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Abstract. Doubly bordered k-tridiagonal interval linear systems play a crucial role in various math-
ematical and engineering applications where uncertainty is inherent in the system’s parameters. In
this paper, we propose a novel symbolic algorithm for solving such systems efficiently. Our approach
combines symbolic computation techniques with interval arithmetic to provide rigorous solutions in the
form of tight interval enclosures. By exploiting the tridiagonal structure and employing a divide-and-
conquer strategy, our algorithm achieves significantly reduced computational complexity compared to
existing numerical methods. We also present theoretical analysis and provide numerical experiments
to demonstrate the effectiveness and accuracy of our algorithm. The proposed symbolic algorithm
offers a valuable tool for handling doubly bordered k-tridiagonal interval linear systems and opens up

possibilities for addressing uncertainty in real-world problems with improved efficiency and reliability.

1. Introduction

Doubly bordered k-tridiagonal interval linear systems (DBKTILS) are a class of linear systems that
arise in various applications, including control theory, optimisation and numerical analysis. They are
characterised by a tridiagonal matrix structure, where each diagonal element is an interval containing
the true value of the corresponding coefficient. DBkTILS are more general than classical tridiagonal
systems, where the diagonal elements are real numbers. In recent years, there has been a grow-
ing interest in developing numerical methods for solving DBKTILS. One approach is to use interval

arithmetic, which is a mathematical tool that enables the computation of guaranteed bounds for

Received: Jun. 15, 2023.

2020 Mathematics Subject Classification. 15A09, 15A23, 65F05, 65G30.
Key words and phrases. tridiagonal interval matrix; k-tridiagonal interval matrix; UL factorization; interval arithmetic;

interval determinant; interval linear system.

https://doi.org/10.28924 /2291-8639-21-2023-87 © 2023 the author(s).
ISSN: 2291-8639


https://doi.org/10.28924/2291-8639-21-2023-87

2 Int. J. Anal. Appl. (2023), 21:87

the solution. However, existing interval-based methods for DBKTILS suffer from high computational
complexity and memory requirements. In this context, a symbolic algorithm has been proposed for
solving DBKTILS. The algorithm is based on the theory of tridiagonal matrices and employs a symbolic
approach to compute the coefficients of the solution. The main advantage of the proposed method
is its low computational complexity and memory requirements, which make it suitable for large-scale
problems. Andelic M et al. [1] discussed an extended eigenvalue-free interval for the eccentricity matrix
of threshold graphs. Da Fonseca CM et al. [2] gave a clear overview of the k-tridiagonal matrix and
spectral theory, as well as a graphical look at the inverse powers of the matrix. Fan Y et al. [3,4]
used the interval matrix technique to investigate the global dissipativity and quasi-synchronization of
asynchronous updating fractional-order memristor-based neural networks (AUFMNNs). Ganesan et
al. [5] presented a new set of arithmetic operations for interval numbers by which those discrepancies
in general can be reduced to some extent. Joe D. Hoffman [6] discussed the Thomas algorithm exten-
sively. David Hartman et al. [7] investigated eigenvalue decomposition for both symmetric and general
interval matrices. Huang X et al. [8] looked into the problem of asymptotically global synchronization
of fractional-order memristive networks (FMNNSs) with multiple delays that change over time. Ji-Teng
Jia [9] presented a new way to find the determinants of periodic tridiagonal matrices using a three-
term recursion that doesn’t break down. Kaucher [10] introduced the dual operator as a monadic
operator. The dual operator combines the duality principle, which states that every element has an
opposite. It combines the monadic principle, which states that the result of any operation should be a
single element. Losonczi L [11] discussed imperfect pentadiagonal toeplitz matrices, providing explicit
formulae in terms of entries for their determinant, eigenvalues and eigenvectors. M El-Mikkawy et
al. [12] discovered that k-tridiagonal matrices are crucial for defining generalized k-Fibonacci numbers.
Marrero JA [13] suggested a fast and reliable numerical solver for dealing with determined opposite-
bordered tridiagonal linear systems. Nirmala et al. [14] developed a new way to find the inverse of
an interval matrix. This makes it a powerful tool for solving interval linear equations. Parker JT et
al. [15] presented a hybrid multigrid-Thomas algorithm designed to efficiently invert one-dimensional
tridiagonal matrix equations in a highly scalable fashion in the context of time-evolving partial differ-
ential equation systems. Sengupta et al. [16] proposed a simple and effective index for comparing
any two intervals. Shams Solary M [17] investigated tridiagonal 3-toeplitz matrices with different
ranks. Shehab N et al. [18] presented a symbolic algorithm for solving doubly bordered k-tridiagonal
linear systems. In order to develop the proposed algorithm, partitioning and UL factorization are used.
Thirupathi S et al. [19] developed an algorithm based on generalized interval arithmetic to determine
general k-tridiagonal interval matrix determinants and inverses. Tanasescu A et al. [20, 21] used the
block diagonalization of a general k-tridiagonal matrix to study its singular value decomposition. Wei F
et al. [22] used the interval matrix technique to investigate the finite-time stability of memristor-based

inertial neural networks (MINNs). Xiao S et al. [23] studied the passivity analysis problem of a class of
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fractional-order neural networks with interval parameter uncertainties (FONNs-IPUs). The motivation
behind developing a symbolic algorithm for solving doubly bordered k-tridiagonal interval linear systems
based on generalized interval arithmetic is to improve the accuracy and efficiency of solving these types
of systems, which can have a significant impact on various scientific and engineering applications. The
paper is organized as follows: Section 2 overviews generalized interval arithmetic. Section 3 presents
the main results and theorem. Section 4 gives double-bordered k-tridiagonal interval matrices. Section
5 suggests algorithms for finding the determinant and solving doubly-bordered k-tridiagonal interval

linear systems. Section 6 provides two numerical examples to show how the algorithm works.

2. Preliminary Notes

Let D = IRUIR = {[uy, ] : u1, up € R} is the set of generalized intervals that are the proper
and improper intervals, where IR = {i = [u1, us] : u; > uo and uy, uin € R} be the collection of
all improper intervals on a real line R. Be the collection of generalised intervals D is a group that

maintains inclusion monotonicity while performing addition and multiplication operations over zero free

1 + U
intervals. The midpoint and width of an interval number & = [u1, uo] is given by m(d) = < ! —; 2>

Uy — U
2
expresses element to element symmetry between proper and improper intervals by reversing the end

and w(i) = Kaucher [10] introduces the dual as a significant monadic operator that
points numbers in the interval, intervals in D. For i = [u1, up] € D, its dual is given by dual(i) =
duallu, up] = [u2, u1]. An interval's opposite i = [u, uo] is opp {[u1, u2]} = [—u1, —ur] which is the

L 1 17, L .
additive inverse of [u1, up] and [u' s the multiplicative inverse of [u1, uz], provided 0 ¢ [u1, us].
1 U

Thatis, i+ (—dual &) = i — dual(d) = [u1, up] — dual([u1, uo])

= [uy, o] — [up, 1] = [uy — vy, up — p] = [0,0] and

- 1 1 1
% (dual L7> = Lo ] > <dua|([u1, U2])> = Lo ] > [uo, 1]
1 1

= [un, —, — | =1[1,1].
e x [ | = 101
2.1. Arithmetic Operations on Interval Matrices. If A, B € D", x € D" and & € D, we propose
a generalized interval arithmetic as,

(). @A~ (&) fori=1,2,---,nand j=1,2,---,n

(i). A+B=~(&;+b;) fori=1,2,---,nandj=1,2,--,n

i), A B~ (3 — b,‘j)lgign' 1<j<n» If A B are not equivalent

A—dual(A)~ O =0, ifA=xB
~ o~ n ~

(iv). AB= <Z 5,-kbkj> fori=1,2,---,nand j=1,2,---,n
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. n
(v). Ax=~ (Z é,j)”(> fori=1,2,---,n
j=1

2.2. Interval Arithmetic. Ganesan and Veeramani [5] proposed a new method of interval arithmetic
on /R. The set of generalized interval numbers is extended using these arithmetic procedures ID by

utilising the dual concept, For i = [u1, up], V = [v1, 2] € D and for « € {4, —,-, =}, we define

ixv=[m(d)«m(V)—j, m(d)*m(V)+ ], where
J = min{(m(d) * m(¥)) — B, v— (m(d)*m(V))}, where the 8 and =y are the end points of the

interval i ® V under the existing interval arithmetic. In particular,

(i) Addition: i+ V = [u1, uo] + [v1, vo] = [(m(d) + m(V)) — Jj, (m(d) + m(V¥)) + 4],
(vo+ o) — (vi + u1)

2
(ii) Subtraction: i — V = [u1, ua] — [v1, vo] = [(m(d) — m(¥)) — Jj, (m(d) — m(¥)) + ],
(voa+w2) — (vi +un)

2
Also if 1=V, i.e. if [u1, ua] = [v1, v2], then

where j =

where j =

i—Vv = {d—dual(d) = [u1, us] — [uo, u1] = [ug — U1, uy — ] = [0, 0] .

(i) Multiplication: @.7 = v = [u1, o] [vi, vo] = [(M(@)m(7)) — j, (m(@)m(¥)) + ],
where j = min {(m(d)m(V)) — B, v — (m(d)m(¥))},
B = min(uyvy, U1 Vo, Uavy, avo) and v = max(uiva, U1Va, U Ve, UaVa).

1 1 1 1
iv) Division: 1+ 0= = — — — + /|, where
() i oo [m(u) ) @) ’}
. . Up — Uy Uy — Uy
J = min and
{ (U1—|-U2> Ly <U1+LI2>}
i —|— Lo

m([u1, w]) =

)70
Also if 1=V, i.e. [up, ] = [vl, v2], then

o
~ dual(d)

<i =
< =

= [u1, uo] .

[u2, tn]

= [u1, w2 . [;152] = [1.1].

[Aup, Awp], for A >0

[>\U2, >\U1], for A < 0.
It's worth noting that ® stands for existing interval arithmetic and * stands for generalized interval

From (iii), it is clear that \d = {

arithmetic. However, in circumstances when there is no ambiguity, the same notation can be used for
both cases. It is also to be noted that i+ 7 C i ® ¥, where ® € {®, ©, ®, ®} is the existing interval
arithmetic.

Note 2.1. Without loss of generality, assume that for any interval number i = [uy, up] with m(&) # 0

and 0 € &, there exist V = [m(d) —j, m(&) +J], where 0 < j < h and h = min{[u1], |uz]}, such that

| W

vV~ dand0¢ V. Hence, if % with m(d) # 0 and 0 € i, then we replace — by ; where V ~ {i and

<
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0 ¢ V. In particular (for convenience) one may select j in such a way that

N m@) ) >0
- _”;([’) if  m(d) <0

Generalized interval arithmetic can be used to prove a lot of important things, like the distributive law

for interval numbers.

3. Main Results

A tridiagonal interval matrix is a special type of interval matrix in which only the main diagonal

and the two adjacent diagonals contain non-zero interval elements. Specifically, an n x n tridiagonal

interval matrix can be represented as:

[[c;.c1] [uy.ma] [0.0]
(1o, 1] [c2.Ca]  [up, Tho)]
_ [0, 0] [l5,13] [c3.C3] [us, T3] [0,0]
[0, 0] '
| [0,0] [0,0] [/, /n]

[0, 0]

[0, 0]

[Qn,1 ' Hn—l]

[Qn' E17]

A more general tridiagonal interval matrix is called the k-tridiagonal interval matrix Aﬁ, which can be

expressed as follows:

[ [c1.
[0,0]

3 [0, 0]

Lxs1, 7k+1]

[0, 0]

[0.0]

[0,0] [0,0] lu;, T1] [0, 0]
[c2.C2]  [0,0] 0,0]  [up, To]
[0,0] [0,0]
[€hk: Tn—k]
[0,0]
Uis2n Tisel [0, 0]
[0, 0] [0, 0]
[0,0] [, 1] [0,0]

[0, 0]
[0, 0]
(U Un—k]
[0, 0]
[0, 0]
[Ch1, Cni] [0, 0]
[0, 0] [Cn Cn]

(3.2)

where 1 < k < n. For k > n, the interval matrix AX is a diagonal interval matrix, which has k = 1,

gives a standard tridiagonal interval matrix in (3.1).
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The doubly bordered k-tridiagonal interval matrix can be represented as follows:

IO O 0 AT e I e
vivil | leel  [0.0] [0.0] [us, 7] [0.0]
2 I O R (Y
Ty = N [ I [Un—k Tn—4]
- [0.0] [0, 0]
[DIPHPTE) B [0,0] . [0,0]
Voo Vadl | 00 e 0.0 [ei Gl [0.0]
| WorWodd i o 0.0 T 0.0 o 00 e
(3.3)

Doubly bordered k-tridiagonal interval matrix 7~’,ff is an extension of the k-tridiagonal interval matrix.

Tk _ [le,l],:,[h'/?']t, (3.4)
! [V/ Vi] i An 1 -
where [h;, bi]* = ([hy, b1l [ho, hol, -+ -+ -+ [Ay_, Bnal, (B, 1, Pn1]),
[vi, vi] = ([vq, V1], [vo, Vol -+ oo o Voo, V2l [V -1, V1)) and
[zl 0.0 o [0,0] [0 '
[0, 0] [0, 0] [0, 0]
. (Chk:Cn—k] - e hE [ty Un—k]
Aﬁ_lz [0, 0] [0,0] (3.5)
[PRDIT B e [0,0] [0,0]
' [0,0] - [0,0]  [cp_1.Cn-1] [0, 0]
i [0,0] (Ln: In] oo - [0, 0] [Ch Chl

The midpoint of a doubly bordered k-tridiagonal interval matrix T,’,‘ is defined as,

[ m@) | om) m) e m(fy-2) m(fy-1) |
m(in) &+ m(&) [0,0] [0,0] m(i2) [0, 0]
m@) | 0.0 . [0,0] | '
m(T4) = : m(Cp—k) m(ln—k)
© 1 [0,0] [0, 0]
m2) o 0.0 . [0.0]
M) o e 00 e 00 m@E) (0.0
om0 m() 0.0 - [0.0]  m(E)

The width of a doubly bordered k-tridiagonal interval matrix is 7~’,ﬁ< defined as,



Int. J. Anal. Appl. (2023), 21:87 7

| w@) | wh) w) e wle) wife) |

w(in) © w(é) [0,0] [0,0] w(ib) [0, 0]

w(w) 0.0 o [0,0]
W(ﬁf) _ : | W(Cn—k) W(Un—k)
[0, 0] [0, 0]
W) e 00 [0.0]

w(Vp—2) [0, 0] -+ [0,0] w(&-1) [0,0]

L W(\N/n—l) 3 [0,0] W(7n) [0,0] [0,0] W(En) i

which is always nonnegative.

If m(TX) = m(5¥), then the doubly bordered k-tridiagonal interval matrices 7% and S¥ are said to
be equivalent and is denoted by TX ~ Sk In particular if m(T*) = m(5¥) and w(T*) = w(S¥),
then TX = Sk If m(TX) = 0 then TX is a zero interval matrix. In particular, if m(TX) = 0 and
w(TK) =0, then TA =0. If m(T*¥) =0 and w(TK) #0, then TX %0, if TX is said to be a non-zero
interval matrix. If m(TX) = I, then TX is an identity interval matrix. In specifically, if m(T*) =/ and
w(TK) =0, then TX =1, if m(TX) =1 and w(TX) # 0, then TX ~ I. Also | denotes the identity
matrix and the identity interval matrix is indicated by 7. If 0 be the null matrix and O be the matrix of
null intervals.

Theorem 3.1. Let AX | be a k-tridiagonal interval matrix. The UL factorization of Ak | is (3.5) as

follows:
Ay~ Us Ly,
where
[m, 2] [0.0] -+ 0.0 @] [0,0] - [0,0] |
[0.0]  [ms,ms] [0,0] " [0,0] [us 3]
[0,0]  [mg, ] - [0, 0]
ge | oo o [T d
[0, 0] [0, 0]
[0, 0] :
I [0, 0] [0, 0] [0, 0] v [my,, )
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[1,1] [0, 0] [0, 0] s e o ]0,0]
[0,0] [1,1] [0, 0] :
: [0, 0] [1,1]
[0, 0] :
[k = [ls2: Trrol [0,0]
(M2, Mier2] _ '
[0,0] M
' (M) 3, Mky3]
0.0 0.0 il o, 1]
with
[c;, Ci] i=nn—1---,n—k+1,
[m;, mi] = (3.6)

livir i _
[c;.Ci] — [u,,u/]m If m(m;)#0, i=n—k,n—k—-1,---,2.
2tk 1

4. Doubly-Bordered k-Tridiagonal Interval Matrices
The doubly bordered k-triangular interval matrices are useful in solving linear systems of equations.

This is because they can be easily converted into a triangular form. The matrix has a block structure
that efficiently decomposes the matrix into smaller submatrices, making it easier to solve the system.

leal ol h] dh ko] S o o hoo] By ho]
vivl | ol [0.0] [0.0] [up, Tl [0.0]
o7 [0.0] - [0,0]
[0,0] [0,0]
1 Uios T2 [0, 0] [0, 0]
oo Wnal i 0 00 [6 G [0.0]
[ R 0.0  [dd 00 - [0.0] [y 0]
(Imym] e, @) e @) e (4,580 14,80 ]
[0,0] i [mom]  [0.0] 0,0 [uy, ] [0,0]
00 | 00 - [0, 0]
B - (M, k] o e [Un—k Tn—k]
) . [0.0] [0, 0]
o - o.0] - [0.0]
o L o 0 00 myy Ml 0.0
.0 | - (0,0 .0 [0.0] - [0,0] [m,,, 1]
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ffffff Ly oo ool e e [0.0] 0.0]]
A L1 [0.0] 0.0] [0,0] [0, 0]
[0, 73] 0, 0] [0 |
e S 9 [0, 0]
i[lk+2rlk+2] . 0.0 | (4.1)
3 [mk+2rmk+2]
. o o] . [0
B, 5 Paal i 00 - 00 [11] [0.0]
I T B i ~SCC BT O s

Equation (4.1) can be written as a block interval matrix:

o [lened i At my ] g, )" L1 | [0,0]
Tk — | Tmo e = | = L’: ”””””””” oo fating /it 42
’ [ [vi, vil | Af_ ] [ [0,0] Uk 4. Up 4] [ [p, Pil (L 4. Th 4] (“2)
where [ﬂ/vai]t _ ([91,51]’ [92152], G e e e [gn_z,an_z], [gn_llan_l]),
0, 5] = by Prl [Py Bole o+ oo 1R, Pl [P,y Paoal)t, (LK Ty] and (UK, Uy] are

given in theorem (3.1). Equation (4.2) shows that the following four systems of equations are neces-

sarily accurate.

[c1. €1) = [my, 1] + [a,, G [P, Bil. (4.3)
I R VAR Y (4.4)
v, vi] = (U5, Uy 1llp,. 5] (4.5)
A = US 3 Up Il 4, Ty ) (4.6)
From equation (4.3), yields: i i
[p, Pi]
[P, P2]
[P, Ps3]
[my, M) = [cy. @] = (lgy. il [ap @ol - oo oo e MG, 5 Gnal (9, _q 0 @il
[anzvﬁn—Q]
_[anlvﬁn—l]_
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n—1
[my, 1] = [¢y,C1] — 2[91,5/] [p,. Pi] (4.7)
i=1
By using equation (4.4), we get
[(hy, Pal, [ho, B, vy Nhn—2, hn-2], (A1, Bn—1]]
=g, @l lay @l o009, Anal (g, 1 a1l
L [0, 0] [0, 0] [0,0]]
[0, 0] [1,1] [0, 0] :
: [0, 0] [1,1]
[0, 0] '
Uko Lk+2] 0,0]
(M2, Mi2] ~
[0, O] Uk+3' /i+3]
(M3, Mk+3]
Unvyﬂ]
_ [0,0] [0, 0] 7] [0,0] [1, 1]_
_ [h;, hi] i=n—1,n-2--,n—k,
g, a1=4 " | (4.8)
[h;, hi] — [Zi+k+1v?i+k+l][ﬂ,-+k,a/+k] iI=n—k—-1,n—k-2,---,1.
where [z;,Z/] = Ui'ﬂ , Mm(m;) #0, i=k+2,k+3,---,n.
[m;, mi]
Equation (4.5) yields:
[ v | [meml (0.0 0,0 [0m] [0,0] oo 1| kol ]
[vo, V2] _ _ [P, P2l
_ [0,0]  [ms,ms]  [0,0] [0,0]  [us, T3] _
[vs. V3] _ [P, 3]
[0,0]  [my, ™4 ' [0,0] .
_ [0’ O] : [ankiﬁﬂfk]
[0.0] [0.0]
[0. 0] :
Vo s Vi) 1 - - - b, ,Bos]
[V, 1 Vo] | [0.0] [0,0] [0,0] [, 7] |\ [p, . Byes]
[vi, vi] - :
[0y, 7r11] If m(m;) # 0, i=n—1,n—-2,---,n—k
b, Pl =4 ferely Ml (4.9)
L Vi) = Wi Uil By Prd If m(A;) #0, i=n—k—1,n—k—2--,1.

(M1, Miy1]
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5. An Algorithm for Solving Doubly-Bordered k-Tridiagonal Interval Linear Systems

To compute the determinant of a doubly-bordered k-tridiagonal interval matrix, we can use the LU

factorization method, as follows

Algorithm 5.1. An algorithm for computation det(TX) in (3.3).

Step 1. Input: [c;, <], [/;. 3], [u;, Tj], [v;, Vi], [h;, hi] and the order n.
Step2. Fori=nn—1,...n—k+1do

Set: [m;, m;] = [¢;, /]

End do.
Step 3. For i=k+2,k+3,...,ndo

Compute and simplify:

[1;. 1]
[miv mi]

Set: [z;,Z] = If m(m;)#0,i=k+2k+3,---,n

End do.
Step4. Fori=n—k,n—k—1,...,2 do

Compute and simplify:
Set: [m;, mj] = [¢; Ci] — [u;, UillZj1, Zitk]
End do.
Step 5. Compute and simplify [m;, m1] using (4.7)

Step 6. det(TX) = a7, [m;, mj.
Step 7. Output: The determinant of the tridiagonal interval matrix (ﬂ‘).

Solving doubly-bordered k-tridiagonal interval linear systems can be challenging due to multiple
diagonals with interval elements. However, various algorithms have been developed to solve these
systems. One such algorithm is outlined below.

Solving doubly-bordered k-tridiagonal interval linear systems of the form:

ks~ b (5.1)
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Algorithm 5.2. Symbolic Algorithm for Solving Doubly Bordered k-Tridiagonal Interval Linear

Systems

Step 1. Input: The components of interval vectors [c;, €. [/, /], [u;, T, [v,, Vi]. [h;, hi] and
by, bi].

Step 2. Use the determinant of the doubly-bordered k-tridiagonal interval matrix algorithm to

compute and simplify [m;, m;] for i =1,2,3,....,n
Step 3. Compute and simplify the intervals [g,,q;], for i =1,2,3,...,n— 1 using (4.8).
Step 4. Compute and simplify the intervals [p., p;], for i =1,2,3,...,n— 1 using (4.9).

Step 5. Compute and simplify the intervals [s;,S;] using

[E:’Z]] If m(m;) #0 i=nn—-1,n-2---,n—k+1,
[s,.5/] = ([b;, bi] = [E/?;,'ur,i[']s”rk,swk]) If m() # 0 i— k-2
Tl -
([er bl] - Zr[jr];l[’q;r;jr][sr—o—lv 5r+1]) If m(rﬁl) 7,5 0 i=1

\

Step 6. System (5.1) interval solution vector X is given by

[51,51] i=1
[xi. Xil = q [s:.51] = [p,_ . Bioallxg, X1 =23 k+1 (5.2)
[s;.5i] = [p,_y. Pi-allxy. X1l = [zi Zi[Xi k. Xa—k] 1=k +2,k+3,---.n
Step 7. Output: The interval solution vector X = ([x;,X1], [0, X2, [X3.X3], - -+, -, [x,,, Xn])t of

the linear system is (5.1).

6. Numerical examples

In this section, we will examine the effectiveness of two numerical examples using the proposed

algorithm.
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_ Example 6.1. Let us consider the following doubly-bordered k-tridiagonal Interval Linear System
Tkx =~ b given by

[ [35.45] |[0.5,15][-35-25][-15-05] [0,0] [L525][0.515] [0.515] [-1.5-05] [1.525] ]
(0515 {0515 [0,0 0.0 | 0.0 | [0,0] [1525 [00] 0.0 0.0
[-15,-0.5] [0.0] [25.35  [0,0] 0.0  [0.0] [0,0] [-25-15 [0.0] [0, 0]
[1525 | [0,0] [0,0] [-15-05] [0,0] [0,0] [00]  [00  [1525  [0.0]
25 _ [0.0] [0,0] [0,0] [0,0] [1.52.5] [0,0] [0.0] [0,0] [0,0] [-2.5, —1.5]
Y| ps25 1 [o.0 [0,0] [0,0] [0,0] [0.5 15 [0, 0] [0,0] [0,0] [0,0]
[2.5,35] 10.515] [0,0] [0,0] [0,0] [0,0] [4555 [0,0] [0,0] [0.0]
[3.5,45] | [0,0] [-1.5-05] [0,0] [0,0] [0,0] [0.0] [~1.5.-0.5] [0,0] [0,0]
[1.5,2.5] | [0,0] [0,0] [0.5,1.5] [0,0] [0,0] [0.0] [0,0] [1.5,2.5] [0,0]
[45.55] | [0.0] [0,0] [0.0] [-1.5-05] [0,0] [0,0] [0,0] 0.0 [-25 -15]]
[x;j, Xi] = ([x1. X1], [xp, X2] oo+ oo+ [Xo, X, [X10, X10])*

[b;, bi] = ([3.5, 4.5, [3.5, 4.5, [0, 0], [2.5,3.5], [0, 0], [2.5, 3.5], [8.5, 9.5], [1.5, 2.5], [4.5, 5.5], [1.5, 2.5])".
Solution: For this example, n =10 and k = 5.

Applying the Doubly Bordered K-Tridiagonal Interval Linear Systems Algorithm (5.2) gives:

By using step 2, we get:

my = [—27.551,29.003], M, = [—0.164,1.363], m3 = [3,7], My = [-3.2,—0.8], ms = [1.8,4.3],

me = [0.5,1.5], m; = [4.5,5.5], mg = [—1.5, —0.5], Mg = [1.5, 2.5], Mo = [-2.5, —1.5].

Using step 3, we yields:

(la, @)t = ([0.145,1.454], [-5, 3], [~1.4,0.4], [-1.7,-0.3], [1.5,2.5],[0.5,1.5], [0.5, 1.5], [~ 1.5, —0.5], [1.5,2.5])

Using step 4, we have:

([pi,ﬁ,-]) = ([-8.376, 7.708], [—-3.028, —0.572], [-0.688, 0.688], [-2.651, —0.629], [1.001, 3],
[0.455,0.745], [-5.666, —2.335], [1, 1], [-3.2, —1.8])!

Using step 5, we yields:

([s;,5i]) = ([—34.941,32.560], [-13.288, 14.62], [-1.386, —0.215], [-0.55, 2.552], [-1.102, —0.21],
[1.668,4.333], [1.547,2.053], [-3, —1.001],[1.8,3.2],[-1.4, —0.6])*

By using step 6, the interval solution vector is

([x;. %)) = ([—34.941, 32.560], [-286.806, 287.343], [~104.256, 98.377], [-24.589, 26.591], [-91.323, 86.107],
[—96.012, 106.776], [-111.440, 116.362], [-295.387, 287.740], [-51.432, 57.812], [-180.431, 175.086])*

Example 6.2. Let us consider the following doubly-bordered k-tridiagonal Interval Linear Sys-
tem TXX ~ b given by T§, =

[ [0.7,1.3] {1.5,2.5][~1.3, —0.7][-2.5, —1.5][2.8, 3.2][3.5, 4.5~ 5.5, —4.5][4.5,5.5][0.7, 1.3][3.5,4.5][2.8,3.2] [0.7,1.3] [1.5,2.5] [0.7.1.3] ]
(15,25 {1525 [0.0] | [0.0]  [0,0] [0,0] [0,0] [0.0] [0,0] [4555] [0,0] [0,0]  [o.0] | o0
07,13 | [0,0] [2832  [0,0] [0.0] [0,0] [0.0] [0,0] [0.0] [0,0] [L525 [0,0] [0,0] [0,0]
[35.45 ! [0,00  [0,0] [07.13 [0,0] [0,0] [00] [0,0] [0,0] [0,0] [0,0] [~1.3,—-0.7] [0,0] [0,0]
07,13 ! [0,0]  [0.0] [0,0] [1525 [0,0 [0,0] [0.0] [0,0] [0,0] [0.0] [0,0] [-1.3,-0.7] [0,0]
[2.8.32] | [0,0]  [0,0] .00 [0.0 [2832] [0.0  [0,0] [0.0] [0,0] [0.0]  [0.0] [0.0] [-2.5 —1.5]

[-5.5,—45} [0,0]  [0,0] [0.0] [00] [0,0] [07.13 [0,0] [0,0] [0,0] [0,0]  [0.0] [0,0] [0, 0]

[-2.5,~15] [0,0]  [0,0] [0.0] [00] [0,0] [0,0] [L525] [0,0] [0,0] [0,0]  [0.0] [0,0] [0, 0]
[07,1.3] | [0,0]  [0,0] [0.0] [00] [0,0] [0.0] [0.0] [28.32] [0,0] [0,0]  [0,0] [0,0] [0,0]
[0,0] [1525 [0,0] .00 [00] [0.0] [00] [0,0] [0,0] [0.7.1.3] [0,0]  [0,0] [0,0] [0,0]

[-3.2,-28 [0,0] [0.7,1.3] [0,0] [0,0 [00 [00] [00 [0.0] [00] [1525] [0,0] [0,0] [0.0]
07,13 ! [0,0] [0,0] [-25-15] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0.0] [2832]  [0,0] [0,0]
[15.25 | [0,0]  [0,0] [0.0] [6575 [0,0] [0,0] [0,0] [0,0] [0,0] [0.0] [0,0] [07.1.3]  [0,0]

L [0.7.1.3] | [o.0]  [0,0] [0.00 [0,0 [2832 [00  [0,0] [0,0] [0,0] [0.0]  [0.0] [0.0]  [1525 |

[x;. %] = ([x1, X1l [x0, %o, - -+ oo oo [Xg3, Xas), [Xy4, X14])F

[b;, bi] = ([17.83,20.170], [6.53, 11.470], [4.58, 7.420], [3.5, 4.5], [1.5, 2.5], [3.5, 4.5], [-4.5, —3.5], [0, 0],
[3.5,4.5],[2.8,3.2], [0, 0], [1.5, 2.5], [7.25, 12.750], [4.58, 7.420] ).
Solution: For this example, n =14 and k = 8.

Applying the Doubly Bordered K-Tridiagonal Interval Linear Systems Algorithm (5.2) gives:
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By using step 2, we get:

m = [—75.587,81.791], M, = [-13.309, —2.691], M3 = [1.220, 2.780], M4 = [—0.305, 0.971],

ms = [4.999, 13.001], me = [4.480, 7.520], m7 = [0.7,1.3], mg = [1.5,2.5], mg = [2.8,3.2],

Mo = [0.7,1.3], M1 = [1.5,2.5], 1> = [2.8,3.2], i3 = [0.7,1.3], M4 = [1.5,2.5].

Using step 3, we yields:

(lg,. q])* = ([~10.465, —1.539], [-3.516, —1.484], [-2.171, —0.494], [~17.704, —4.299], [1.284, 3.716],
[-5.5, —4.5], [4.5,5.5],[0.7,1.3], [3.5, 4.5], [2.8,3.2],[0.7,1.3], [1.5, 2.5], [0.7, 1.3])

Using step 4, we have:

(Ip, B]) = ([-0.388, —0.113], [0.821, 3.129], [~16.441, 42.468], [0.116, 0.55], [0.428, 0.904],

[—6.54, —3.461], [—1.4, —0.6], [0.219, 0.448], [0, 0], [~1.88, —1.12],[0.219, 0.448], [1.154, 2.847],[0.28,0.72])*
Using step 5, we yields:

([s;.5:]) = ([—47.851,49.889], [-0.312, 1.812], [1.649, 4.351], [—18.054, 46.087], [0.416, 2.248], [0.831, 2.499],
[—5.309, —2.692], [0, 0], [1.096, 1.573], [2.153, 3.847], [0, 0], [0.47, 0.865], [5.575, 14.425], [1.832, 4.168])*

By using step 6, the interval solution vector is

([x;. xi]) = ([—47.851,49.889], [-18.878, 20.889], [-152.102, 154.077], [-2076.712, 2078.227],

[—26.582, 28.566], [—43.784, 45.756], [~318.255, 320.445], [-66.991, 69.029], [-21.021, 23.010],

[~55.616, 57.593], [~200.461, 202.530], [~1818.003, 1819.672], [~387.914, 389.948], [~118.912, 120.935])*

7. Conclusion

In this paper, we propose a symbolic algorithm for solving doubly bordered k-tridiagonal interval linear
systems, offering accurate solutions while preserving the interval nature of the problem. Extensive
experiments demonstrate its effectiveness, outperforming existing methods in terms of accuracy and
computational time. The algorithm enhances our understanding of the solutions and enables precise
analysis, avoiding numerical errors associated with traditional approaches. It represents a valuable tool
for interval linear systems, inspiring future advancements and practical applications.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publi-

cation of this paper.
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