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Abstract. Our main purpose is to introduce the notions of §s(/, s)-Rqo spaces and §s(A, s)-R1 spaces.

Moreover, several characterizations of §s(A, s)-Ro spaces and ds(A, s)-R1 spaces are investigated.

1. Introduction

The concept of Ry topological spaces was first introduced by Shanin [21]. Davis [7] introduced
the concept of a separation axiom called R;. These concepts are further investigated by Naimpally
[16], Dube [11] and Dorsett [8]. Murdeshwar and Naimpally [15] and Dube [10] studied some of
the fundamental properties of the class of Ry topological spaces. As natural generalizations of the
separations axioms Ry and Ry, the concepts of semi-Ry and semi-R1 spaces were introduced and
studied by Maheshwari and Prasad [14] and Dorsett [9]. Caldas et al. [4] introduced and investigated
two new weak separation axioms called Ag-Ry and Ag-R1 by using the notions of (A, 8)-open sets
and the (A, 6)-closure operator. Cammaroto and Noiri [2] defined a weak separation axiom m-Rg
in m-spaces which are equivalent to generalized topological spaces due to Lugojan [13]. Noiri [17]
introduced the notion of m-R; spaces and investigated several characterizations of m-Ry spaces and
m-R1 spaces. Moreover, Levine [12] introduced the concept of semi-open sets which is weaker than
the concept of open sets in topological spaces. Veli¢ko [23] introduced §-open sets, which are stronger
than open sets. Park et al. [19] have offered new notion called d-semiopen sets which are stronger than
semi-open sets but weaker than d-open sets and investigated the relationships between several types

of these open sets. Caldas et al. [5] investigated some weak separation axioms by utilizing -semiopen
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sets and the §-semiclosure operator. Caldas et al. [3] investigated the notion of §-As-semiclosed sets
which is defined as the intersection of a §-As-set and a §-semiclosed set. Noiri [18] showed that a
subset A of a topological space (X, T) is d-semiopen in (X, T) if and only if it is semi-open in (X, Ts).
In [1], the present authors introduced and investigated the concept of (A, s)-closed sets by utilizing the
notions of As-sets and semi-closed sets. Pue-on and Boonpok [20] introduced and studied the notions
of ds(A, s)-open sets and ds(A, s)-closed sets. In this paper, we introduce the notions of ds(A, s)-
Ro spaces and ds(/\, s)-R1 spaces. Furthermore, several characterizations of ds(A, s)-Ry spaces and

0s(A, s)-R1 spaces are discussed.

2. Preliminaries

Let A be a subset of a topological space (X, 7). The closure of A and the interior of A are denoted
by CI(A) and Int(A), respectively. A subset A of a topological space (X, T) is called semi-open [12]
if A C Cl(Int(A)). The family of all semi-open sets in a topological space (X, T) is denoted by
SO(X,T). A subset A [6] is defined as follows: AN = nN{U | U D A U € SO(X,T)}. A subset
A of a topological space (X, T) is called a As-set [6] if A= A"s. A subset A of a topological space
(X, T) is called (A,s)-closed [1] if A = T N C, where T is a As-set and C is a semi-closed set.
The complement of a (A, s)-closed set is called (A, s)-open. The family of all (A, s)-closed (resp.
(A, s)-open) sets in a topological space (X, T) is denoted by AsC(X,T) (resp. AsO(X,T)). Let A
be a subset of a topological space (X, T). A point x € X is called a (A, s)-cluster point [1] of A if
AN U # O for every (A, s)-open set U of X containing x. The set of all (A, s)-cluster points of A
is called the (A, s)-closure [1] of A and is denoted by A\S). The union of all (A, s)-open sets of X
contained in A is called the (A, s)-interior [1] of A and is denoted by A(p ). A point x of X is called
a 6(A, s)-cluster point [22] of Aif AN [V(A'S)](/\,s) # () for every (A, s)-open set V' of X containing
x. The set of all 0(A, s)-cluster points of A is called the §(A, s)-closure [22] of A and is denoted by
ASNS) if A = ASAS) then A s said to be §(A, s)-closed [22]. The complement of a §(A, s)-closed
set is said to be d(A, s)-open. The union of all §(A, s)-open sets of X contained in A is called the
6(A, s)-interior [22] of A and is denoted by As(ps). A subset A of a topological space (X, T) is said
to be &s(A, s)-open [20] if A C [An5)]°™*). The complement of a §s(A, s)-open set is said to be
0s(A, s)-closed. The family of all ds(A, s)-open (resp. ds(A, s)-closed) sets in a topological space
(X, 7) is denoted by ds(A, s)O(X,T) (resp. ds(A,s)C(X,T)). A subset N of a topological space
(X, T) is called a ds(A, s)-neighborhood [20] of a point x € X if there exists a §s(A, s)-open set V
such that x € V C N. Let A be a subset of a topological space (X, T). A point x of X is called a
0s(A, s)-cluster point [20] of A if ANU # () for every ds(A, s)-open set U of X containing x. The set
of all §s(A, s)-cluster points of A is called the §s(A, s)-closure [20] of A and is denoted by A9S(A:9),

Lemma 2.1. [20] For the §s(/, s)-closure of subsets A, B in a topological space (X, T), the following
properties hold:
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(1) A is 6s(A, s)-closed in (X, T) if and only if A= A%S(\s),
(2) IfAC B, then Ads(\s) C gos(As).
(3) A%\s) s §s(A, s)-closed, that is, AP5(\s) = [Ads(A.5))8s(As)

3. On ds(A, s)-Ry spaces

In this section, we introduce the concept of ds(A, s)-Rg spaces. Moreover, some characterizations

of 0s(A, s)-Ro spaces are discussed.

Definition 3.1. A topological space (X, T) is called §s(/\, s)-Rq if for each §s(/\, s)-open set U and
each x € U, {x}9s\s) C U,

Theorem 3.1. For a topological space (X, T), the following properties are equivalent:
(1) (X, 7) isds(A, s)-Ro.
(2) For each ds(N, s)-closed set F and each x € X — F, there exists U € ds(A\, s)O(X, T) such
that F C U and x ¢ U.
(3) For each §s(A, s)-closed set F and each x € X — F, F N {x}0s\:s) = @),
(4) For any distinct points x, y in X, {x}05(\s) = [y}85(As) o {x}05(As) [y 10s(As) — ¢,

Proof. (1) = (2): Let F be a 0s(A, s)-closed set and x € X — F. Since (X, T) is ds(/\, s)-Ro, we
have {x}9(\s) € X — F. Put U = X — {x}%5(\%)_ Thus, by Lemma 2.1, U € 6s(A, s)O(X, T), F C U
and x ¢ U.

(2) = (3): Let F beads(A, s)-closed set and x € X —F. By (2), there exists U € §s(A\, s)O(X, T)
such that F C U and x ¢ U. Since U € 6s(A, s)O(X, T), UN{x}95\5) = (§ and hence FN{x}os(\-s) =
0.

(3) = (4): Let x and y be distinct points of X. Suppose that {x}95("5) 0 {y}95(As) £ ¢ By (3),
x € {y}8\s) and y € {x}95(\s) By Lemma 2.1, {x}05(As) C {y}95(As) C {x}95(As) and hence

{X}és(/\,s) — {y}ds(/\,s) )

(4) = (1): Let V € 6s(A, s)O(X,T) and x € V. For each y ¢ V, V N {y}95\s) = ( and hence
x & {y}0sUN9). Thus, {x}0P) 2 {y}0s(hs) By (4), for each y & V, {x}?P) 0 {y}o(he) = g,
Since X — V is ds(A, s)-closed, y € {y}%"*) C X — V and Uyex_v{y}%") = X — V. Thus,

{X}(Ss(/\,S) N(X—-V)= {X}5s(/\,s) ) [UyEXf\/{y}és(/\'s)]
= UyGX—V[{X}és(/\'S) N {y}és(/\s)]
=0

and hence {x}%5(\s) C V. This shows that (X, T) is ds(A, s)-Ro. O

Corollary 3.1. A topological space (X, T) is 6s(N\, s)-Rqg if and only if for any points x and y in X,
{X}ép(/\,s) # {y}és(/\,s) /mplies {X}ép(/\,s) N {y}és(/\,s) = 0.
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Proof. This is obvious by Theorem 3.1.

Conversely, let U € 8s(A,s)O(X,T) and x € U. If y & U, then Un {y}osNs) = §. Thus,
x & {y}0s\s) and {x}95(As) £ {19s(As) - By the hypothesis, {x}95(\s) 0 {y}95(As) = () and hence
y & {x}95(\9) " This shows that {x}05(\$) C U. Therefore, (X, T) is ds(A, s)-Ro. O

Definition 3.2. [20] Let A be a subset of a topological space (X, T). Theds(N, s)-kernel of A, denoted
by 6s(N\, s)Ker(A), is defined to be the set 0s(\,s)Ker(A) =n{U | AC U, U € ds(N\,s)O(X,T)}.

Lemma 3.1. [20] For subsets A, B of a topological space (X, T), the following properties hold:
(1) ACds(A, s)Ker(A).
(2) If AC B, then ds(\,s)Ker(A) C ds(N,s)Ker(B).
(3) ds(A,s)Ker(0s(N,s)Ker(A)) = ds(N\, s)Ker(A).
(4) If Ais 6s(N\, s)-open, ds(N\, s)Ker(A) = A.

Lemma 3.2. [20] For any points x and y in a topological space (X, T), the following properties are

equivalent:

(1) 0s(A\, s)Ker({x}) # ds(\,s)Ker({y}).
(2) (X3 £ {y)309)

Lemma 3.3. Let (X, T) be a topological space and x,y € X. Then, the following properties hold:
(1) y € 8s(A, s)Ker({x}) if and only if x € {y}0s(\s).
(2) 8s(A, s)Ker({x}) = ds(A, s)Ker({y}) if and only if {x}9s(\s) = {y}95(A.s),

Proof. (1) Let x & {y}95(AS) Then, there exists U € §s(A, s)O(X, T) such that x € U and y & U.
Thus, y € 0s(A, s)Ker({x}). The converse is similarly shown.

(2) Suppose that ds(A, s)Ker({x}) = 0ds(N\,s)Ker({y}) for any x,y € X. Since x €
5s(A, s)Ker({x}), x € 8s(A,s)Ker({y}), by (1), y € {x}9Ns) By Lemma 2.1, {y}9\s) C
{x}95(\:5) - Similarly, we have {x}95(\s) C {y105(\-5) and hence {x}95(\) = {y}9s(As),

Conversely, suppose that {x}95(\s) = {}105(\5)  Since x € {x}95(Ns) x € {y}95(Ns) and by (1),

y € 0s(A, s)Ker({x}).

By Lemma 3.1, 0s(A, s)Ker({y}) C ds(A, s)Ker(ds(N\, s)Ker({x})) = ds(N\, s)Ker({x}). Similarly,
we have 0s(A, s)Ker({x}) € dp(A,s)Ker({y}) and hence ds(A\,s)Ker({x}) = ds(A,s)Ker({y}).
O

Theorem 3.2. A topological space (X, T) is ds(N\, s)-Ro if and only if for each points x and y in X,
0s(A\, s)Ker({x}) # 0s(A,s)Ker({y}) implies ds(\, s)Ker({x}) Nnds(A, s)Ker({y}) = 0.

Proof. Let (X, T) be ds(A, s)-Ry. Suppose that ds(A, s)Ker({x}) Nds(A,s)Ker({y}) #0. Let

ze€ds(N\, s)Ker({x})nds(\, s)Ker({y}).
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Then, z € §s(A, s)Ker({x}) and by Lemma 3.3, x € {z}95"9) Thus, x € {z}95\9) 0 {x}95(\-9) and
by Corollary 3.1, {z}95(\9) = {x}95(As) - Similarly, we have {z}95(\s) = {}95(As) and hence

{X}és(/\,s) — {y}és(/\,s) v

by Lemma 3.3, ds(A, s)Ker({x}) = ds(A, s)Ker({y}).

Conversely, we show the sufficiency by using Corollary 3.1. Suppose that {x}95(\:s) o£ {y105(As),
By Lemma 3.3, ds(A, s)Ker({x}) # ds(A,s)Ker({y}) and hence
ds(A, s)Ker({x}) N ds(A, s)Ker({y}) = 0. Thus, {x}95"s) 0 {y}9s(As) = (. In fact, assume
that z € {x}95(A9) 0 {y10s(As) - Then, z € {x}95(\s) implies x € ds(A, s)Ker({z}) and hence
x € 0s(N,s)Ker({z})Nds(A, s)Ker({x}). By the hypothesis, ds(A, s)Ker({z}) = ds(N\, s)Ker({x})
and by Lemma 3.3, {z}95(\s) — [x}95(As)  Similarly, we have {z}9(\s) = {y}95(As) and hence
{x}05(As) = {y105(As) - This contradicts that {x}05(\s) £ [ }0s(As),
Thus, {x}05\9) 0 {y}95(As) = (. This shows that (X, 7) is 8s(A, s)-Ro. O

Theorem 3.3. For a topological space (X, T), the following properties are equivalent:
(1) (X, 7) isds(A, s)-Ro.
(2) x € {y}0sNs) if and only if y € {x}0s(\s).

Proof. (1) = (2): Suppose that x € {y}95\5) By Lemma 3.3, y € §s(A, s)Ker({x}) and hence
ds(N, s)Ker({x}) Nnds(A, s)Ker({y}) # 0.

By Theorem 3.2, §s(A, s)Ker({x}) = ds(A\,s)Ker({y}) and hence x € ds(A,s)Ker({y}). Thus, by
Lemma 3.3, y € {x}%5("s) The converse is similarly shown.

(2) = (1): Let U € 8s(A,s)O(X,7) and x € U. If y & U, then Un {y}9sNs) = §. Thus,
x & {y}3N9) and y ¢ {x}95(\s) - This implies that {x}05(\s) C U. Therefore, (X, T) is ds(A, s)-
Ro. O

Theorem 3.4. A topological space (X, T) is 6s(A\, s)-Ro if and only if for each x and y in X,

{X}és(/\,s) £ {y}és(/\,s)
implies {x}9s(\.s) n {y10s(As) — ¢,
Proof. Suppose that (X, T) is 8s(A,s)-Ro and x,y € X such that {x}%5(\s) £ {y185(As)  Then,
there exists z € {x}95(\5) such that z & {y}95\9) (or z € {y}95(N9) such that z & {x}05(N9)). There

exists V' € 6s(A,s)O(X,T) such that y & V and z € V; hence x € V. Therefore, x ¢ {y}0s\s).
Thus,

x € (X = {y}95\9)) e §s(A, s)O(X, T),

which implies {x}05(\s) € X — {y}95(N9) and {x}95(Ns) A {y}9s(As) — (. The proof for otherwise is

similar.
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Conversely, let V € ds(A,s)O(X,T) and x € V. Suppose that y € V. Then, x # y and x &
{y}05(As) - Therefore, {x}95(Ns) £ {}9s(As) - By the hypothesis, {x}35("9) 0 {y}0s(\s) = (. Thus,
y & {x}95(\9) and hence {x}95(\s) C V. This shows that (X, T) is §s(A, s)-Ryo. O

Theorem 3.5. For a topological space (X, T), the following properties are equivalent:
(1) (X, 1) isds(A, s)-Ro.
(2) For each nonempty subset A of X and each V' € §s(\, s)O(X, T) such that ANV # (), there
exists F € §s(A,s)C(X, T) such that ANF # 0 and F C V.
(3) ForeachV € 6s(N\,s)O(X, 1), V=U{F € 6s(A\,s)C(X, T) | F CV}.
(4) Foreach F € 6s(N\,s)C(X,T), F=n{V €ds(\,s)O(X, )| F CV}.
(5) For each x € X, {x}05\s) C §s(A, s)Ker({x}).

Proof. (1) = (2): Let A be a nonempty subset of X and V € §s(A, s)O(X, T) such that ANV # 0.
There exists x € AN V. Since x € V € §s(A, s)O(X, 7), {x}3Ns) C V. Put F = {x}95\%) Then,
we have F € ds(A,s)C(X,T), FCVand ANF #0.

(2) = (3): Let V € ds(\,s)O(X,T). Then, V D U{F € ds(\,s)C(X,T) | F C V}. Let x be any
point of V. There exists F € §s(A, s)C(X, T) such that x € F and F C V. Thus,

x € FCU{F €ds(\s)C(X,T)| FCV}
and hence V = U{F € ds(\,s)C(X,T) | F C V}. O

(3) = (4): The proof is obvious.

(4) = (5): Let x be any point of X and y & ds(A, s)Ker({x}). There exists U € ds(N\, s)O(X, T)
such that x € U and y & U; hence {y}?s\s) 0y = 0.
By (4), (N{V € 8s(A,s)O(X, T) | {y}?*Ns) C V})NU = 0 and there exists W € ds(A, s)O(X, T)
such that x ¢ W and {y}%(\s) C W. Therefore, W N {x}95"9) = () and y ¢ {x}95\%) Thus,
{x}9s(\9) C §s(A, s)Ker({x}).

(5) = (1): Let U € 8s(A,s)O(X,7) and x € U. Let y € §s(A, s)Ker({x}). Then, x € {y}95(\:s)
and y € U. Thus, ds(A, s)Ker({x}) € U and hence {x}9s\$) C U. This shows that (X, T) is
0s(A\, s)-Ryo.

Corollary 3.2. For a topological space (X, T), the following properties are equivalent:
(1) (X, 1) isds(A\, s)-Ro,
(2) {x}9s(\9) = §s(A, s)Ker({x}) for each x € X.

Proof. (1) = (2): Suppose that (X,T) is 8s(A,s)-Rg. By Theorem 3.5, {x}95(As) C

8s(A, s)Ker({x}) for each x € X. Let y € 6s(A, s)Ker({x}). Then, x € {y}95"*) and by Theorem
3.4,

{X}és(/\,s) — {y}és(l\,s) .
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Thus, y € {x}%*) and hence ds(A, s)Ker({x}) C {x}9s"s) This shows that {x}3s(Ns) =
ds(A, s)Ker({x}).
(2) = (1): This is obvious by Theorem 3.5. O

Theorem 3.6. For a topological space (X, T), the following properties are equivalent:
(1) (X, T) isds(A, s)-Ro.
(2) Foreach F € ds(N\,s)C(X,T), F =4ds(A\,s)Ker(F).
(3) Foreach F € 6s(N\,s)C(X,T) and x € F, §s(\,s)Ker({x}) C F.
(4) For each x € X, 8s(A, s)Ker({x}) C {x}9s(\.s)

Proof. (1) = (2): This obviously follows from Theorem 3.5.
(2) = (3): Let F € s(\,s)C(X,T)and x € F. By (2), 0s(A, s)Ker({x}) C ds(A,s)Ker(F) =F.
(3) = (4): Let x € X. Since x € {x}3("s) and {x}95("s) is §s(A, s)-closed, by (3),
8s(A, s)Ker({x}) C {x}9s\=),
(4) = (1): We show the implication by using Theorem 3.3. Let x € {y}?5(\%). By Lemma 3.3,
y € 0s(A, s)Ker({x}).

Since x € {x}95\9) and {x}95(As) is §s(A, s)-closed, by (4), y € ds(A, s)Ker({x}) C {x}0s\s),
Thus, x € {y}95"\) implies y € {x}95(\5) The converse is obvious and (X, T) is 8s(A, s)-Ro. O

Definition 3.3. [20] Let (X, T) be a topological space and x € X. A subset (x)ss(p ) IS defined as
fO//OWS.' <X>5S(/\,S) = 65(/\’ S)Ker({X}) N {X}(SS(/\,S).

Theorem 3.7. A topological space (X, T) is ds(N\, s)-Rq if and only if (x)5s(n.s) = {x}9s\9) for each
x € X.

Proof. Let x € X. By Corollary 3.2, §s(A, s)Ker({x}) = {x}35\s) Thus,
(Xas(rs) = 05(A, s)Ker({x}) N {x}*5") = {x}os(=),
Conversely, let x € X. By the hypothesis,
(X395 = (X)gs(n,s) = 65(A, s)Ker({x}) N {x}*"2) C §s(A, s)Ker({x}).
It follows from Theorem 3.5 that (X, T) is ds(A, s)-Ro. O
4. On 6s(A, s)-Ry spaces
We begin this section by introducing the notion of ds(A, s)-R1 spaces.

Definition 4.1. A topological space (X, T) is said to be ds(\,s)-Ry if for each x and y in X such
that {x}0s\s) £ £105(\s) - there exist disjoint 6s(/, s)-open sets U and V such that {x}0s(\s) C U
and {y}os(\s) C v/,
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Theorem 4.1. A topological space (X, T) is ds(N\,s)-Ry1 if and only if for each x and y in X such
that {x}9s(\s) £ [,10s(A\s) there exist §s(N, s)-closed sets F and K such thatx € F, y & F, y € K,
x¢€Kand X =FUK.

Proof. Let x and y be any points in X with {x}35(":s) o£ {1195(As)  Then, there exist disjoint
UV € ds(N, s)O(X, 1)

such that {x}95\*) C U and {y}95("s) C V. Now, put F =X —V and K = X — U. Then, F and K
are 0s(/, s)-closed sets of X suchthat xe F, y ¢ F,y e K, x¢ K and X = FUK.
Conversely, let x and y be any points in X such that {x}05(\s) o£ {}0s(As) - Then,

{X}(Ss(/\,s) N {y}(Ss(/\,s) = 0.

In fact, if z € {x}35"s) N {y}95As) then {z}95(Ns) £ (x195(Ns) or {7}05(Ns) £ [}05(As) | case
{z}05(Ns) £ [x}05(As) by the hypothesis, there exists a §s(A, s)-closed set F such that x € F and
z ¢ F. Then, z € {x}%3(\s) C F. This contradicts that z ¢ F. In case {z}05(\s) £ {y}0s(As)
similarly, this leads to the contradiction. Thus, {x}95(\s) 0 {y}0s(As) — ¢ by Corollary 3.1, (X, T)
is 0s(A, s)-Rg. By the hypothesis, there exist ds(A, s)-closed sets F and K such that x € F, y & F,
yeK, x¢€¢Kand X=FUK. PutU=X—-KandV =X—F. Then, x € U € §s(A\, s)O(X, T) and
y €V e ds(A, s)O(X, 7). Since (X, T) is 6s(A, s)-Ro, we have {x}3"\s) C y, {y19s(\s) C v and
also UNV = (. This shows that (X, T) is ds(A, s)-R;. O

Definition 4.2. Let A be a subset of a topological space (X, T). The 83s(A, s)-closure of A, A%s(\.s),
is defined as follows:
APOS(Ns) — [x e X | AN UOsNS) £ () for each U € §s(A, s)O(X, T) containing x}.

Lemma 4.1. If a topological space (X, T) is ds(A, s)-R1, then (X, T) is ds(/, s)-Ro.

Proof. Let U € §s(A,s)O(X,T) and x € U. If y & U, then UN {y}?5Ns) = () and x ¢ {y}95(\s).
This implies that {x}35(\s) o£ {1105(A5) - Since (X, T) is §s(A, 5)-R1, there exists V € §s(A, s)O(X, T)
such that {y}%5("s) C V and x € V. Thus, V N {x}95"5) = @ and hence y ¢ {x}95(N5) Therefore,
{x}95(\:5) C U. This shows that (X, T) is 8s(A, s)-Ro. O

Theorem 4.2. A topological space (X, T) is §s(N, s)-Ry if and only if (x)ss(n.s) = {x}%05*) for each
x € X.

Proof. Let (X, T) be 6s(A, s)-R1. By Lemma 4.1, (X, 7) is 6s(A, s)-Ro and by Theorem 3.7,
(X)ss(n.s) = {x19s(N8) C [} 005(As)

for each x € X. Thus, (x)5s(n,5) € {x}09s(\5) for each x € X. In order to show the opposite inclusion,
suppose that y & (X)ss(ns)- Then, (X)ss(as) # (V)ss(as)- Since (X, T) is 6s(A, s)-Ro, by Theorem
3.7, {x}05(Ns) £ [y10s(As) - Since (X, T) is 8s(A, s)-R1, there exist disjoint §s(A, s)-open sets U
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and V of X such that {x}9"\:5) C U and {y}95(\s) C V. Since {x} N V\s) C ynosihs) =g,
y & {x}905N9) . Thus, {x}995) C (x)55n5) and hence {x}#05NS) = (x)5c 5.

Conversely, suppose that {x}%s("S) = (x)5o s) for each x € X. Then,

(X)asns) = {x3P05N9) D {x395N) S (x)55n )

and (X)ss(n,s) = {x}9s(\9) for each x € X. By Theorem 3.7, (X, 7) is 8s(A, s)-Ro. Suppose that

(x}35(NS) 2 gy 05(Ns).
Thus, by Corollary 3.1, {x}0s(\5) 0 {y}35") = (. By Theorem 3.7, (x)ss(r.s) N (V)ss(r.s) = @ and
hence {x}995(\.s) 0 {y100s(As) — (. Since y ¢ {x}P95(A9) | there exists a ds(A, s)-open set U of X
such that y € U C U9Ns) € X — {x}. Let V = X — U%(\9) then x € V € §s(A, s)O(X, 7).
Since (X, T) is 8s(A, s)-Rg, {y}9"s) C U, {x}95\s) C vV and UNV = (. This shows that (X, 7) is
0s(A, s)-R1. O

Corollary 4.1. A topological space (X, T) is §s(A, s)-Ry if and only if {x}35(\s) = {x}99s(\.s) for each
x € X.

Proof. Let (X, T) be a §s(A, s)-Ry space. By Theorem 4.2, we have
[ D (x)ggp 0 = )50 D {x)350)

and hence {x}95(\s) = [x109s(A5) for each x € X.

Conversely, suppose that {x}95(\s) = (x}695(As) for each x € X. First, we show that (X, 7) is
6s(A, s)-Rg. Let U € s(A, s)O(X, T) and x € U. Let y & U. Then, Un{y}05(\s) = yn{y}#s(hs) —
0. Thus, x & {y}%95\5) There exists V € §s(A, s)O(X, T) such that x € V and y & V95("9) Since

{X}és(/\,s) C Vés(/\,s) ’

y & {x}95(\s)  This shows that {x}95(\%) C U and hence (X, T) is 6s(A, s)-Ro. By Theorem 3.7,

<X>5S(/\,s) = {X}és(/\,s) — {X}Qés(/\,s)

for each x € X. Thus, by Theorem 4.2, (X, T) is ds(A, s)-R1. O

Definition 4.3. A topological space (X, T) is said to be:
(a) ds(N, s)-Ty if for any pair of distinct points in X, there exists a ds(/\, s)-open set containing
one of the points but not the other;
(b) ds(A, s)-Ty if for any pair of distinct points x and y in X, there exist §s(/\, s)-open sets U and
Vof Xsuchthatxe U, y¢gUandy eV, xgV;
(c) ds(A, s)-T» if for any pair of distinct points x and y in X, there exist ds(A\, s)-open sets U and
V of X such thatx e U, y € V and UNV = (.

Lemma 4.2. For a topological space (X, T), the following properties are equivalent:



10 Int. J. Anal. Appl. (2023), 21:99

(1) (X, 7) isds(A\,s)-Ty.
(2) For each x € X, {x} is ds(/, s)-closed.
(3) (X, 7) isds(A, s)-Ro and ds(A, s)-To.

Proof. (1) = (2): Let x be any point of X. Let y be any point of X such that y # x. There
exists a ds(A, s)-open sets U of X such that y € U and x & U. Thus, y & {x}%5"9) and hence
{x}9s(\s) = {x} This shows that {x} is s(A, s)-closed.

(2) = (3): The proof is obvious.

(3) = (1): Let x and y be any distinct points of X. Since (X, T) is ds(A, s)-To, there exists a
0s(A\, s)-open sets U of X such that either x € Uand y ¢ U or x ¢ U and y € U. In case x € U and
y & U, we have x € {x}95\9) C J and hence y € X — U C X — {x}95(N9)_ Since the proof of the
other is quite similar, (X, T) is ds(A, s)-T1. O

Theorem 4.3. For a topological space (X, T), the following properties are equivalent:
(1) (X, 7) isds(A, s)-T».
(2) (X, 7) isds(A,s)-R1 and ds(A, s)-T1.
(3) (X, T) isds(A\,s)-R1 and ds(A, s)-To.

Proof. (1) = (2): Since (X, T) is 6s(A,s)-To, (X, T) is ds(A,s)-T1. Let x and y be any points of
X such that {x}05(\s) £ [y}9s(As) - Thus, by Lemma 4.2, {x} = {x}0s\s) = {y}0s(As) — [y}
and there exist disjoint ds(A, s)-open sets U and V of X such that {x}%5(As) = {x} C U and
{y}9s(\s) = fy} C V. This shows that (X, T) is 8s(A, 5)-R;.

(2) = (3): The proof is obvious.

(3) = (1): Let (X, T) be ds(A, s)-R1 and ds(A, s)-To. By Lemma 4.1 and 4.2, (X, 7) is ds(A\,s)-T1
and every singleton is ds(/A, s)-closed. Let x and y be any distinct points of X. Then,

{X}és(/\,s) _ {X} - {y} _ {y}és(/\,s)

and there exist disjoint §s(/A, s)-open sets U and V of X such that x € U and y € V. This shows that
(X, T)is ds(N\, s)-T. O
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