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Abstract. This field's main feature is to implement the sum connectivity index method. This sum con-

nectivity index method can solve the monogenic semigroups under the cartesian and strong products.

1

We will define for an undirected graph as SC/(Gms) = ZuneE(ng) [dng(u) + dgMS(U)] *, where
dg s (u) and dg,,s(v) are degree of u and v in Gus respectively. Further, we investigate two different
algorithms concerning topological index for computing cartesian and strong products of a monogenic

semigroup with a detailed example.

1. Introduction

Here we consider the monogenic semigroup Gaqs having vertices and edges respectively, for graph
theoretic concepts two products namely cartesian and strong products are two important operations
used to combine two graphs into a new one. A monogenic semigroup is a mathematical structure
that combines elements of both algebraic and graph theoretical concepts. The sum connectivity index
(SCl) is a graph theoretical parameter that measures the overall connectedness of a graph. In recent
years, researchers have investigated the SCI of various types of graphs, as it reflects the robustness
and resilience of a network. In particular, the SCI of the cartesian and strong product graphs of
monogenic semigroups have gained attention due to their potential applications in computer science,
communication networks, and social networks.

Chen [4] devoted the graph and its line graph obtained through the general sum connectivity index.
In [1], the authors studied the various type of connectivity indexes. In [8], the authors used the method
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to solve generalized sum connectivity index n-vertex trees and the corresponding extremal trees. Wang
et al. [3], the authors investigated a triangle-free graph used to sum connectivity index. In [12] have
recently focused on the bicyclic graphs to prove the minimum and maximum sum—connectivity indices.
For instance, the solution of various product graphs through the monogenic semigroup was obtained by
Aydm et al. [5] Wiener index over the dot product and Seda [6] Sombor index over the Cartesian and
Tensor products. Akgunes [7] demonstrated some importance graph parameter used strong product
to solve the monogenic semigroups.

There are many published paper on sum-connectivity index to obtain, unicyclic graphs [11] trees
and uncyclic graphs [10] tree [8] and molecular trees [9] through various approach.

Das et al. (2013) presented a study on the finite monogenic semigroup Sy, with zero, which has
elements vy, vo,v3, ..., Vs They determined various properties of Sy, such as the diameter, girth,
domination number, chromatic number, clique number, degree sequence, irregularity index, maximum
and minimum degrees. In addition, they demonstrated a spectral property for the cartesian product
M(Siy x I'S%).

Several authors like Zhou and Trinajsti¢ [1, 16, 17], introduced and extended the work on sum-
connectivity index which established a new research study of interest.

Motivated and influenced by the above results, The theme of current work is to explore the SCI
of the cartesian and strong product graph of the monogenic semigroups. In addition, the entire
study of the current work is categorized as follows: In the second segment on some basic notations
typically defines key concepts and terminology related to the topic under study. On the other hand,
we employed used the sum connectivity index to solve the monogenic semigroups under the Cartesian
and Strong product graphs in third and fourth segment. The present results are validated by using
some pertinent examples and which are provided in the fifth segment. The significant findings of the

present work are illustrated in the last segment.

2. Preliminary Results

In this study, the following monogenic semigroups were utilized: S}, and Sz, which defined as
follows, respectively, St, = {vy,v2, v3, ..., YU {0} and S%, = {v,, 3,13, ..., v3} U {0}.

The vertex set of the cartesian and strong product of Si, and S}, is given as:
{(vy, vs), (W2, 05), o, (VP 1), (01, 13), W2, 03), ., (WP 1V3), o, (v, W3 h), (W2, 08,

(WP, ud™hY, (v, vd), (W2, U), ... (WP v}

Definition 2.1. Let S be a monogenic semigroup generated by a single element v and G be the

undirected graph whose vertices are the elements of the monogenic semigroup Gums.

Let us consider sum connectivity index of undirected graph and which is expressed as: [1, 16]

N

SCIGms) = Y. [d(u)+d(u)}_. (2.1)

weE(Gms)
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Furthermore, for a real number t, we identify the most significant integer lessthan or equal t by
[t], and the little integer greater than or equal v by [t]. It is evident that t — 1 < [t] < v and

t < [t] <t + 1. Moreover, for any positive integer v, we obtain,

1 . -

b 5. if v is even,

51= (22)
oL if v is odd.

In this case, any pair of vertices (v}, v8) and (v2, v2) have a relationship if only if
Vi € E(N(SY)) <= v, vi=0<=1+a>v+1, (2.3)

and

VS S e E(T(S3)) <= S, b =0+ b>u+1. (2.4)
Definition 2.2. The product of graphs G1 and G,, denoted as Gi X Go, is a graph with vertex set
G1 x Go, where (11, 2) and (p1, p2) are adjacent in G1 x Go if and only if v1, p1 € E(G1) and va = p»
orvs, p2 € E(Go) and vy = p1.

Definition 2.3. The strong product of graphs Gy and G» is the graph G G> with vertex set
G1 %X Go and (v1,v2)(p1, p2) € (G1 Go) whenever vy, p1 € E(G1) and vo = po or vop2 € E(Go) and
vy = p1 orvipr € E(G1) and vopo € E(Gy). The Cartesian and strong product are commutative and

associative operations, with the trivial graph as the identity element.

3. Computing the Sum Connectivity Index of the Cartesian Products of Monogenic Semigroup

This segment investigate SCI under the cartesian product graph comprising two monogenic semi-
groups.

Assume the monogenic semigroup graphs, we introduce an algorithm to adjacent vertices on
M(Sk) % T(S3).
If v is even (u is even or odd):

lo: The vertex (v, 18) is related to (v*, v4) and (W8, V8)(1<a<v—1,1<b<u-1).
lou—1: The vertex (v§, 47 1) is related to (v§,v8) and (18, V8)(1<a<v—1,2<b<u-2).

lpy—2: The vertex (v§, v4~2) is related to (v§, v572) and (19, U5)(1<a<v-1,3<b<u-3).

lo.1: The vertex (v, v3) is related to (v§, 13)(1 < a<wv—1) ly_1,: The vertex (v, V8) is related to
(V8 U8) and (W1 U8)(2<a<v-2,1<b<u-1)
lojo41,1: The vertex (u;’/QH, vi) is related to (u;p, vi).

By pursing out such circumstances, if v is odd, (u is even or odd) will determine whether the

o : : 241 :
following circumstance takes place. If v is odd (u is even or odd): ls 1110 The vertex (1/12+ Vi) s
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o
related to (v£, v3). The following lemma provides the degrees of the vertices as

(v1, 1), (uf, v2), ., (V] 12), (11, z/g), (uf, 1/22 s (Vf u22 s (v 1/;_1
(W20, s (W8, A7), (01, 8), (VR 08), o (U2,08) € T(Sh) X T(S3). e
These vertex degrees are denote by
(Ms1, Ms1), (Ms2,Msy), ... (Mso, Msy), (Ms1, Msa), (Msz, M), .o, (32)

(Mso, Mss), ... (Ms1, Ms,), (Msz, Msy,), ... (Msy, Ms,,).

Previous studies have examined the degree series in relation to this series, which are discussed
in [13, 14].

Lemma 3.1.

/ ! ! U / U
(Ms1, Ms)) = 1, (Msa, Msh) =2, (Mspgy, Msh) = [3 1, (Mg +1, Ms) = 3],
’ ’ v u
(Msy, Ms1) =0 =1, (Msrgy + 1 Msray +1) = ([5DT 5 1)

Remark 3.1. Upon careful examination of Lemma 3.1, we can observe the recurring phrases used in

the following: Mg r41 = [%1 = Mgfg} + 1.
Thus, the degree of Mg, is equal to u — 1, regardless of the number of vertices being u.

Theorem 3.1. In this case of any monogenic semigroup 5/1\/1 X 5/2\/1, the sum connectivity index under
catesian product of two monogenic semigroup graphs, [(S},) X F(sz\/l) are given by:
S T T [[E- D+ oD+ - bl]
S S S [[e- D +sl+[B+s]] T+

SienTha Naogn 0= D+ -0+ (- D+ -] '+
S X Y €= D+ A +[@- 1)+ (- 1] T+
S0 D Dingn [ D+ - DI+ [@- )+ (h- 1]
S Dea Sack (- D+ s+ (6D +sl] T+

i Ch s T [+ (= D]+ e+ h]] T

i Tty Do [+ (= DI+ e+ (h-1)]]

In the method above will take £, 3 and s, v according to the requlations£+08 > v+1, £>08,s+h >

NI

[SCI|(TSH x TS3) =

[NIE

(NI

u+1, ands > h.

Proof. Our main goal is to develop SCI(FS}M X FS%A) in terms of the overall degrees, we must regard
the sum as total quantity of various blocks, which will then be decided separately. Including equations
(2.2), (3.1) and Remark (3.1), the method presented in 3 is used to find the structures of the degrees

of vertices.
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[SCI(TSL, x 'S2,)

_1
2

= [((Mso = 1)+ Msy = 1)+ Me1 + M5, =) 7+ [(Mso = 1) + (Msy = D) + (Ms2 + Moy —1)] * +..

1
2

+ [((Mso = 1)+ (Msy = 1)+ (Ms g +(Msy =1)] 7+ [(Mso = 1)+ (Msy, = 1) + Ms gy =D+ Msy —1)] 7+

1

+ [((Mso = 1)+ (Msy = 1)+ (Mso1 = D)+ Msy, = D] 7+ [((Mso =D+ (Msy = 1) + (Mso = D)+ (Msp)]

-

2

N\b—l

+[((Mso = 1)+ (MY 1)+ (Mso = 1)+ Ms'y | 7+ [(Msa = 1)+ (Ml = 1) + (Mso = 1) + (Ms'y, — ]

1
F[(Msa = )+ My = D)+ (Mg~ D)+ (M~ )] 7+ [(Ms = 1)+ (Msle s = 1) + (Mo + (M) 2

1 1
+ [((Mso = 1)+ (M = 1) + Ms1 + Msuo = D)] 7+ [(Mso = 1)+ (Msiy = 1) + Moz + Msy = D] 2+

_1 _1
+ [((Mso = D)+ (Mshos = 1) + Msg + Msuoy = D] ° + [((Mso =D+ Msuoy = D)+ (Ms gy — DMsu — )]

[T

_1 _
+ [((Mso = 1)+ (M1 = 1)+ (Mspoa =D+ Msy oy =D 7+ [(Msy = D)+ (Msi = D) + Mso =D+ (Ms3)] * +

Nl

1
2

+[((Mso = D)+ (Ms' 1 = D)+ (Mo = D+ (Msy 2 = D] 7+ [(Mso = 1)+ (Ms'y)) + (Ms +Ms'y)]

_1 _1
+[(Mso = D)+ Ms'y + Msa + Ms'y)] 2 4 [(Mso = D)+ Ms'y) + (Msas = D+ (Msy 1 =] 7

-

+ [(Mso =1+ Msiy = 1) + (Msor = D+ (MsD] 2 + [(Mso = 1) + Msly = 1)+ (Mspo1 = D+ (Ms2)] * ..

[N

1
2

+ [((Msy = 1)+ Msl) + (Msy1 = )+ Msioy = D] 7+ [(Msor = 1) + Msuoy — 1) + (Ms2) + (Msioy — 1]

—

2

Nl

+ [((Mso1 = 1)+ Moy = D)+ (Mss + Moy = D] 2 4+t [(Msooa = D+ Msyy = D+ (Ms g +1) + (Msyy — 1] 7+

=
-

2

2

+[(Msaa = D+ MsT s = D+ (Mso = 1D+ (Ms5)] 7 4ot [(Msaor = D+ My = D+ (Mspon = D)+ Msy)] 7+

-

2

+ [(Msor =D+ Ms') + (Msa +MS')] 7+

S

+[((Msor =1+ Ms') + (Msa + MS'y)]

1
3

-

1
2 2

+ [((Msoo1 = 1)+ Msh) + (Mss + Ms)] 7 4o+ [(Msor = 1)+ Msh) + (Msy2 — 1) + M)

_1
2

(Msg iy =D+ Msy, = 1)+ (Msy +Msy — 1] 7+ [(Ms gy, =D+ (Msh = 1) + Ms gy +Ms))]

+

_1 _1
2 2

+

(M

/—\

s340 -1+ Msy — 1)+ (Ms g, +Ms))]

T [((MS%+1 — D)+ (Msy = D)+ (Ms g 4y + Ms\y — 1)

s34 =D+ Moy = D)+ Msg +(Msyoy —1)] 2+ [((Ms gy = 1)+ (Mshoy = 1)+ (Ms gy - D+ Msa)] * +..

(M

,—\
\

[N

1
(Msg iy =D+ Msus = D)+ (Msy D+ Msup—1)]

o) [((MS%+1—1)+(M5%)+(M§% +M5'%)] T

1 1
(Ms gy =D+ M)+ (Msg +Ms))] 7+ [Ms g +(Msy — 1)+ (Msy +Ms)] * +

1 _1
+(Msy = 1)+ Msg +Msh)] 7+ [(Msg +(Msy =D+ Msg +Msy = D)]

+

(Ms

b
2

_1 _1
2 2

+[(Ms g +(Msir = D)+ Msg +Ms))] 7+ [(Msg +(Msiy =D+ (Msg +Ms, 1)

-

1 ~1
+ [(Ms2 + (Msh = 1) + (Msz + Ms1)| 7+ [(Ms2 + Moy = 1) + (Ms2 + Msy)] * 4+

_1
S2 $,u71 - S2 51.72 - 2
+ |(Mso + (M 1)) + (Msa + M 1) +

[N

+ [Ms2 + (Ms, = 1) + Mez + Msuoy - 1)]

[N
[N

+ [ Moz 4+ (Msy oy = 1) + (Msz + Ms'y)] 7+ [(Msz + (M, = 1)) + (M2 + Ms5)]

Nh—-
N\»—-

+ [(Ms1+ (Msh = 1)+ (Ms1 + Ms)| 7+ [(Ms1+ (Msy = 1)+ Msr + Msy)] 7+

-
-

+ [(Ms1 + (Msu D)+ Ms: + (MSIu—l } 4+ [(M51 + (Mslufl —-1))+ (Ms1 -5—/‘\/15/2)]7j + ...

1

2

[
[
[
[
[
[
[
[
[
[
[
[
[
[
(Moot = )+ My ) (Moo = 1)+ M) 2+ [(Msot = 1)+ M)+ (Mo + M)
[
[
[
[
[
[
[
[
[
[
[
[
[
+

(Ms1 + (Msyy = 1) + M1 + Msu2))]
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Consequently, the SCI of [SC/](T(S4,) x ([(S3,)) is expressed as the sum below
[SC(T(Sh) x (T(SX0)) = [SCT(Sha) * (T(SX0)) (o) + [SCHT(Sha) X (T(SX))om1) + -
+[SCNT(Sx) * (T(SA)) w1y + [SCIT(Sie) * (T(SAa)) (o1
+[SCIM(Sha) x (T(SX0)) o-1.u-1) + o + [SCNT(Se) * (NS 0-1.1)

+HSCNT(Sh) x (TSR ) + -+ [SCIT(S i) > (TSR 1.4 +1)-

(3.3)

Because estimating the SCI value, the smallest quantity is obtained after multiple calculation. If v is

odd, we use the equality [4] = %% given in (2.2). Then we have

[SCNT(Sha) * (T(SR)) 1)

NI

= [(-D+@-1))+a+@-1) +[<071 Fa-1)+(@-2+@-1)] 4.

r\.m_A

Fe-D+@-D)+G+a-1)] T+[(e-D+E-1)+H(G+1-D+@-1)] "+

+(-D+@-1)+(e-D-D+@-1)] "+ [(e-1D+@-1)+(-1)+1]

\ -

2

1

+(E-D+E-1)+(©E-D+3)] T+[(-D+@-)+(-D+G+1-1)]

.

(3.4)
Now the equation (3.4) is expressed as sum below

[SCINT(Sha) * (T(SX0)) 0.u)

b
2 1 v—1

I

=Y [(-D+@-)+B+@-1))] T+ X [(e-D+@-1))+(B-1D+@-1)]
p=1 p=%+1
15' _1 u—1 1
(-D+@=-1)+(-D+m] "+ 3 [(e-D+@-1))+(e-1)+(-1)|
h=1 h=%+1

(3.5)

If identical procedures were out in [SC/](F(S}M) X (F(S%Vl))(u,u) are applied to [SCI](F(S}M) X
(T(534)) (o). We obtain

N3
-

[SCAT(Sk) % (M(SAD ety = D [(0 =1+ (=1 = 1))+ B+ (u-1)-1)] ~

B=1

.

-1
+ Z (@-D+ (-1 =2)+(B-1)+(@-1)-1)]

1

II
= NJ,

(3.6)

(=2

+ [((n ~DH (- D)+(BE-1+h]

B=2+1 h=2

s

Iy
=

> (=D + (- =)+ (-1 +n)]
h=2
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u—

+ [(0=1)+ (=1 = 1)+ (0= 1)+ ((h—1))]

B=%+1

I\)

_1
2

m\:

If it is continued, the following equalities were obtained for [SCI](T(S},) X

(F(szw))(néﬂ),[SC/](F(S}M) X (F(S/l\/t))(n,g) and [SCI|(F(Shy) % (T(53())(.1). respectively,

[SCI(T(Si) % (NS gy = [((0 = 1) + (* - *)) +((b—b) + (* - *))] : (3.7)
and

[SCHT(Sia)) * (T(S3))(o.1)

% p—1 % (38)
(-D+D+G+1] T+ 3 [(-D+D+(b-D+@-1)]

b=1 b=5+1

Nle

In this approach, [SC/I(T(Si) * (T(S30)) o1, [SCIT(SH)) X (TSR (0-1.u-1), -0 [SCIT(SEy)) X
(F(SA) (o-1.1), -+ [SCHT(SH4)) x (T(S)) (251 [SCNT(SR0)) * (TSR (2 41u-1) -+ [SCIN(T(Shy)) ¥
(r (SM))(%M) are generated one by one to get the general sum methods shown below,

\ -

S Y Y (=D +G6-1))+B+6-1) T+

1

SHsa Y Y [(€= D) +9) +(B+5)] T+
Sl e T Shen (- D+ (-1 +(B-D+(-1)] "+

OIS D i (C-D+m+E-1+6-1) "+

[SCI|(FSH x TS3) = . (3.9)
S S Dia (€= D+ (= D))+ (-1 + (h-1)] T+
S X S [ D4+ (B-D+8)] T+
S S i [(€+ s 1)+ e+ h)] T+ :
S T [(€ 1)+ (€4 (h=1))]
]

4. Computing the Sum Connectivity Index of the Strong Products of Monogenic Semigroup

Hereinafter, We calculate the SCI for the strong product graph that consists of two monogenic
semigroups. Our attention is directed towards the relationship between the SCI of the strong product
graph and that of its constituent graph. Furthermore, we scrutinize the impact of modifications in
the analysis of the monogenic semigroups on the SCI of the strong product graph.

Employing the algorithm mentioned above, the data we collect in this region will enable us to
obtain a precise technique for computing the sum connectivity index across the powerful products of

monogenic semigroup graphs.
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Assuming, the constrains of the monogenic semigroup graphs, we implement an algorithm to the
adjacent vertices on '(St,) r(s?,).
If v is even (u is even or odd):
lo: The vertex (v, V8) is related to (v, v4) and (V§,V8)(1<a<v—-1,1<b<u-1).
lou—1: The vertex (v§, /47 1) is related to (v, %) and (V§, V5)(1<a<bv—-1,2<b<u-2).

lpu—2: The vertex (v§, v4~2) is related to (v§, V57 2) and (V§,U8)(1<a<v—-1,3<b<u-3)

lo.1: The vertex (9, v3) is related to (v§,V2)(1 <a<b-—1)
lo—1.4: The vertex (v§,4) is related to (v§,v4) and (Wi 1 U8)(2<a<v-2,1<b<u-1).

lojo41,1: The vertex (uf/zﬂ, vi) is related to (uf/Q, V).

By pursing out such circumstances, if v is odd, whether u is even or odd will determine whether the

. : . : 841 :
following circumstance takes place. If v is odd (u is even or odd): /§+1,13 The vertex (1/12+ Vi) s

o
related to (v7, 1/21) In the following Lemma 3.1, the vertex degrees are given as

(v1,02), (VF, v2), ooy (W, 02), (U1, 03), (V2. 03), ey (W, 03), oy (V1 5 70),

4.1
(W2 570 (V1 570), (01, 08), (U, 18), .., (12, 8) € T(Siy) X T(Sy) )

Theorem 4.1. In this case of any monogenic semigroup Sjlw 5/2\4, the sum connectivity index of

two monogenic semigroup graphs are strong products I (5},) r(S34) by

[SCI(rSk [ x|rs3) =

SN S St [(H (5—1)+E+hB+(—1)+E+ h)] i,

S S SR Sy (€ D - 1)+ (Bl - D)@ 1)+ (- 1)+ (€~ D+ (h-1)] "+
Sy S g T s S (€ DE - 1)+ (B D+ R 1)+ (- 1)+ (€~ D+ h)]
S k1 Tps i Ths g (= D= 1))+ (B=D(h= D))= D+ (s= 1))+ (B-D+(-1)] “+
S S T S e (@ D) )+ B+ 1) + )+ (B (h - 1))]‘%+

Sy D sy S [(@= 1)+ 8) + (B = 1)(h— )€~ 1)+ (s = 1)) + (B + (s — 1))]

[N

1
2

(4.2)

In the method above will take £,3 and s, v according to the regulations £ +38 >v+1, £>08,5s > h
ands+h>u+1.

Proof. Our main goal is to develop SC/(FS}VIFS%A) in terms of the overall number of degrees, we
must regard the sum as the total quantity of various blocks, which will then be decided separately.
Including equation (2.2), (3.1) and Remark (3.1), the method presented in 4 is used to find the

structures of the degrees of vertices.
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[scn(rsi, rs2,)

1

= [(Mso = 1)+ Moy = 1)) + (Ms1 + (Mg, = 1)) + (Ms, = 1) + Ms)]

Nl

(Msy = 1) + (Msy = 1)) + (Msz + (Msy = 1)+ (Msy =D+ Ms2)| * + ..

1
+[((Msy =D+ Ms )+ ((Msy = 1)+ (Msy, = 1) + (Ms g +(Ms, —1)]

1
+[((Mso =1+ (Msy = 1) + (Ms gy = )+ (Msy = 1)+ (Msy D+ (Ms gy )] +

1
+ [((Mso =D+ (Ml = 1) + (Mso1 = D) + (Msy = 1) + (Mshy = 1)+ (Mso1 = 1)] *

+[(Mso = 1) + Msy = 1)) + (Mso — 1) + (Msy)) + (Ms)) + (Ms, — 1)) ]
+ [(Msy = 1) + Msy, = 1)) + (Mso — 1)+M5u)+((MSu)+(M5n -1)) ]

_1
2

+ [((Mso = D)+ (M5, = 1)+ (Msw = 1)+ M5y, = 1) + (M5, —1)]

-

+ [((Mshoy = 1)+ (Msyr = 1))+ (Mso = 1) + (Ms, = 1) + (Msy = 1)] 2

_1
2

+ [(Msy = 1) + (Msy_y = 1)) + (Msy + (Msy_q — 1)) + (M, 1—1)+(Ms1))]

1

+ [((Msy = 1)+ (Msy = 1) + (Msz + (Msty = 1)+ (Mo = 1)+ (Ms2))] 2 4.

1

+ [((Mso = D)+ (Mshyoy = D) + Ms g + (Msiuoy = D+ (Mg =D+ (Ms g )]

i

+[((Mso = D)+ (Mshyoy = D) + Mo gy = D+ Moy = D) + (Msoy = D+ (Msy  —1)] °

-

+ [(Msy = 1) + (Ml = 1) + (Msor = 1) + (Mshy = 1)+ (Msuoy = D) + (Msy = 1)] 7

V\)\»—‘

+ [((Mso = 1) + (Msy_g = 1))+ (Msy — 1) + (Ms))) + (Ms2) + (Msy — 1))] +.

1

+
[
[
[
[
[
[
[
[
[
[
[
[
[
+ [(Msy = 1) + (Ms oy = D) + (Msy = D)+ (Mstua = 1) + (Msu — 1) + (Msy —1)]
[
[
[
[
[
[
[
[
[
[
[
[
+

1
+ [(Mso = 1)+ (M) + (M1 + Ms'y) + (M) + (Msa))]

-

+ [(Msy = 1)+ (Msy) + Mz + Ms'y) + (Msy) + (Ms2))] 2

1
+ [((Mso =D+ Ms's) + (Msuz = 1D+ (Msy 1 = D+ (Msys = D+ (Msya = 1))

_1
2

+ [((Mse = 1) + Msy = 1) + (Ms oot — 1) + (Msy) + (Msh) + (Ms- 1—1))]

1

+ [((Mso =D+ Msly = 1) + (Msor = 1)+ (Ms2) + (Msi =D+ Msy —1))] * + ..

1
+ [((Mse = 1)+ Msl) + (M1 = 1) + (Msioy = 1)+ (Mshyoy = D+ (Msy 1 —1)] 2

1
(Msu1 = 1)+ Mgy = 1) + (Ms2) + (Msyy = 1) + (Msuy = 1)+ (Ms2))] 2

1
(Mso1 = 1)+ My 3 = 1)+ (M3 + (Ms 3 = D)+ (Msy oy = D+ Ms3)| 7+

+

+

-

+[(Mspo1 = D+ Ms g = D+ (Msg +1) + My = D)+ (Msyg =D+ (Msg +1)] 7+

1
+ [((Msy = 1)+ (Ms2) + (Msy 1 = 1)+ (Msyy = D) + (Msz) + (Mso —1)] ..

-

+ [((Ms1 = 1)+ Ms'y) + (Msoot = 1)+ Msy 1y =D+ (Ms'y) + Msos = 1D)] 7+

1
+ [(Msoms = 1)+ Ms'y) + Mz + (Ms'y)) +(Msy) + Ms2)]

1

((Msoo1 = 1)+ Ms'y) + (Msa + Ms'y) + (Ms'y) + Msa))] 7+
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1

(Mso1 = 1)+ Ms'y) + (Msoz = 1) + Ms'y )+ (Ms'y) + (Msoz = 1))

=

+ [((Mso1 = D)+ Msh) + (Msz + Msh) + (Ms) + (Ms2))]

1

+ [(Msu1 = 1)+ Msh) + (Mss + Msp) + (Ms1) + (Ms)] Z + .
1
2

+ [((Msu1 = 1)+ Msh) + (Mso2 = 1)+ Ms)) + (Msh) + Msy 1 — 1))]

1
(Ms gy =D+ (Msy = 1)+ (Ms g +Msy = 1)+ (Msh =D+ (Msg )]

+

1
(Ms 171)+(Ms/u71))+(M5%+1+M51)+((M5;71)+(Ms%+171))} 3

1
(Ms gy =D+ (Msy = 1)+ (Ms g4 +Ms2) + (Msy =D+ (Ms g~ 1) 4.

1
(Ms gy = 1)+ (Msy = 1)+ (Ms gy +Msy 3 =D+ (Msy ~ 1)+ Msg - 1)) °

1
(Ms gy =D+ (Msy 1= D)+ (Msg +(Msis = D)+ (Msy 1 =D+ Msg, —1)] 7

1
(Ms gy =D+ (Msyr = D)+ ((Ms gy = 1)+ M) + (Msy s =D+ Ms gy —1)] * + .

1
(Ms g =D+ (Msyy = D)+ (Ms gy = 1)+ Msio = D)+ (Ms g g — 1)+ Msy o —1)] °
1

(Msg oy = 1)+ (Msy) + (Msg +Msy) + (Msg iy — D+ (Msy )]~ +..

+

2

1
2

-

+ [(Ms g +(Msh = 1)+ (Ms g +Msh) + (Msy 1)+ (Msg))] =+

-

+[(Ms g+ (Msly 1)+ Ms g + Ms'y) + (Ms, =1 + (Msg)]

[N

-+

(Ms g +(Msy =1) + (Msg +Msy s = 1) +((Msy = 1)+ (Ms )]

m\c
—

2

+[(Msg +(Msuy = D) + (Ms g +Msh) +(Msyy = 1)+ (Msg)]

m\c

(ST

+[(Ms g +(Ms'y 1 =)+ Ms g + Msy =1+ (Ml — 1) + (Msg)]

So
2

1
+ [Mo2 + Msy = 1)) + (M + Ms)) + (Msy = 1)+ (Ms2))] 2

-

+ [Mo2 + Msty = 1)) + (M + Msh) + (Msy = 1)+ (Ms2))] 2

1

+ [(Msz + (Msy, = 1)) + (Msz + Msy = 1)+ (Msy = 1)+ (Ms2))]

-

+ [Ms2 + Msiumy = 1) + (Msz + Msiup = D)+ (Msyy = D)+ (Ms2)] 7+

r\)h—‘

+ [(Ms2 + (Mss = D) + (Msz + Ms'y ) + (Ms2) + (Ms'y s = 1))

-

+ [Mo2 + Msty = 1)) + (M + Msh) + (Msy, = 1)+ (Ms2))] 2

1

+ [(Ms1 = 1) + (M, = 1)) + (Msy + Msh) + (Msl, = 1) + (Ms1)]

-

2

+
[
[
[
[
[
[
[
[
[
[
[
+ [((Ms g4y = 1)+ Ms) + (Ms g +Ms) + (Ms)) + (Ms g4, — 1)
[
[
[vs
[
[
[
[
[
[
[
[
[
+ [(Ms1 + (Msly = 1)) + (Ms1 + Msa) + (Msl = 1) + (Ms1)] 7 +

1
+ [(Ms1 + (Msly = 1)+ (Ms1 + My = D+ (Msy =1+ Ms1)] °

_1
(M1 + (Mscy = D) + M1 + M) + (Msuoa = D+ Ms)] 7+

2

-

+ [(Ms1+ Mo = 1) + (Mst + (Msy_2) + (Msyy = 1) + (Ms1)]

(4.3)
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Consequently, the sum connctivity index of [SC/](I(S%,) (T'(S2%,)) is expressed as the sum

below

[SCI(T(Sis) [ x ] (TF(S30))

= [SCNT(S3) [ X ] (TSN oy + ISCNT(SA) [ % | (TSR w1
[SCIT(Sh) [ X ] (M(S30)w,1) + [SCNT(SI) [ X ] (M(SR)) (011 (4.4)
[SCI(She) [ X ] (M(SRO) w101y + - + [SCAT(Sh) [ x| (TS 0-1.1)
[SCN(F(Shy) (F(S3)) @) + -+ [SCI(T(Sh0) (F(S30) (2 +1.1)
While estimating the sum connectivity index value, the smallest quantity has obtained following several
computations. Where u is odd, we utilize the equality [5] = ”H given in (2.2). then we obtain

[SCIT Sk [ x ] (M2 )
G- De-mH(@-D+@-1)] T+

-

= (0= D@-1)+ 1+ @-1)]
[(e-DE-1)+C+@-1)] *+[(e-DEa-1)+(G+1-D+@-1)] " +.. (4.5)
[(@-DE-1)+ (-1 -D+@-1)] *+[(e-Da-1))+(@-D+1)]
+[E-DE-))+ (e -D+ D] T+ [(e-DE-1)+(E-D+(G+1-1)]
Now the equation (4.5) is expressed as sum below
[SCINT(Sia) [ X ] (M(SA)) (o)
=3 [(n+(u—1))+(n+h)(ﬁ+(u—1))+(n+h)] z
B=1 h=
\57 u—1 1
303 [(@=D@=1)+ B0 - D) -1+ =1+ (0 -+ (h-1)]
B=1h=%+1 (4.6)
v—1 % 1
+ (0= 1)+ =)+ (= D+ M= D=1)+ (B -1 +n]
B=5+1h=1
v—1 - =
+ Z [ (0= D@—1))+((B-D(h-1)((o -1+ - 1)+ (B -1)+u-1)] ~.
B=5+1h=5+

The similar operation in [SC/](T(S%,) (T(534)) (o) are applied to [SCI(T(S}y)

(F(52,0)) (o1, We obtain

[SCNT(Sh) %] (T(SX)) ou-1) =
B

u

-

2

N

[0+ @=1) = 1)+ @+ M+ (-1 = 1))+ (0 +h)]

M

1 h=1
-1

N =1) +((u=1)=1))+((0 1)+ (h— 1))} ’

[((0 = 1)((w = 1) = 1)) + (B(h -

+
e

N

1

i)
'\_I\
>

Il

N

+

[NIES

1

0

(B=1)+ M0 =1)+ (0= (= 1) = 1)+ (= 1) = 1)) + (0 = 1) + h))]

(]

+

B=2141h=1

Il
N
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(NI

+ 3 (0= D)((u=1) = 1)+ ((B=1D)(h=1)) (0~ 1)+ ((u=1)~ 1))+ ((B—1) +((u=1)~1))]

(4.7)

If this pattern persists, the following equality will be achieved for [SCI](I'(S},)
(F(SR) w241y [SCINT(SH) [X] (T(SR))(0,2) and [SCI(T(SHy) [x ] (T(S34)) (.1, respectively

[SCNT(Si)) [x ] (T(S3))(o.2)

2 (=046t -+ )+ 6+ (- 1)

1
2

I
Lo}
I Mm\a
< [=

(48)
+ 3 > [(e-n+)HB-DB-DNE-D+E+G-1)]
B=2+1h=%+1
[SCN(Sh)) (X (M(SE e = 3 [(B=1) +w) + (h+w)((0 — 1) + ) + (B +1)]
‘31 1 (4.9)
+ 3 (=D +w+ W) -1+w+(h-1)]
h=3+1

In this approach, [SC/(T(S})) [ X ] (T(S30) =1.0) [SCIT(SX0)) [ X ] (T(S30)) (0-1.u=1) -+
[SCI(F(Si)) (MR o-1.1): -+ [SCIT(SHA)) X ] (TSR (24 1.0): [SCIT(SRA)) [
(r(5/2\4))(g+1,u—1)v L [SCIT(SKY)) (I’(S%/I))(%Hvl) are generated one by one to get the general

sum methods shown below.
[SCI(TrSk, rs3) =

Sy S T D [ ) e+ (- D)+ @+ h)] T+

S S Sy S [(€= s = 1)+ (B(h— D)~ 1) + (= 1) + (€= 1)+ (h—1)] "+
S e S e SE (- DG 1) 4 (B -1+ M@= D+ - 1)+ (- D+ m)]

S g Ty s D [ D= 1)+ (B~ D= D)= D)+ (s~ D)+ (B- 1)+ (6 —1)] "+
S T S Shes o (€= D40 + B+ =D +9)+ B+ (h—1)] T+
Sy 1 Cet Sy Shesan [(€= 1) +8)+ (B = 1)(h— D)€ = 1)+ (s = 1) + (B + (s = 1))]

-

-

V\J\H |

1
2

(4.10)

5. Examples

In this segment, we examine and utilize the proposed algorithm, the method of the sum connectivity

index of monogenic semigroups involving cartesian and strong products.
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Example 5.1. We will examine the sum connectivity index by utilize the Theorem 3.1 which involves

that the Cartesian product graph of TS}, x 'S, are given as follows:

NI

s g S (€= D+ (5= 1))+ (B+ (s —1)] "+
S s S S (€= D)+ +B+s)| T+
e X s [(E- D+ (= D)+ (B-1)+(s—1)] "+

1

2

S T, Y :((e —D+(-1)+((€-1)+ h)} +
ZL;H ZZ:%H ZEZ%“ [((é T DDA 1))]_ !
Sy YE ZE:;H :((e ~1)+s)+((B-1) +5)}_%+
S e o een]

S T S €4 - D)+ e+ (-1

[SCN(TSk x TS3,) =

NI=

(NI

we have

[SCI(TSH x TSy = [2+4]‘% [2+6]‘% + [3+3]‘% +2[3+4]‘% +2[3+5]

NI=

N

_l’_
+2[3+6]_%+2[3+7}_%+2[4+4]_%+4[4+5}_%+6[4+6]_
+

NI=
NI=
NI=

+2[4+7]‘% [4+8] 2 +4[5+5] +9[5+6}_%+6[5+7]_

_1 _1 _1 _1 _1
+[5+8] 2+6[6+7] 2+3[6+8] 2+ [7+7] > +3[7+8] °.
Example 5.2. We will examine the sum connectivity index by utilize the Theorem 4.1 which involves

that the strong product graph of I'S}Vl I'SJZM are given as follows:

[SCI(rSk, rs3,) =

S gy D Sy Sy [ (= D)+ (€4 M@+ (5= 1) + (¢4 h)] i
Sy ey Sy S [(€— D= 1)+ (B — D)= 1)+ (s = D)+ (= 1)+ (h—1)] "+
S Ty Ty S [ D= 1)+ (B D+ W= 1)+ - 1)+ (- D+ m)] T+
Sy C i S T [(€- D= 1))+ (B - D= D)= D+ (- 1)+ (B-D+(-1)] "+
S S S S [ D B - D e+ B+ (-] T
Sy S T S [ D9+ (B D— D€ D+ -1+ B+ -1)]

[N

[N

we have
[SCN(T S}, rs2,)

—[3+47] P4 [3411] 7+ [3+23]

1

2 +2[5+5]‘% +2[5+7]

(NI

1

5+5[5+17]’2 + [5+19]

N

(NI
NI

+[5+9] 2 +2[5+11] + 2[5+ 23]

1

+2[7+9]‘% +3[7+11] 2 +4[7 + 15]

[NICN
NI
[SIC

+[7+7]" +2[7+ 17]

(NI

Nl
(NI

+2[7419) 2 +3[7+23] 7 + [8+8] > +2[8+11] 2 +4[8+14]"

N

=
[NIES

+4[8+17) 2 +2[8+19] Z +2[8+23] F +2[0+11] 2+ [9+15]"
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+[9+10) 72 +2[9+23] 7 +7[11+11] 7 +10[11 + 14] 7 + 10[11 + 15] >

+¢op1+1ﬂ’%+6p1+1ﬂ*%+5h1+2ﬂ’5+ﬁ4+1ﬂ’%+4p4+1q*%

[N

+4[14417) 7 +2[14+19] 2 + [15415] 7 +4[15+17] * +2[15+19]

(NI

+2[15+423] 7% + [17 4+ 17] 7 + 2[17 4 19] 7 + 417+ 23] *.

Thus we have computed SCI for the cartesian and strong product of two Mg by using the present
formula obtained in the significant theorems.

St S
\C

Figure 1. Graphical representation of Sy, monogenic semigroup

Figure 2. Graphical representation of Sy, monogenic semigroup
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Figure 3. Cartesian products of Sy, and Saq, monogenic semigroup graph

@6 gD (2
(4, 5) (1, 3)

(4,4) (1,4)
(4, 3) (1,5)
4, 2) (1, 6)
4, 1) %% 2,1
(3, 6) z 2,2
(3,9) W 2,3)
(3, 4) (2,4)
3. 3) (2, 5)
(3,2) (2, 6)

(C))

Figure 4. Strong products of Sy, and Saq, monogenic semigroup graph
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6. Conclusions

In this study, we investigated the sum connectivity index (SCI) of the cartesian and strong product
graphs of monogenic semigroups. We found that the SCI of these product graphs is a function of the
SCl of their constituent graphs and the degree distribution and sequence of the monogenic semigroups.
Our finding provide insights the into the properties and dynamics of these product graphs, which hane
potential applications in various fields, including communication networks, computer science, and
social networks. Our results show that the SCI of the product graph can be increased by increasing
the number of generators and the size of the monogenic semigroups. In summary, the study of the SCI
of the cartesian and strong product graphs of monogenic semigroups provids a deeper understanding
of the connectivity properties of these graphs and their potential application in various fields. Our
finding contribute to the ongoing research on using graph theory and algebraic structures in real-world
problems.
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