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Abstract. We describe the boundedness and compactness of the composition operators C, acting in
Nk (p, g) on the open unit ball B.

1. Introduction

For the unit ball B of C", HOI(B) denotes the class of all holomorphic functions on B while
H> = H>°(B) denotes the class of all functions that are holomorphic u € HOI(B) equipped with the

norm ||ullee = sup|u(¢)|. For any d > 0, the weighted Banach space H3® = HS°(IB) consists of all
¢eB

functions u € HOI(B) such that
lullF = sup(1 = [¢))7u(¢)] < oo.
¢eB
The space HE, = Hg%(B) indicate the closed subspace of Hg® such that

lim [u(Q)|(1—1[¢))? =0.

I¢|—1

For further details about the properties of H3® spaces see [10]).

For ¢ € B, we let dV be the Lebesgue measure on B with

V(IB%):/BdV(C)zl.
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In addition, we let dw be the surface measure on S, normalized so that w(S) = 1. If v is a nonnegative

Lebesgue measurable function on B, then the measures V' and w are related by
1
/u(()dV(C) = 2n/ t2”_1dt/u(tC)dw(C).
B 0 S
Moreover, the formulas for integration on S (see, [11]) as:
1 2m ]
/udw:/dw(C)/ u(e®¢)ds, forall 0 <6 <2m.
S S 27 Jo

For any ¥ € Aut(B), u € L*(B), the M&bius invariant on B (see e.g., [5]) such that

dVv
/IB U(O)dN(C) = /B o) ey

The inner product of ( = ({3, ..., Cp)and = (m,..., Mn) in C”, is given by
n
(C.my=>_¢m;.
i=1

For any ¢ € B, we define the complex gradient and the radial derivative of the function u € HOI(B)

respectively as follows:

ou ou
V) = (SO 5©),

RUQ) = (Tu(0.0 =Y Gigr (©)
=1

We know the Bloch space BY = BY(B) is the Banach space of functions u € HOI/(B) such that

Ru € HZ® which has the norm
ullge == |F(O)] + [[Rullg.

The involution automorphisms W; (the Mobius transformation of B) is define for ( € B and
beB— {0} as

b 15 — T (¢ - §2)
1— (¢, b) '
where Wy (¢) = =, Vp(0) = b, Wp(b) =0 and Vj, = W;l. It is well known that for any ( € B
(1= 1b*)(1 = [¢?)
[1—(b,O))*

The Bergman metric and the Bergman metric ball on B, for {,n € B and M > 0 as follows:

1 14 |e(n)l
B(.n) = §|09w,

D(¢.M) = {neB:B((n) <M}

Vp(¢) =

1— Q)P =
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Let RC™ denote the set of all right-continuous nondecreasing functions K # 0 and K : [0, c0) —
[0,00). For K € RC" and p, g > 0, the weighted Banach type spaces Nx(p,q) = Nx(p, q)(B)
consists of functions u € HOI(B) such that

Nk(p,q) :=={u € H(B): ||U‘|ﬁ/K(p,q) < oo},

where
1413, 5 = S0P /B u(Q)P(L ~ [CR)TK (1~ [Wu(Q)P)") V().

This space was introduced first by Bakhit and Aljuaid in [1] who study several fundamental properties
of Nk(p, g)-type spaces and its closed subspaces N o(p, q), which are Banach spaces of functions
that are analytic and their norms determined by a weighted function K € RC™, together with a M&bius
transformation. Also in [1] the authors show that the norm of Nk (p, g)-type space is equivalent to

the norm
613, = S0P /B u(Q)IP(L ~ [¢R)TK (G(b, ) dV(C) < oo,

where G (b, ¢) = log m We set the integral Jk 4(t) with g > n as:

1 t2n71 .
Ik q(t) :/O WK(Q — t2)")dt. (1.1)

Throughout the paper, we suppose that Jx 4(t) < oo, then Nk (p, q) contain all the polynomials,
otherwise Nk (p, q) consists only of zero functions.
Let X and Y be two function spaces on B and consider ¢ be a holomorphic self-map of B. We

define the composition operator Cy, : X — Y by
Co(u)({)=uop, YueX.

Recall that, for any two normed linear spaces X and Y, the linear operator T : X — Y is said to be
bounded if there exists C > 0 such that || Tully < Cl|ul|x,Yu € X. Furthermore, a linear operator
T : X — Y is said to be compact if it maps every bounded set in X to a relatively compact set in Y

(i.e., a set whose closure is compact) (see e.g., [12]).

Studying the composition operators acting in different spaces is a quite classical topic since they
arise in different problems; see the excellent monographs [2], [3] and [4]. Some of the earlier study on
this topic is reflected in [9] descriptions of bounded and compact composition operators on F(p, g, s)
spaces were provided [8].

This paper is organized as follows: in Section 2 we shortly give the preliminaries and background
information. In Section 3 we establish proving our main results respectively.

We use the notation a < b in what follows to mean that there is a constant C > 0 with a < Cb.

and the notation a < b means that a < b and b < a.
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2. Preliminaries

K(st)

For 0 <t < oo, we use the auxiliary function ¢k (t) = sup 5y (see e.g., [6], [7]). The following

constraints on ¢k (t) play a significant role in the study of any class of Nk (p, g) spaces:

. dt
It = [ o0 <. (2.1)
0
and
& dt
¢K(t)§ < oo, (2.2)
and more generally,
o dt

In the case that K satisfies condition (2.1), then K(2t) < K(t) V 0 < 2t < 1. If we started with the
property that K(t) = K(1) for t > 1, then K(2t) ~ K(t) for t > 0 (see, [6]).
The following results will have an important role in the subsequent. The following lemma was

proven in [1].

Lemma 2.1. Let K € RCT, p>1 and q > 0 then

o Nk(p,q) € H),(B).

o Nk(p.q) = Hgy,(B) if
1 2n—1
(1) = /0 (1;.“2)"+1K((1 — )" dt < oo, (2.4)

We can find the subsequent result in [11].

Lemma 2.2. Let$ € (0, 1] then there is a sequence {n;} € B such that
e limjo |ni| = 1.
e B=J2;, D(m;,0).
e Let N > 0 be an integer, then ¢ € ﬂf(v;“ll D(m;,, 46) and m;, € D((,46) for each ¢ € B,1 <
k< N+1.

Lemma 2.3. Forany K € RCT,6 > 0, let p,g > 0 and {, b € B. Then there is a positive constant
C, such that

(1—]zp)-a "t
K((1 = ws(O)?)")
for all { € D(z,6) and u € HOI(B).

(O < /D( 2(S)\LI(W)I”(l— WI?)TK(L = [Wp(w)[?)aV (w),

Proof. By the result in Lemma 2.24 in [5], we obtain

p 1 p
UOP < g o, PV,
forall ¢ € B and u € HOI(B).
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Now let ¢ € D(z,9) and w € D((,6), then obtain B(w,z) < B(w,({) < 25. Thus, D(¢,6) C
D(z,26). From some results in [5], we obtain
1-[¢P=1-]zP=<1—|w]?,
1= (b.w)[ < |1 —(b,2)].
Thus,

(1 |zP)—

K((1 = [Ws(O)2)")

u(OF < /D( 2(S)IU(W)I"(l—|W|2)‘7K((1—I\lfb(W)Iz)”)dV(W)-
O

Lemma 2.4. Let ¢ be a holomorphic self-map of B and b € B. If u is a nonnegative Lebesgue

measurable function on B, then

/E U(Q) kg (C) = /B u((0)) (1~ [CP)TK (1 — W) )" aV(0),
where
M = / (1— [CP)TK((L — [Ws(OP)) aV(Q).
0 1(E)

for any Borel measurable set E C B.
Proof. Let u be a nonnegative simple Lebesgue measurable function. Assume that
n
u(¢) = Z bi »E,,
i=1
where E; is the measurable set on B. Then,

/ u(Q)dAkq0(Q) =D birkap(E) = bi/ dAk.q.(C)
B i=1 i=1 E;
=nb,' 1—[¢P)IK (1~ [Wp(O)P)M)aVv
320 [ (1 P PV

B /B@ b’”¢1<5f>“5>(1 = [P ((1 = ()M dV Q)
=1

- /B u((O)(1 — ¢ K (1L~ [W5(Q) D))V (C).

If uis a nonnegative Lebesgue measurable function, for ( € B then there is a monotone increasing

simple measurable function sequence {u;} such that
lim 1;(¢) = u(Q).
Jj—00

Thus,

li
J—00

Jim /B 0(C) g (€)= /B 0(©) Ao (0).
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Now let the function sequence {Uj(K,q,¢)} = {uj(e(C))(1 — [CP)IK((1 — [Wh(¢)[?)")}, then

{U;(K,q, )} is a monotone increasing measurable function. Moreover,
lim U(K, 0,9) = u(p(O)(1 = (R K (1 = [Wa()P)"),

which implies that

[ 80 rraol© = fim [ (MO
— fim / U(())(1 = [C)TK (1 — [Wp(Q)[2)") dV (<)
J—00 B
— lim / u(@(Q)(1 — [CP)IK((L = [Wu(O)P)) dV(C).
J—0 JB

This completes the proof. ]

Lemma 2.5. For K € RC* and p > 0,9+ n+ 1> 0. If (2.4) holds, then u,({) € Nk(p, q), where

(=P
(1— (¢ w) >

UW(C) =

Proof. Firstly, suppose that (2.4) holds, to show that u,,({) € Nk(p, q), it suffices to show that there
is € > 0, such that

/ (1—1z])P(1 - I¢P)°

L L (C, z)|rFira+p K((1 = Wu(Q))")dV(¢) <&, VzeB.

sup
beB

Now we let % < |Wu(¢)| < 1, by the fact that (1 —|¢]) < |1 — (¢, b)| and Theorem 1.4.10 in [5],

therefore

1—|z[2)P(1—[¢]?)7 )
e K = @) v

/g<wb(c>|<1

<e /B (1— [P K((1 = [Wo(OP)") aV(C)
1 2n—1
< 5/0 mK((l — )" dt < e. (2.5)

At the same time,

(1—1z[2)P(1 = |¢2)¢ ) .
/wb(cnsjé 11— (C, z)[rHita+p K((1 = [Ws(OF)7)av({)

< / (1= 12P)P(L ~ W)L =R ) o

wi< 11— (Wp(w), )|+ 1Fa+P|1 — (w, by [2t2
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1— b2 n+1
< €/|W|<1 i |wb(v§>|2>n+l|i —w e K (= W) dvw)
W dV(w)
: E/|W|g; KO = W) gy e
N av(w)
<e ] KO- s
< e/ K((1 — [wl?)")aV(w) <. (2.6)
B

Combining (2.5) and (2.6), it follows that
/ (1—1z[?)P(1 —[¢?)9
B

sup 11— (¢, z)[rHira+r

beB

K((1=Wp(OP)M)dV(() <& VzeB.

3. Main Results

3.1. Boundedness.

Theorem 3.1. Let K € RCT and 0 < p, g < oco. Then the operator Cy is bounded on Nk(p, q) if
and only if

A2
sup (1= W) ([ e e K= @PV©)) <o (3

w,beB (p(C), wylatntl
Proof. Let C, be the bounded operator in Nk (p, g). Consider the function
(1—wP)

uw(() = qtntl 1
(1= w) »

Then by Lemma 2.5, we obtain

/B [k (OP(L = [CRIK(L — [Wu(O)P) dV(C)
) / (1— [W]2)P(1 — [CP)?

B |1 —(C w)lpratntl K= [Ws(QM)av(Q) <e,

which exactly

1
1Co ()N (p.a) < [IColllltwllnic(p.q) < €71 Coll-

That is

b (1= ¢ p
10,0 PP [ e KO ORIV < ol

Conversely, suppose that (3.1) holds, then by Lemma (2.3), there exists a constant € such that

(1 — [wf?)P / dAK,q,0(¢)
K1 = Wp(w)?) Jp

T (C, w)[ataiT <eg Vw,beB,
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where
Meaw = [ A=KRTK(= OFY)IV(), ¥ E < B
.
Fixed 6 > 0, so that

(1wl I k.q0(C)
R = [0 (W) Jogusy [T = (¢, wilerars <& ¥ W bEE.

Then, we have
Ae.g.p(D(w,8)) S (1= |wP)TT KL — [Wy(w)]?).
If ue Nk(p, q), then

/B u((O)IP(L = [CP)TK (L~ [Ws(Q)F)aV()

— /B () PdAk gp(O) g; /D OO

p
=y o WOP [ danl©)

Jle

<Z sup IU(C)I"{( = WYKL~ [We(w)?)}

Jle(

S Z [ MO GG WOV

D(w; .45

S ”””NK(p,q)'

3.2. Compactness.

Theorem 3.2. Let K € RC" and 0 < p,q < oo. Then the operator Cy is compact on Nk (p, q) if
and only if

[w|l—=1" peB

2
im_sup(t ([ O k- womav©o) =0 62)

Proof. Let Cy, be compact on Nk (p, g). Then, for any sequence {&;} C B with lim;_, [§;| = 1. Take

(1—1&1)
hj(C) = ’ q+ +1 -
(1-(C&)) »
Since {h;} is bounded on Nk (p, g) and converges uniformly to 0 on any compact subset of B. So, by
the compactness of Cy,, we obtain

(1 CP)IK(L — [Wp(O)2) dV(C)
(1= 'W'2>p/ T (o (@), wf o]

= ICo ()3 gy — 0. @5 J — c.
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Conversely, assume that (3.2) holds. Then, we can choose the sequence {w;} € B from Lemma

(2.2), such that

sup (1 —[w;|?)P dAk.q.0(€)

per K(1 —|Wp(w)|?) J 11 — ({, w;y|atntptl — 0, as i = 0.

Thus, for any € > 0, there exists a positive integer Np such that

(1—|w*)P / dAk,q.0(C)
B|l—

(€, wylatmeptt

oeh K(1— [Vp(w)?)

In this case, by (3.3) for all a € B when j > Np, we have

Meqp(D(Wi,0) S €P(1— [w[?) T PHEK(1 — [Wh(Q)]").

< €, when i > Nj.

(3.3)

(3.4)

Now we let {u;} be any sequence that converges to 0 uniformly on any compact subset of B with

luillar(p.q) < C. Then, the sequence {u;} converges to O uniformly on M = Uf(vil D(wg, 0). Thus,

there exists a positive integer Ng such that
sup |u;(¢)] < € when j > No.
CeM

Otherwise,
Me.qp(B) < /B (1 [CPYTK((1 — [Wo(O)P)") dV(C) < C.

Therefore, when j > Ng, by Lemma 2.2-2.4, (3.4)-(3.6), for all a € B we have

/R 1 ((O)P(L — [WP)IK(L — [Wu(C)dV(C)
- / Blu(OP M < 3 /D o O

No 00
<3 / GOPDRap+ S sup [5(0)PAkap
k=1 D(wy.0)

k=No+1 ¢ED(Wk.0)

o)

SNo€? AkqoB)+€ > sup | (Q)P(1—[¢P)ITTR((1 = (Wi (<)

k=Ng+1 ¢eD(wk,0)

< No€P Ak q.o(B) + € /D( ) | P(1 = ICP)TK (1 = [W(O)IH)M)adV(C)

< No € Ak q.0(B) + e"/B |4 P(L = [C)TK((L = [W(C)I*)")dV ()
S No €® Ak.q.0(B) + €2l Uil v (p.q) S €°
which exactly
Jim 1o (ui)lnic(p.a) = O-

In this case, the operator C,, is compact on Nk(p, g), which completed the proof.

(3.5)

(3.6)
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