t) and x € Ut (rp; t). Then rp(x-y) > t and rp(x) > t,
so t is a lower bound of {rp(x - y), rp(x)}. By (3.10), we have rp(y) > min{rp(x - y), rp(x)} > t.
Thus y € Ut (rp; t).

Let x € UT(gp; t). Then gp(x) > t. By (3.8), we have gp(0) > gp(x) > t. Thus 0 € Ut (gp; t).
Next, let x, y € X besuch that x-y € UT(gp;t) and x € UT(gp; t). Then gp(x-y) > t and gp(x) > t,
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so t is a lower bound of {gp(x-y), gp(x)}. By (3.11), we have gp(y) > min{gp(x-y), gp(x)} > t.
Thus y € UT(gp; t).

Let x € L= (bp; t). Then bp(x) < t. By (3.9), we have bp(0) < bp(x) < t. Thus 0 € L= (bp; t).
Next, let x, y € X besuchthat x-y € L= (bp;t)and x € L= (bp; t). Then bp(x-y) < tand bp(x) < t,
so t is an upper bound of {bp(x-y), bp(x)}. By (3.12), we have bp(y) < max{bp(x-y), bp(x)} < t.
Thus y € L= (bp; t).

Hence, U™ (rp; t), UT(gp; t), and L~ (bp; t) are BCC-filters of X. O

Theorem 4.7. A PFS P in X is a picture fuzzy implicative BCC-filter of X if and only if for all t € [0, 1],
the sets U(rp;t),U(gp;t), and L(bp;t) are implicative BCC-filters of X if U(rp;t),U(gp;t), and
L(bp; t) are nonempty.

Proof. Assume that P is a picture fuzzy implicative BCC-filter of X. Let t € [0, 1] be such that
U(rp; t), U(gp; t), and L(bp; t) are nonempty.

Let x € U(rp;t). Then rp(x) > t. By (3.7), we have rp(0) > rp(x) > t. Thus 0 € U(rp; t).
Next, let x,y,z € X be such that x- (y-z) € U(rp; t) and x -y € U(rp; t). Then rp(x-(y-2)) >t
and rp(x-y) > t, so tis a lower bound of {rp(x - (y-Zz)), rp(x-y)}. By (3.13), we have rp(x-z) >
min{rp(x-(y-2)), re(x-y)} >t. Thus x-z € U(rp; t).

Let x € U(gp; t). Then gp(x) > t. By (3.8), we have gp(0) > gp(x) > t. Thus 0 € U(gp; t).
Next, let x,y,z € X be such that x-(y-z) € U(gp;t) and x-y € U(gp; t). Then gp(x-(y-z)) >t
and gp(x-y) > t, so tis a lower bound of {gp(x-(y-2)),gp(x-y)}. By (3.14), we have gp(x-z) >
min{gp(x-(y-2)),9p(x-y)} >t. Thus x-z € U(gp; t).

Let x € L(bp;t). Then bp(x) < t. By (3.9), we have bp(0) < bp(x) < t. Thus 0 € L(bp;t).
Next, let x,y,z € X be such that x- (y-z) € L(bp;t) and x-y € L(bp;t). Then bp(x-(y-z)) <t
and bp(x - y) < t, so t is an upper bound of {bp(x - (y - z)),bp(x-y)}. By (3.15), we have
bp(x-z) < max{bp(x-(y-z)),bp(x-y)} <t. Thus x-z e L(bp;t).

Hence, U(rp;t),U(gp; t), and L(bp; t) are implicative BCC-filters of X.

Conversely, assume that for all t € [0, 1], the sets U(rp; t), U(gp; t), and L(bp;t) are implicative
BCC-filters of X if U(rp; t), U(gp;t), and L(bp; t) are nonempty.

Let x € X. Then rp(x) € [0,1]. Choose t = rp(x). Thus rp(x) > t, so x € U(rp;t) #
(). By assumption, we have U(rp;t) is an implicative BCC-filter of X and so 0 € U(rp;t). Thus
rp(0) > t = rp(x). Next, let x,y,z € X. Then rp(x - (y - 2)),rp(x-y) € [0,1]. Choose t =
min{rp(x-(y-2)), re(x-y)}. Thus re(x-(y-z)) > tand rp(x-y) > t,so x-(y-z),x-y € U(rp; t) # 0.
By assumption, we have U(rp; t) is an implicative BCC-filter of X and so x -z € U(rp;t). Thus
rp(x-z) = t=min{re(x-(y - 2)). re(x - y)}.

Let x € X. Then gp(x) € [0,1]. Choose t = gp(x). Thus gp(x) > t, so x € U(gp; t) # 0.
By assumption, we have U(gp;t) is an implicative BCC-filter of X and so 0 € U(gp;t). Thus
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gp(0) > t = gp(x). Next, let x,y,z € X. Then gp(x-(y-2z)), gp(x-y) € [0,1]. Choose t =
min{gp(x:(y-2)), gp(x-y)}. Thus gp(x-(y-2)) = tand gp(x-y) = t,so x-(y-z),x-y € U(gp; t) # 0.
By assumption, we have U(gp;t) is an implicative BCC-filter of X and so x -z € U(gp;t). Thus
gp(x-z) =t =min{gp(x - (y-2)),gp(x-y)}.

Let x € X. Then bp(x) € [0,1]. Choose t = bp(x). Thus bp(x) < t, so x € L(bp;t) # 0.
By assumption, we have L(bp;t) is an implicative BCC-filter of X and so 0 € L(bp;t). Thus
bp(0) < t = bp(x). Next, let x,y,z € X. Then bp(x - (y - z)),bp(x -y) € [0,1]. Choose
t =max{bp(x-(y-2)),bp(x-y)}. Thus bp(x-(y-z))<tand bp(x-y)<t, sox-(y-z),x-y¢€
L(bp;t) # (. By assumption, we have L(bp; t) is an implicative BCC-filter of X and so x-z € L(bp; t).
Thus bp(x-z) <t =max{bp(x-(y-2)), bp(x-y)}.

Therefore, P is a picture fuzzy implicative BCC-filter of X. [l

Theorem 4.8. If P is a picture fuzzy implicative BCC-filter of X, then for all t € [0, 1], the sets
Ut (rp; t),UT(gp;t), and L~ (bp;t) are implicative BCC-filters of X if Ut (rp;t),UT(gp;t), and
L= (bp; t) are nonempty.

Proof. Assume that P is a picture fuzzy implicative BCC-filter of X. Let t € [0, 1] be such that
Ut (rp;t), Ut (gp; t), and L~ (bp; t) are nonempty.

Let x € UT(rp;t). Then rp(x) > t. By (3.7), we have rp(0) > rp(x) > t. Thus 0 € U™ (rp; t).
Next, let x,y,z € X be such that x-(y-z) € Ut (rp; t) and x-y € UT(rp; t). Then rp(x-(y-z)) >t
and rp(x-y) > t, so tis a lower bound of {rp(x - (y-2)), rp(x-y)}. By (3.13), we have rp(x-z) >
min{rp(x - (y - 2)),rp(x-y)} > t. Thus x-z € U™ (rp; t).

Let x € UT(gp; t). Then gp(x) > t. By (3.8), we have gp(0) > gp(x) > t. Thus 0 € Ut (gp; t).
Next, let x, y, z € X be such that x-(y-z) € Ut (gp; t) and x-y € Ut(gp; t). Then gp(x-(y-2)) >t
and gp(x-y) > t, so tis a lower bound of {gp(x-(y-2)),gp(x-y)}. By (3.14), we have gp(x-z) >
min{gp(x - (y-2)), gp(x - y)} > t. Thus x-z € U (gp: 1).

Let x € L= (bp; t). Then bp(x) < t. By (3.9), we have bp(0) < bp(x) < t. Thus 0 € L= (bp; t).
Next, let x,y,z € X be such that x-(y-z) € L= (bp;t)and x-y € L= (bp; t). Then bp(x-(y-2)) <t
and bp(x - y) < t, so t is an upper bound of {bp(x - (y - z)),bp(x-y)}. By (3.15), we have
bp(x-z) < max{bp(x-(y-z)),bp(x-y)} <t. Thus x-z € L™ (bp; t).

Hence, U™ (rp; t), UT(gp; t), and L~ (bp; t) are implicative BCC-filters of X. O

Theorem 4.9. A PFS P in X is a picture fuzzy comparative BCC-filter of X if and only if for all t €
[0, 1], the sets U(rp; t), U(gp; t), and L(bp; t) are comparative BCC-filters of X if U(rp; t), U(gp; t),
and L(bp; t) are nonempty.

Proof. Assume that P is a picture fuzzy comparative BCC-filter of X. Let t € [0, 1] be such that
U(rp; t), U(gp; t), and L(bp; t) are nonempty.
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Let x € U(rp; t). Then rp(x) > t. By (3.7), we have rp(0) > rp(x) > t. Thus 0 € U(rp; t). Next,
let x,y,z € X be such that x- ((y - z) - y) € U(rp; t) and x € U(rp; t). Then rp(x-((y-2)-y)) >t
and rp(x) > t, so t is a lower bound of {rp(x - ((y-2z)-y)) rr(x)}. By (3.16), we have rp(y) >
min{rp(x- ((y-2)-y)),re(x)} > t. Thus y € U(rp; t).

Let x € U(gp; t). Then gp(x) > t. By (3.8), we have gp(0) > gp(x) > t. Thus 0 € U(gp; t).
Next, let x, y, z € X be such that x-((y-z)-y) € U(gp; t) and x € U(gp; t). Then gp(x-((y-2)-y)) >t
and gp(x) > t, so t is a lower bound of {gp(x - ((y-2)-y)). gp(x)}. By (3.17), we have gp(y) >
min{gp(x - ((y - 2) - ¥)). gp(x)} = t. Thus y € U(gp; ).

Let x € L(bp;t). Then bp(x) < t. By (3.9), we have bp(0) < bp(x) < t. Thus 0 € L(bp;t).
Next, let x, y, z € X be such that x-((y-z)-y) € L(bp; t) and x € L(bp;t). Then bp(x-((y-z)-y)) <t
and bp(x) < t, so tis an upper bound of {bp(x - ((y-z)-y)), bp(x)}. By (3.18), we have bp(y) <
max{bp(x- ((y-z)-y)),bp(x)} <t. Thusy € L(bp;t).

Hence, U(rp;t),U(gp; t), and L(bp;t) are comparative BCC-filters of X.

Conversely, assume that for all t € [0, 1], the sets U(rp; t), U(gp; t), and L(bp; t) are comparative
BCC-filters of X if U(rp; t), U(gp;t), and L(bp; t) are nonempty.

Let x € X. Then rp(x) € [0,1]. Choose t = rp(x). Thus rp(x) > t, so x € U(rp;t) # 0.
By assumption, we have U(rp;t) is a comparative BCC-filter of X and so 0 € U(rp;t). Thus
rp(0) > t = rp(x). Next, let x,y,z € X. Then rp(x- ((y - 2) - y)), rp(x) € [0,1]. Choose
t=min{re(x-((y-2)-y)). re(x)}. Thus re(x-((y-2)-y)) = tand rp(x) > t, so x- ((y-2)-y), x €
U(rp; t) # 0. By assumption, we have U(rp; t) is a comparative BCC-filter of X and so y € U(rp; t).
Thus rp(y) = t =min{re(x - ((y - 2) - ¥)), rp(x)}.

Let x € X. Then gp(x) € [0,1]. Choose t = gp(x). Thus gp(x) > t, so x € U(gp; t) # 0.
By assumption, we have U(gp;t) is a comparative BCC-filter of X and so 0 € U(gp;t). Thus
gp(0) > t = gp(x). Next, let x,y,z € X. Then gp(x - ((y - 2)-y)). gp(x) € [0,1]. Choose
t =min{gp(x-((y-2)-¥)).gp(x)}. Thus gp(x-((y-2)-y)) = t and gp(x) = t, so x-((y-2) y). x €
U(gp; t) # (0. By assumption, we have U(gp; t) is a comparative BCC-filter of X and so y € U(gp; t).
Thus gp(y) > t =min{gp(x - ((y - 2) - ¥)). gp(x)}.

Let x € X. Then bp(x) € [0,1]. Choose t = bp(x). Thus bp(x) < t, so x € L(bp;t) # 0.
By assumption, we have L(bp;t) is a comparative BCC-filter of X and so 0 € L(bp;t). Thus
bp(0) < t = bp(x). Next, let x,y,z € X. Then bp(x - ((y - 2)-y)), bp(x) € [0,1]. Choose
t = max{bp(x-((y-2)-¥)). bp(x)}. Thus bp(x-((y-2)-y)) < tand bp(x) < t,s0x-((y-2)-y).x €
L(bp; t) # (). By assumption, we have L(bp; t) is a comparative BCC-filter of X and so y € L(bp; t).
Thus bp(y) <t =max{bp(x - ((y-2)-¥)), bp(x)}.

Therefore, P is a picture fuzzy comparative BCC-filter of X. ]
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Theorem 4.10. If P is a picture fuzzy comparative BCC-filter of X, then for all t € [0, 1], the sets
Ut(rp;t), UM (gp; t), and L~ (bp; t) are comparative BCC-filters of X if Ut (rp; t), Ut (gp;t), and
L=(bp; t) are nonempty.

Proof. Assume that P is a picture fuzzy comparative BCC-filter of X. Let t € [0, 1] be such that
Ut(rp;t), UM (gp; t), and L~ (bp;t) are nonempty.

Let x € UT(rp;t). Then rp(x) > t. By (3.7), we have rp(0) > rp(x) > t. Thus 0 € U (rp; t).
Next, let x,y,z € X be such that x - ((y - z) - y) € UM (rp; t) and x € UM (rp; t). Then rp(x - ((y -
z)-y))>tand rp(x) > t, so tis a lower bound of {rp(x-((y-2z)-y)) rr(x)}. By (3.16), we have
rp(y) = min{rp(x - ((y - 2) - ¥)), re(x)} > t. Thus y € U (rp; t).

Let x € UM (gp;t). Then gp(x) > t. By (3.8), we have gp(0) > gp(x) > t. Thus 0 €
Ut (gp;t). Next, let x,y,z € X be such that x- ((y - z) - y) € U (gp; t) and x € Ut (gp; t). Then
gp(x-((y-z)-y)) > tand gp(x) > t, so tis a lower bound of {gp(x-((y-2)-y)), gp(x)}. By
(3.17), we have gp(y) > min{gp(x - ((y - 2) - ¥)), gp(x)} > t. Thus y € UT(gp; t).

Let x € L=(bp;t). Then bp(x) < t. By (3.9), we have bp(0) < bp(x) < t. Thus 0 €
L=(bp;t). Next, let x,y,z € X be such that x- ((y-z)-y) € L= (bp;t) and x € L= (bp; t). Then
bp(x-((y-z)-y)) < tand bp(x) < t, so tis an upper bound of {bp(x-((y-2)-y)), bp(x)}. By
(3.18), we have bp(y) < max{bp(x-((y-2)-y)),bp(x)} <t. Thusy € L= (bp; t).

Hence, Ut (rp; t), Ut (gp; t), and L~ (bp; t) are comparative BCC-filters of X. O

Theorem 4.11. A PFS P in X is a picture fuzzy shift BCC-filter of X if and only if for all t € [0, 1],
the sets U(rp; t), U(gp; t), and L(bp;t) are shift BCC-filters of X if U(rp;t),U(gp;t), and L(bp;t)

are nonempty.

Proof. Assume that P is a picture fuzzy shift BCC-filter of X. Let t € [0,1] be such that
U(rp; t), U(gp; t), and L(bp; t) are nonempty.

Let x € U(rp;t). Then rp(x) > t. By (3.7), we have rp(0) > rp(x) > t. Thus 0 € U(rp; t).
Next, let x,y,z € X be such that x- (y-z) € U(rp; t) and x € U(rp; t). Then rp(x-(y-z)) > t and
rp(x) > t, so tis a lower bound of {rp(x - (v - 2)),rp(x)}. By (3.19), we have rp(((z-y)-y)-z) >
min{rp(x-(y-2)), re(x)} >t. Thus ((z-y)-y)-z € U(rp; t).

Let x € U(gp;t). Then gp(x) > t. By (3.8), we have gp(0) > gp(x) > t. Thus 0 € U(gp;t).
Next, let x, y, z € X be such that x- (y-z) € U(gp; t) and x € U(gp; t). Then gp(x-(y-z)) >t and
gp(x) > t, so tis a lower bound of {gp(x-(y-2)), gp(x)}. By (3.20), we have gp(((z-y)-y)-z) >
min{gp(x - (y-2)).gp(x)} = t. Thus ((z-y)-y) -z € U(gp: ).

Let x € L(bp;t). Then bp(x) < t. By (3.9), we have bp(0) < bp(x) < t. Thus 0 € L(bp;t).
Next, let x,y,z € X be such that x-(y-z) € L(bp;t) and x € L(bp;t). Then bp(x-(y-z)) < t and
bp(x) < t, so tis an upper bound of {bp(x-(y-z)), bp(x)}. By (3.21), we have bp(((z-y)-y)-z) <
max{bp(x - (y-z)), bp(x)} <t. Thus ((z-y)-y)-z € L(bp;t).
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Hence, U(rp;t),U(gp; t), and L(bp; t) are shift BCC-filters of X.

Conversely, assume that for all t € [0, 1], the sets U(rp; t), U(gp; t), and L(bp; t) are shift BCC-
filters of X if U(rp; t), U(gp; t), and L(bp; t) are nonempty.

Let x € X. Then rp(x) € [0,1]. Choose t = rp(x). Thus rp(x) > t, so x € U(rp;t) # (. By
assumption, we have U(rp; t) is a shift BCC-filter of X and so 0 € U(rp; t). Thus rp(0) > t = rp(x).
Next, let x,y,z € X. Then rp(x-(y-2)), rp(x) € [0,1]. Choose t = min{rp(x-(y-Zz)), rp(x)}. Thus
rp(x-(y-z)) > tand rp(x) > t, so x-(y-z),x € U(rp; t) # 0. By assumption, we have U(rp; t) is a shift
BCC-filter of X and so ((z-y)-y)-z € U(rp; t). Thus rp(((z-y)-y)-z) > t = min{rp(x-(y-2)), rp(x)}.

Let x € X. Then gp(x) € [0,1]. Choose t = gp(x). Thus gp(x) > t, so x € U(gp;t) # 0. By
assumption, we have U(gp; t) is a shift BCC-filter of X andso 0 € U(gp; t). Thus gp(0) > t = gp(x).
Next, let x,y,z € X. Then gp(x-(y - z)), gp(x) € [0,1]. Choose t = min{gp(x - (y - 2)),gp(x)}.
Thus gp(x - (y-2z)) > tand gp(x) > t, so x-(y-z),x € U(gp;t) # 0. By assumption, we have
U(gp; t) is a shift BCC-filter of X and so ((z-y)-y)-z € U(gp;t). Thus gp(((z-y)-y)-2z) >t =
min{gp(x - (y - 2)), gr(x)}.

Let x € X. Then bp(x) € [0,1]. Choose t = bp(x). Thus bp(x) < t, so x € L(bp; t) # (). By
assumption, we have L(bp; t) is a shift BCC-filter of X and so 0 € L(bp; t). Thus bp(0) < t = bp(x).
Next, let x,y,z € X. Then bp(x - (y - z)), bp(x) € [0,1]. Choose t = max{bp(x - (y - z)), bp(x)}.
Thus bp(x - (y-z)) < tand bp(x) < t,s0 x-(y-z),x € L(bp;t) # 0. By assumption, we have
L(bp; t) is a shift BCC-filter of X andso ((z-y)-y)-z € L(bp;t). Thus bp(((z-y)-y)-z) <t=
max{bp(x - (v - 2)), bp(x)}.

Therefore, P is a picture fuzzy shift BCC-filter of X. Il

Theorem 4.12. If P is a picture fuzzy shift BCC-filter of X, then for all t € [0,1], the sets
Ut (rp; t),UT(gp;t), and L~ (bp; t) are shift BCC-filters of X if UT (rp; t), UT(gp;t), and L~ (bp; t)

are nonempty.

Proof. Assume that P is a picture fuzzy shift BCC-filter of X. Let t € [0,1] be such that
Ut (rp;t), Ut (gp; t), and L= (bp; t) are nonempty.

Let x € UT(rp;t). Then rp(x) > t. By (3.7), we have rp(0) > rp(x) > t. Thus 0 € U™ (rp; t).
Next, let x,y,z € X be such that x - (y - z) € Ut (rp; t) and x € UT(rp; t). Then rp(x-(y-2)) >t
and rp(x) > t, so tis a lower bound of {rp(x-(y-2)), re(x)}. By (3.19), we have rp(((z-y)-y)-z) >
min{rp(x - (y - 2)), rp(x)} > t. Thus ((z-y)-y)-z€ UT(rp; t).

Let x € Ut (gp;t). Then gp(x) > t. By (3.8), we have gp(0) > gp(x) > t. Thus 0 € UT(gp; t).
Next, let x, y,z € X be such that x- (y - z) € UT(gp; t) and x € UT(gp; t). Then gp(x-(y-2)) >t
and gp(x) > t, so tis a lower bound of {gp(x-(y-2)), gp(x)}. By (3.20), we have gp(((z-y)-y)-z) >
min{gp(x - (y-2)), gp(x)} > t. Thus ((z-y)-y)-z € UT(gp:t).

Let x € L= (bp; t). Then bp(x) < t. By (3.9), we have bp(0) < bp(x) < t. Thus 0 € L= (bp; t).
Next, let x, y, z € X be such that x-(y-z) € L= (bp; t) and x € L~ (bp; t). Then bp(x-(y-z)) < t and
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bp(x) < t, so tis an upper bound of {bp(x-(y-z)), bp(x)}. By (3.21), we have bp(((z-y)-y)-z) <
max{bp(x- (v -z)), bp(x)} < t. Thus ((z-y)-y) -z € L™ (bp;t).
Hence, U™ (rp; t), UT(gp; t), and L~ (bp; t) are shift BCC-filters of X. O

Theorem 4.13. A PFS P in X is a picture fuzzy BCC-ideal of X if and only if for all t € [0, 1], the sets
U(rp; t),U(gp;t), and L(bp; t) are BCC-ideals of X if U(rp; t),U(gp; t), and L(bp; t) are nonempty.

Proof. Assume that P is a picture fuzzy BCC-ideal of X. Let t € [0, 1] be such that U(rp; t), U(gp; t),
and L(bp; t) are nonempty.

Let x € U(rp;t). Then rp(x) > t. By (3.7), we have rp(0) > rp(x) > t. Thus 0 € U(rp; t).
Next, let x,y,z € X be such that x- (y-z) € U(rp;t) and y € U(rp;t). Then rp(x-(y-2)) >t
and rp(y) > t, so tis a lower bound of {rp(x - (y - 2)),rp(y)}. By (3.22), we have rp(x-z) >
min{rp(x- (v -2)), rp(y)} > t. Thus x-z € U(rp; t).

Let x € U(gp;t). Then gp(x) > t. By (3.8), we have gp(0) > gp(x) > t. Thus 0 € U(gp; t).
Next, let x,y,z € X be such that x - (y-z) € U(gp; t) and y € U(gp; t). Then gp(x-(y-2)) >t
and gp(y) > t, so t is a lower bound of {gp(x - (y-Zz)),gp(y)}. By (3.23), we have gp(x-2z) >
min{gp(x - (v -2)),gp(y)} = t. Thus x-z € U(gp; t).

Let x € L(bp;t). Then bp(x) < t. By (3.9), we have bp(0) < bp(x) < t. Thus 0 € L(bp;t).
Next, let x,y,z € X be such that x- (y-z) € L(bp;t) and y € L(bp;t). Then bp(x-(y-z)) <t
and bp(y) < t, so tis an upper bound of {bp(x - (y - 2)), bp(y)}. By (3.24), we have bp(x - z) <
max{bp(x - (y-2)),bp(y)} <t. Thus x-z € L(bp;t).

Hence, U(rp; t),U(gp; t), and L(bp; t) are BCC-ideals of X.

Conversely, assume that for all t € [0, 1], the sets U(rp; t), U(gp; t), and L(bp;t) are BCC-ideals
of X if U(rp;t),U(gp; t), and L(bp;t) are nonempty.

Let x € X. Then rp(x) € [0,1]. Choose t = rp(x). Thus rp(x) > t, so x € U(rp;t) # (. By
assumption, we have U(rp; t) is a BCC-ideal of X and so 0 € U(rp;t). Thus rp(0) > t = rp(x).
Next, let x,y,z € X. Then rp(x-(y-z)), rp(y) € [0,1]. Choose t = min{rp(x-(y-z)),rp(y)}. Thus
re(x-(y-z))>tand rp(y) > t,sox-(y-z),y € U(rp; t) # (). By assumption, we have U(rp; t) is
a BCC-ideal of X and so x-z € U(rp; t). Thus rp(x-z) >t =min{rp(x - (v -z)), re(y)}.

Let x € X. Then gp(x) € [0,1]. Choose t = gp(x). Thus gp(x) > t, so x € U(gp;t) # (). By
assumption, we have U(gp;t) is a BCC-ideal of X and so 0 € U(gp; t). Thus gp(0) > t = gp(x).
Next, let x,y,z € X. Then gp(x-(y - 2)),gp(y) € [0,1]. Choose t = min{gp(x- (v -2)),9p(¥)}.
Thus gp(x-(y-2z)) > tand gp(y) > t,s0o x-(y-2z),y € U(gp; t) # 0. By assumption, we have
U(gp; t) is a BCC-ideal of X and so x-z € U(gp; t). Thus gp(x-z) >t = min{gp(x-(v-2)),9p(¥)}.

Let x € X. Then bp(x) € [0,1]. Choose t = bp(x). Thus bp(x) < t, so x € L(bp;t) # 0. By
assumption, we have L(bp;t) is a BCC-ideal of X and so 0 € L(bp;t). Thus bp(0) < t = bp(x).
Next, let x,y,z € X. Then bp(x - (y - 2)), bp(y) € [0,1]. Choose t = max{bp(x- (v -2z)), bp(y)}.
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Thus bp(x - (y-2)) < tand bp(y) < t,sox-(y-z),y € L(bp;t) # (). By assumption, we have
L(bp;t)is a BCC-ideal of X and so x-z € L(bp;t). Thus bp(x-z) <t =max{bp(x-(y-2)), bp(y)}.
Therefore, P is a picture fuzzy BCC-ideal of X. O

Theorem 4.14. If P in X is a picture fuzzy BCC-ideal of X, then for all t € [0, 1], the sets
Ut (rp; t),UT(gp;t), and L= (bp; t) are BCC-ideals of X if UT(rp;t), UT(gp;t), and L~ (bp;t) are

nonempty.

Proof. Assume that P is a picture fuzzy BCC-ideal of X. Let t € [0,1] be such that
Ut(rp;t), UM (gp; t), and L~ (bp; t) are nonempty.

Let x € UT(rp; t). Then rp(x) > t. By (3.7), we have rp(0) > rp(x) > t. Thus 0 € UT(rp; t).
Next, let x,y,z € X be such that x- (y-z) € UT(rp;t) and y € U (rp; t). Then rp(x-(y-z)) >t
and rp(y) > t, so tis a lower bound of {rp(x - (y - 2)),rp(y)}. By (3.22), we have rp(x -z) >
min{rp(x - (y - 2)), re(y)} > t. Thus x-z € U™ (rp; t).

Let x € UT(gp; t). Then gp(x) > t. By (3.8), we have gp(0) > gp(x) > t. Thus 0 € Ut (gp; t).
Next, let x,y, z € X be such that x- (y-z) € UT(gp; t) and y € U (gp; t). Then gp(x-(y-2)) >t
and gp(y) > t, so t is a lower bound of {gp(x - (y-Zz)),gp(y)}. By (3.23), we have gp(x - z) >
min{gp(x-(v-2)),g9p(y)} > t. Thus x-z € Ut(gp; t).

Let x € L= (bp; t). Then bp(x) < t. By (3.9), we have bp(0) < bp(x) < t. Thus 0 € L= (bp; t).
Next, let x,y,z € X be such that x- (y-z) € L= (bp;t) and y € L= (bp; t). Then bp(x-(y-z)) <t
and bp(y) < t, so tis an upper bound of {bp(x - (v -z)), bp(y)}. By (3.24), we have bp(x - z) <
max{bp(x - (y-2)),bp(y)} < t. Thus x-z € L™ (bp; t).

Hence, U™ (rp; t), UT(gp; t), and L~ (bp; t) are BCC-ideals of X. O

Theorem 4.15. A PFS P in X is a picture fuzzy strong BCC-ideal of X if and only if the sets
E(rp; rp(0)), E(gp; gp(0)), and E(bp; bp(0)) are strong BCC-ideals of X.

Proof. Assume that P is a picture fuzzy strong BCC-ideal of X. Then P is constant, that is, rp, gp,

and bp are constant. Thus

rp(x) = rp(0)
(Vx € X) | gp(x) = gp(0)
bp(x) = bp(0)

Hence, E(rp;rp(0)) = X, E(g9p;g9p(0)) = X, and E(bp;bp(0)) = X and so E(rp;
rp(0)), E(gp; gr(0)), and E(bp; bp(0)) are strong BCC-ideals of X.
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Conversely, assume that E(rp; rp(0)), E(gp; gp(0)), and E(bp; bp(0)) are strong BCC-ideals of X.
Then E(rp; rp(0)) = X, E(gp; gp(0)) = X, and E(bp; bp(0)) = X and so

rp(x) = rp(0)
(Vx € X) | gp(x) = gp(0)
bp(x) = bp(0)
Thus rp, gp, and bp are constant, that is, P is constant. Hence, P is a picture fuzzy strong BCC-ideal
of X. O

Definition 4.2. Let P be a PFS in X. For any a, 3,y € [0, 1], the sets
UULp(a,B.) = {x € X | rp(x) = &, gp(x) = . bp(x) <71},
LLUp(0,B,7) = {x € X | rp(x) < &, gp(x) < B. bp(x) = 7},
Ep(cr,B.7) = {x € X | rp(x) = , gp(x) = B, bp(x) = 7}

are called a UUL-(ex, B, 7v)-level subset, a LLU-(cx, B, y)-level subset, and an E-(a, B, y)-level subset

of P, respectively. Then we see that

UULp(a,B,7) = U(rp;a) N U(gp: B) N L(bp; ),
LLUp(a, B,7y) = L(rpi ) N L(gp: B) N U(bp; ),
Ep(a,B,7v) = E(rp; ) N E(gp: B) N E(bp; ).

Corollary 4.1. A PFS P in X is a picture fuzzy BCC-subalgebra of X if and only if for all a, 3,y €
[0,1], UULp(et,B,7y) is a BCC-subalgebra of X if UULp(at, B,7) is nonempty.

Proof. It is straightforward by Theorems 4.1 and 2.1. U

Corollary 4.2. A PFS P in X is a picture fuzzy near BCC-filter of X if and only if for all a,3,v €
[0,1], UULp(ct,B,7y) is a near BCC-filter of X if UULp(a, B,7y) is nonempty.

Proof. It is straightforward by Theorems 4.3 and 2.1. [l

Corollary 4.3. A PFS P in X is a picture fuzzy BCC-filter of X if and only if for all o, 3,7 €
[0,1], UULp(ct,B,7y) is a BCC-filter of X if UULp(cx, B,7y) Is nonempty.

Proof. It is straightforward by Theorems 4.5 and 2.1. [l

Corollary 4.4. A PFS P in X is a picture fuzzy implicative BCC-filter of X if and only if for all
a,B,v€[0,1],UULp(a,B,7y) is a implicative BCC-filter of X if UULp(a, B,7y) is nonempty.

Proof. It is straightforward by Theorems 4.7 and 2.1. O

Corollary 4.5. A PFS P in X is a picture fuzzy comparative BCC-filter of X if and only if for all
a,B,v€[0,1],UULp(a,B,7y) is a comparative BCC-filter of X if UULp(cx, B,7y) is nonempty.
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Proof. It is straightforward by Theorems 4.9 and 2.1. ([l

Corollary 4.6. A PFS P in X is a picture fuzzy shift BCC-filter of X if and only if for all o, 3,y €
[0,1], UULp(a,B,7y) is a shift BCC-filter of X if UULp(cx, B,7) is nonempty.

Proof. It is straightforward by Theorems 4.11 and 2.1. [l

Corollary 4.7. A PFS P in X is a picture fuzzy BCC-ideal of X if and only if for all a,B,v €
[0,1], UULp(ct,B,7) is a BCC-ideal of X if UULp(at,B,7) is nonempty.

Proof. It is straightforward by Theorems 4.13 and 2.1. O

Corollary 4.8. A PFS P in X is a picture fuzzy strong BCC-ideal of X if and only if
Ep(rp(0), gp(0), bp(0)) is a strong BCC-ideal of X, that is, E(rp, rp(0)) = X, E(gp, gp(0)) = X,
and E(bp, bp(O)) = X.

Proof. It is straightforward by Theorems 4.15 and 2.1. [l

Acknowledgment: This research project was supported by the Thailand Science Research and Inno-
vation Fund and the University of Phayao (Grant No. FF66-RIM032).
Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publi-

cation of this paper.

References

[1] M. Ansari, A. Haidar, A. Koam, On a Graph Associated to UP-Algebras, Math. Comput. Appl. 23 (2018), 61.
https://doi.org/10.3390/mca23040061.

[2] M.A. Ansari, A.N.A. Koam, A. Haider, Rough set theory applied to UP-algebras, Italian J. Pure Appl. Math. 42
(2019), 388-402.

[3] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986), 87-96. https://doi.org/10.1016/
s0165-0114(86)80034-3.

[4] K.T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets Syst. 61 (1994), 137-142.

[5] B.C. Cuong, Picture fuzzy sets, J. Computer Sci. Cybern. 30 (2014), 409-420. https://doi.org/10.15625/
1813-9663/30/4/5032.

[6] B.C. Cuong, V. Kreinovich, Picture fuzzy sets - A new concept for computational intelligence problems, in: 2013
Third World Congress on Information and Communication Technologies (WICT 2013), IEEE, Hanoi, Vietnam,
2013: pp. 1-6. https://doi.org/10.1109/WICT.2013.7113099.

[7] N. Dokkhamdang, A. Kesorn, A. lampan, Generalized fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform. 16
(2018), 171-190. https://doi.org/10.30948/AFMI.2018.16.2.171.

[8] A.H. Ganie, S. Singh, P.K. Bhatia, Some new correlation coefficients of picture fuzzy sets with applications, Neural
Comput. Appl. 32 (2020), 12609-12625. https://doi.org/10.1007/s00521-020-04715-y.

[9] T. Guntasow, S. Sajak, A. Jomkham, et al. Fuzzy translations of a fuzzy set in UP-algebras, J. Indones. Math.
Soc. 23 (2017), 1-19.

[10] Y. Huang, BCl-algebra, Science Press, Beijing, China, 2006.
[11] A. lampan, A new branch of the logical algebra: UP-algebras, J. Algebra Related Topics. 5 (2017), 35-54. https:
//doi.org/10.22124/jart . 2017 .2403.


https://doi.org/10.3390/mca23040061
https://doi.org/10.1016/s0165-0114(86)80034-3
https://doi.org/10.1016/s0165-0114(86)80034-3
https://doi.org/10.15625/1813-9663/30/4/5032
https://doi.org/10.15625/1813-9663/30/4/5032
https://doi.org/10.1109/WICT.2013.7113099
https://doi.org/10.30948/AFMI.2018.16.2.171
https://doi.org/10.1007/s00521-020-04715-y
https://doi.org/10.22124/jart.2017.2403
https://doi.org/10.22124/jart.2017.2403

30 Int. J. Anal. Appl. (2023), 21:75

[12] A. lampan, Introducing fully UP-semigroups, Discuss. Math. Gen. Algebra Appl. 38 (2018), 297-306.

[13] A. lampan, Multipliers and near UP-filters of UP-algebras, J. Discr. Math. Sci. Cryptogr. 24 (2019), 667-680.
https://doi.org/10.1080/09720529.2019.1649027.

[14] A. lampan, A. Satirad, M. Songsaeng, A note on UP-hyperalgebras, J. Algebr. Hyperstruct. Log. Algebr. 1 (2020),
77-95. https://doi.org/10.29252/hatef . jahla.1.2.7.

[15] A. lampan, M. Songsaeng, G. Muhiuddin, Fuzzy duplex UP-algebras, Eur. J. Pure Appl. Math. 13 (2020), 459-471.
https://doi.org/10.29020/nybg.ejpam.v13i3.3752.

[16] Y. Imai, K. Iséki, On axiom systems of propositional calculi, XIV, Proc. Japan Acad. 4 (1966), 19-22. https:
//doi .org/10.3792/pja/1195522169.

[17] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29. https://cir.nii.
ac.jp/crid/1570009749777934080.

[18] Y.B. Jun, B. Brundha, N. Rajesh, et al. (3,2)-fuzzy UP (BCC)-subalgebras and (3, 2)-fuzzy UP (BCC)-filters, J.
Mahani Math. Res. 11 (2022), 1-14. https://doi.org/10.22103/jmmrc.2022.18786.1191.

[19] Y.B. Jun, A. lampan, Comparative and allied UP-filters, Lobachevskii J. Math. 40 (2019), 60-66. https://doi.
org/10.1134/s1995080219010086.

[20] Y.B. Jun, A. lampan, Implicative UP-filters, Afr. Mat. 30 (2019), 1093-1101. https://doi.org/10.1007/
$13370-019-00704-0.

[21] Y.B. Jun, A. lampan, Shift UP-filters and decompositions of UP-filters in UP-algebras, Missouri J. Math. Sci. 31
(2019), 36-45. https://doi.org/10.35834/mjms/1559181624.

[22] P. Kankaew, S. Yuphaphin, N. Lapo, et al. Picture fuzzy set theory applied to UP-algebras, Missouri J. Math. Sci.
34 (2022), 94-120. https://doi.org/10.35834/2022/3401094.

[23] H.S. Kim, Y.H. Kim, On BE-algebras, Sci. Math. Japon. 66 (2007), 113-116. https://doi.org/10.32219/isms.
66.1_113.

[24] Y. Komori, The class of BCC-algebras is not a variety, Math. Japon. 29 (1984), 391-394.

[25] P. Mosrijai, A. lampan, A new branch of bialgebraic structures: UP-bialgebras, J. Taibah Univ. Sci. 13 (2019),
450-459. https://doi.org/10.1080/16583655.2019.1592932.

[26] C. Prabpayak, U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna, 5 (2009), 54-57.

[27] A. Satirad, R. Chinram, A. lampan, Four new concepts of extensions of KU/UP-algebras, Missouri J. Math. Sci.
32 (2020), 138-157. https://doi.org/10.35834/2020/3202138.

[28] A. lampan, A. Satirad, Topological UP-Algebras, Discuss. Math. - Gen. Algebra Appl. 39 (2019), 231-250. https:
//doi.org/10.7151/dmgaa.1317.

[29] A. Satirad, P. Mosrijai, A. lampan, Formulas for Finding UP-Algebras, Int. J. Math. Computer Sci. 14 (2019),
403-409.

[30] A. Satirad, P. Mosrijai, A. lampan, Generalized Power UP-Algebras, Int. J. Math. Computer Sci. 14 (2019), 17-25.

[31] T. Senapati, Y.B. Jun, K.P. Shum, Cubic Set Structure Applied in UP-Algebras, Discr. Math. Algorithm. Appl. 10
(2018), 1850049. https://doi.org/10.1142/s1793830918500490.

[32] T. Senapati, G. Muhiuddin, K.P. Shum, Representation of UP-Algebras in Interval-Valued Intuitionistic Fuzzy
Environment, Italian J. Pure Appl. Math. 38 (2017), 497-517.

[33] P. Singh, Correlation Coefficients for Picture Fuzzy Sets, J. Intell. Fuzzy Syst. 28 (2015), 591-604. https://doi.
org/10.3233/ifs-141338.

[34] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, A. lampan, Fuzzy Sets in UP-Algebras, Ann. Fuzzy Math. Inform.
12 (2016), 739-756.

[35] G. Wei, Some cosine similarity measures for picture fuzzy sets and their applications to strategic decision making,

Informatica, 28, no. 3, (2017), 547-564.


https://doi.org/10.1080/09720529.2019.1649027
https://doi.org/10.29252/hatef.jahla.1.2.7
https://doi.org/10.29020/nybg.ejpam.v13i3.3752
https://doi.org/10.3792/pja/1195522169
https://doi.org/10.3792/pja/1195522169
https://cir.nii.ac.jp/crid/1570009749777934080
https://cir.nii.ac.jp/crid/1570009749777934080
https://doi.org/10.22103/jmmrc.2022.18786.1191
https://doi.org/10.1134/s1995080219010086
https://doi.org/10.1134/s1995080219010086
https://doi.org/10.1007/s13370-019-00704-0
https://doi.org/10.1007/s13370-019-00704-0
https://doi.org/10.35834/mjms/1559181624
https://doi.org/10.35834/2022/3401094
https://doi.org/10.32219/isms.66.1_113
https://doi.org/10.32219/isms.66.1_113
https://doi.org/10.1080/16583655.2019.1592932
https://doi.org/10.35834/2020/3202138
https://doi.org/10.7151/dmgaa.1317
https://doi.org/10.7151/dmgaa.1317
https://doi.org/10.1142/s1793830918500490
https://doi.org/10.3233/ifs-141338
https://doi.org/10.3233/ifs-141338

Int. J. Anal. Appl. (2023), 21:75 31

[36] G. Wei, Some Similarity Measures for Picture Fuzzy Sets and Their Applications, Iran. J. Fuzzy Syst. 15 (2018),
77-89.

[37] G. Wei, H. Gao, The Generalized Dice Similarity Measures for Picture Fuzzy Sets and Their Applications, Infor-
matica, 29 (2018), 107-124.

[38] L.A. Zadeh, Fuzzy Sets, Inform. Control. 8 (1965), 338-353. https://doi.org/10.1016/s0019-9958(65)
90241-x.


https://doi.org/10.1016/s0019-9958(65)90241-x
https://doi.org/10.1016/s0019-9958(65)90241-x

	1. Introduction
	2. Basic results on BCC-algebras
	3. PFSs in BCC-algebras
	4. Level subsets of a PFS
	References

