International Journal of Analysis and Applications

 $\delta s(\Lambda, s)$ - R_0 Spaces and $\delta s(\Lambda, s)$ - R_1 Spaces

Chawalit Boonpok, Jeeranunt Khampakdee*

Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

* Corresponding author: jeeranunt.k@msu.ac.th

Abstract. Our main purpose is to introduce the notions of $\delta s(\Lambda, s)$ - R_0 spaces and $\delta s(\Lambda, s)$ - R_1 spaces. Moreover, several characterizations of $\delta s(\Lambda, s)$ - R_0 spaces and $\delta s(\Lambda, s)$ - R_1 spaces are investigated.

1. Introduction

The concept of R_0 topological spaces was first introduced by Shanin [21]. Davis [7] introduced the concept of a separation axiom called R_1 . These concepts are further investigated by Naimpally [16], Dube [11] and Dorsett [8]. Murdeshwar and Naimpally [15] and Dube [10] studied some of the fundamental properties of the class of R_1 topological spaces. As natural generalizations of the separations axioms R_0 and R_1 , the concepts of semi- R_0 and semi- R_1 spaces were introduced and studied by Maheshwari and Prasad [14] and Dorsett [9]. Caldas et al. [4] introduced and investigated two new weak separation axioms called Λ_{θ} - R_0 and Λ_{θ} - R_1 by using the notions of (Λ , θ)-open sets and the (Λ , θ)-closure operator. Cammaroto and Noiri [2] defined a weak separation axiom m- R_0 in m-spaces which are equivalent to generalized topological spaces due to Lugojan [13]. Noiri [17] introduced the notion of m- R_1 spaces and investigated several characterizations of m- R_0 spaces and m- R_1 spaces. Moreover, Levine [12] introduced the concept of semi-open sets which is weaker than the concept of open sets in topological spaces. Veličko [23] introduced δ -open sets, which are stronger than open sets. Park et al. [19] have offered new notion called δ -semiopen sets which are stronger than semi-open sets but weaker than δ -open sets and investigated the relationships between several types of these open sets. Caldas et al. [5] investigated some weak separation axioms by utilizing δ -semiopen

Received: Jun. 27, 2023.

²⁰²⁰ Mathematics Subject Classification. 54A05, 54D10.

Key words and phrases. $\delta s(\Lambda, s)$ -open set; $\delta s(\Lambda, s)-R_0$ space; $\delta s(\Lambda, s)-R_1$ space.

sets and the δ -semiclosure operator. Caldas et al. [3] investigated the notion of δ - Λ_s -semiclosed sets which is defined as the intersection of a δ - Λ_s -set and a δ -semiclosed set. Noiri [18] showed that a subset A of a topological space (X, τ) is δ -semiopen in (X, τ) if and only if it is semi-open in (X, τ_s) . In [1], the present authors introduced and investigated the concept of (Λ, s) -closed sets by utilizing the notions of Λ_s -sets and semi-closed sets. Pue-on and Boonpok [20] introduced and studied the notions of $\delta s(\Lambda, s)$ -open sets and $\delta s(\Lambda, s)$ -closed sets. In this paper, we introduce the notions of $\delta s(\Lambda, s)$ - R_0 spaces and $\delta s(\Lambda, s)$ - R_1 spaces. Furthermore, several characterizations of $\delta s(\Lambda, s)$ - R_0 spaces and $\delta s(\Lambda, s)$ - R_1 spaces are discussed.

2. Preliminaries

Let A be a subset of a topological space (X, τ) . The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is called *semi-open* [12] if $A \subseteq Cl(Int(A))$. The family of all semi-open sets in a topological space (X, τ) is denoted by $SO(X, \tau)$. A subset A^{Λ_s} [6] is defined as follows: $A^{\Lambda_s} = \bigcap \{ U \mid U \supseteq A, U \in SO(X, \tau) \}$. A subset A of a topological space (X, τ) is called a Λ_s -set [6] if $A = A^{\Lambda_s}$. A subset A of a topological space (X, τ) is called (Λ, s) -closed [1] if $A = T \cap C$, where T is a Λ_s -set and C is a semi-closed set. The complement of a (Λ, s) -closed set is called (Λ, s) -open. The family of all (Λ, s) -closed (resp. (Λ, s) -open) sets in a topological space (X, τ) is denoted by $\Lambda_s C(X, \tau)$ (resp. $\Lambda_s O(X, \tau)$). Let A be a subset of a topological space (X, τ) . A point $x \in X$ is called a (Λ, s) -cluster point [1] of A if $A \cap U \neq \emptyset$ for every (Λ, s) -open set U of X containing x. The set of all (Λ, s) -cluster points of A is called the (Λ, s) -closure [1] of A and is denoted by $A^{(\Lambda,s)}$. The union of all (Λ, s) -open sets of X contained in A is called the (Λ, s) -interior [1] of A and is denoted by $A_{(\Lambda,s)}$. A point x of X is called a $\delta(\Lambda, s)$ -cluster point [22] of A if $A \cap [V^{(\Lambda,s)}]_{(\Lambda,s)} \neq \emptyset$ for every (Λ, s) -open set V of X containing x. The set of all $\delta(\Lambda, s)$ -cluster points of A is called the $\delta(\Lambda, s)$ -closure [22] of A and is denoted by $A^{\delta(\Lambda,s)}$. If $A = A^{\delta(\Lambda,s)}$, then A is said to be $\delta(\Lambda, s)$ -closed [22]. The complement of a $\delta(\Lambda, s)$ -closed set is said to be $\delta(\Lambda, s)$ -open. The union of all $\delta(\Lambda, s)$ -open sets of X contained in A is called the $\delta(\Lambda, s)$ -interior [22] of A and is denoted by $A_{\delta(\Lambda, s)}$. A subset A of a topological space (X, τ) is said to be $\delta s(\Lambda, s)$ -open [20] if $A \subseteq [A_{(\Lambda, s)}]^{\delta(\Lambda, s)}$. The complement of a $\delta s(\Lambda, s)$ -open set is said to be $\delta s(\Lambda, s)$ -closed. The family of all $\delta s(\Lambda, s)$ -open (resp. $\delta s(\Lambda, s)$ -closed) sets in a topological space (X, τ) is denoted by $\delta s(\Lambda, s)O(X, \tau)$ (resp. $\delta s(\Lambda, s)C(X, \tau)$). A subset N of a topological space (X,τ) is called a $\delta s(\Lambda,s)$ -neighborhood [20] of a point $x \in X$ if there exists a $\delta s(\Lambda,s)$ -open set V such that $x \in V \subseteq N$. Let A be a subset of a topological space (X, τ) . A point x of X is called a $\delta s(\Lambda, s)$ -cluster point [20] of A if $A \cap U \neq \emptyset$ for every $\delta s(\Lambda, s)$ -open set U of X containing x. The set of all $\delta s(\Lambda, s)$ -cluster points of A is called the $\delta s(\Lambda, s)$ -closure [20] of A and is denoted by $A^{\delta s(\Lambda, s)}$.

Lemma 2.1. [20] For the $\delta s(\Lambda, s)$ -closure of subsets A, B in a topological space (X, τ) , the following properties hold:

(1) A is $\delta s(\Lambda, s)$ -closed in (X, τ) if and only if $A = A^{\delta s(\Lambda, s)}$.

- (2) If $A \subseteq B$, then $A^{\delta s(\Lambda,s)} \subseteq B^{\delta s(\Lambda,s)}$.
- (3) $A^{\delta s(\Lambda,s)}$ is $\delta s(\Lambda,s)$ -closed, that is, $A^{\delta s(\Lambda,s)} = [A^{\delta s(\Lambda,s)}]^{\delta s(\Lambda,s)}$.
 - 3. On $\delta s(\Lambda, s)$ - R_0 spaces

In this section, we introduce the concept of $\delta s(\Lambda, s)$ - R_0 spaces. Moreover, some characterizations of $\delta s(\Lambda, s)$ - R_0 spaces are discussed.

Definition 3.1. A topological space (X, τ) is called $\delta s(\Lambda, s)-R_0$ if for each $\delta s(\Lambda, s)$ -open set U and each $x \in U$, $\{x\}^{\delta s(\Lambda, s)} \subseteq U$.

Theorem 3.1. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\delta s(\Lambda, s)$ - R_0 .
- (2) For each $\delta s(\Lambda, s)$ -closed set F and each $x \in X F$, there exists $U \in \delta s(\Lambda, s)O(X, \tau)$ such that $F \subseteq U$ and $x \notin U$.
- (3) For each $\delta s(\Lambda, s)$ -closed set F and each $x \in X F$, $F \cap \{x\}^{\delta s(\Lambda, s)} = \emptyset$.
- (4) For any distinct points x, y in X, $\{x\}^{\delta s(\Lambda,s)} = \{y\}^{\delta s(\Lambda,s)}$ or $\{x\}^{\delta s(\Lambda,s)} \cap \{y\}^{\delta s(\Lambda,s)} = \emptyset$.

Proof. (1) \Rightarrow (2): Let *F* be a $\delta s(\Lambda, s)$ -closed set and $x \in X - F$. Since (X, τ) is $\delta s(\Lambda, s)$ - R_0 , we have $\{x\}^{\delta s(\Lambda, s)} \subseteq X - F$. Put $U = X - \{x\}^{\delta s(\Lambda, s)}$. Thus, by Lemma 2.1, $U \in \delta s(\Lambda, s)O(X, \tau)$, $F \subseteq U$ and $x \notin U$.

(2) \Rightarrow (3): Let *F* be a $\delta s(\Lambda, s)$ -closed set and $x \in X - F$. By (2), there exists $U \in \delta s(\Lambda, s)O(X, \tau)$ such that $F \subseteq U$ and $x \notin U$. Since $U \in \delta s(\Lambda, s)O(X, \tau)$, $U \cap \{x\}^{\delta s(\Lambda, s)} = \emptyset$ and hence $F \cap \{x\}^{\delta s(\Lambda, s)} = \emptyset$.

(3) \Rightarrow (4): Let x and y be distinct points of X. Suppose that $\{x\}^{\delta s(\Lambda,s)} \cap \{y\}^{\delta s(\Lambda,s)} \neq \emptyset$. By (3), $x \in \{y\}^{\delta s(\Lambda,s)}$ and $y \in \{x\}^{\delta s(\Lambda,s)}$. By Lemma 2.1, $\{x\}^{\delta s(\Lambda,s)} \subseteq \{y\}^{\delta s(\Lambda,s)} \subseteq \{x\}^{\delta s(\Lambda,s)}$ and hence

$$\{x\}^{\delta s(\Lambda,s)} = \{y\}^{\delta s(\Lambda,s)}$$

(4) \Rightarrow (1): Let $V \in \delta s(\Lambda, s)O(X, \tau)$ and $x \in V$. For each $y \notin V, V \cap \{y\}^{\delta s(\Lambda, s)} = \emptyset$ and hence $x \notin \{y\}^{\delta s(\Lambda, s)}$. Thus, $\{x\}^{\delta s(\Lambda, s)} \neq \{y\}^{\delta s(\Lambda, s)}$. By (4), for each $y \notin V$, $\{x\}^{\delta s(\Lambda, s)} \cap \{y\}^{\delta s(\Lambda, s)} = \emptyset$. Since X - V is $\delta s(\Lambda, s)$ -closed, $y \in \{y\}^{\delta s(\Lambda, s)} \subseteq X - V$ and $\bigcup_{y \in X - V} \{y\}^{\delta s(\Lambda, s)} = X - V$. Thus,

$$\{x\}^{\delta s(\Lambda,s)} \cap (X - V) = \{x\}^{\delta s(\Lambda,s)} \cap [\cup_{y \in X - V} \{y\}^{\delta s(\Lambda,s)}]$$
$$= \cup_{y \in X - V} [\{x\}^{\delta s(\Lambda,s)} \cap \{y\}^{\delta s(\Lambda,s)}]$$
$$= \emptyset$$

and hence $\{x\}^{\delta s(\Lambda,s)} \subseteq V$. This shows that (X, τ) is $\delta s(\Lambda, s)$ - R_0 .

Corollary 3.1. A topological space (X, τ) is $\delta s(\Lambda, s)$ - R_0 if and only if for any points x and y in X, $\{x\}^{\delta p(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}$ implies $\{x\}^{\delta p(\Lambda,s)} \cap \{y\}^{\delta s(\Lambda,s)} = \emptyset$.

Proof. This is obvious by Theorem 3.1.

Conversely, let $U \in \delta s(\Lambda, s)O(X, \tau)$ and $x \in U$. If $y \notin U$, then $U \cap \{y\}^{\delta s(\Lambda, s)} = \emptyset$. Thus, $x \notin \{y\}^{\delta s(\Lambda, s)}$ and $\{x\}^{\delta s(\Lambda, s)} \neq \{y\}^{\delta s(\Lambda, s)}$. By the hypothesis, $\{x\}^{\delta s(\Lambda, s)} \cap \{y\}^{\delta s(\Lambda, s)} = \emptyset$ and hence $y \notin \{x\}^{\delta s(\Lambda, s)}$. This shows that $\{x\}^{\delta s(\Lambda, s)} \subseteq U$. Therefore, (X, τ) is $\delta s(\Lambda, s)$ - R_0 . \Box

Definition 3.2. [20] Let A be a subset of a topological space (X, τ) . The $\delta s(\Lambda, s)$ -kernel of A, denoted by $\delta s(\Lambda, s) Ker(A)$, is defined to be the set $\delta s(\Lambda, s) Ker(A) = \cap \{U \mid A \subseteq U, U \in \delta s(\Lambda, s)O(X, \tau)\}$.

Lemma 3.1. [20] For subsets A, B of a topological space (X, τ) , the following properties hold:

- (1) $A \subseteq \delta s(\Lambda, s) Ker(A)$.
- (2) If $A \subseteq B$, then $\delta s(\Lambda, s) Ker(A) \subseteq \delta s(\Lambda, s) Ker(B)$.
- (3) $\delta s(\Lambda, s) Ker(\delta s(\Lambda, s) Ker(A)) = \delta s(\Lambda, s) Ker(A).$
- (4) If A is $\delta s(\Lambda, s)$ -open, $\delta s(\Lambda, s)Ker(A) = A$.

Lemma 3.2. [20] For any points x and y in a topological space (X, τ) , the following properties are equivalent:

- (1) $\delta s(\Lambda, s) Ker(\{x\}) \neq \delta s(\Lambda, s) Ker(\{y\}).$
- (2) $\{x\}^{\delta s(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}$.

Lemma 3.3. Let (X, τ) be a topological space and $x, y \in X$. Then, the following properties hold:

- (1) $y \in \delta s(\Lambda, s) Ker(\{x\})$ if and only if $x \in \{y\}^{\delta s(\Lambda, s)}$.
- (2) $\delta s(\Lambda, s) Ker(\{x\}) = \delta s(\Lambda, s) Ker(\{y\})$ if and only if $\{x\}^{\delta s(\Lambda, s)} = \{y\}^{\delta s(\Lambda, s)}$.

Proof. (1) Let $x \notin \{y\}^{\delta s(\Lambda,s)}$. Then, there exists $U \in \delta s(\Lambda, s)O(X, \tau)$ such that $x \in U$ and $y \notin U$. Thus, $y \notin \delta s(\Lambda, s)Ker(\{x\})$. The converse is similarly shown.

(2) Suppose that $\delta s(\Lambda, s) Ker(\{x\}) = \delta s(\Lambda, s) Ker(\{y\})$ for any $x, y \in X$. Since $x \in \delta s(\Lambda, s) Ker(\{x\}), x \in \delta s(\Lambda, s) Ker(\{y\})$, by (1), $y \in \{x\}^{\delta s(\Lambda, s)}$. By Lemma 2.1, $\{y\}^{\delta s(\Lambda, s)} \subseteq \{x\}^{\delta s(\Lambda, s)}$. Similarly, we have $\{x\}^{\delta s(\Lambda, s)} \subseteq \{y\}^{\delta s(\Lambda, s)}$ and hence $\{x\}^{\delta s(\Lambda, s)} = \{y\}^{\delta s(\Lambda, s)}$.

Conversely, suppose that $\{x\}^{\delta s(\Lambda,s)} = \{y\}^{\delta s(\Lambda,s)}$. Since $x \in \{x\}^{\delta s(\Lambda,s)}$, $x \in \{y\}^{\delta s(\Lambda,s)}$ and by (1),

$$y \in \delta s(\Lambda, s) Ker(\{x\}).$$

By Lemma 3.1, $\delta s(\Lambda, s) Ker(\{y\}) \subseteq \delta s(\Lambda, s) Ker(\delta s(\Lambda, s) Ker(\{x\})) = \delta s(\Lambda, s) Ker(\{x\})$. Similarly, we have $\delta s(\Lambda, s) Ker(\{x\}) \subseteq \delta p(\Lambda, s) Ker(\{y\})$ and hence $\delta s(\Lambda, s) Ker(\{x\}) = \delta s(\Lambda, s) Ker(\{y\})$.

Theorem 3.2. A topological space (X, τ) is $\delta s(\Lambda, s) - R_0$ if and only if for each points x and y in X, $\delta s(\Lambda, s) Ker(\{x\}) \neq \delta s(\Lambda, s) Ker(\{y\})$ implies $\delta s(\Lambda, s) Ker(\{x\}) \cap \delta s(\Lambda, s) Ker(\{y\}) = \emptyset$.

Proof. Let (X, τ) be $\delta s(\Lambda, s)$ - R_0 . Suppose that $\delta s(\Lambda, s) Ker(\{x\}) \cap \delta s(\Lambda, s) Ker(\{y\}) \neq \emptyset$. Let

$$z \in \delta s(\Lambda, s) Ker(\{x\}) \cap \delta s(\Lambda, s) Ker(\{y\}).$$

Then, $z \in \delta s(\Lambda, s) Ker(\{x\})$ and by Lemma 3.3, $x \in \{z\}^{\delta s(\Lambda, s)}$. Thus, $x \in \{z\}^{\delta s(\Lambda, s)} \cap \{x\}^{\delta s(\Lambda, s)}$ and by Corollary 3.1, $\{z\}^{\delta s(\Lambda, s)} = \{x\}^{\delta s(\Lambda, s)}$. Similarly, we have $\{z\}^{\delta s(\Lambda, s)} = \{y\}^{\delta s(\Lambda, s)}$ and hence

$$\{x\}^{\delta s(\Lambda,s)} = \{y\}^{\delta s(\Lambda,s)},$$

by Lemma 3.3, $\delta s(\Lambda, s) Ker(\{x\}) = \delta s(\Lambda, s) Ker(\{y\})$.

Conversely, we show the sufficiency by using Corollary 3.1. Suppose that $\{x\}^{\delta s(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}$. By Lemma 3.3, $\delta s(\Lambda, s) Ker(\{x\}) \neq \delta s(\Lambda, s) Ker(\{y\})$ and hence $\delta s(\Lambda, s) Ker(\{x\}) \cap \delta s(\Lambda, s) Ker(\{y\}) = \emptyset$. Thus, $\{x\}^{\delta s(\Lambda,s)} \cap \{y\}^{\delta s(\Lambda,s)} = \emptyset$. In fact, assume that $z \in \{x\}^{\delta s(\Lambda,s)} \cap \{y\}^{\delta s(\Lambda,s)}$. Then, $z \in \{x\}^{\delta s(\Lambda,s)}$ implies $x \in \delta s(\Lambda, s) Ker(\{z\})$ and hence $x \in \delta s(\Lambda, s) Ker(\{z\}) \cap \delta s(\Lambda, s) Ker(\{x\})$. By the hypothesis, $\delta s(\Lambda, s) Ker(\{z\}) = \delta s(\Lambda, s) Ker(\{x\})$ and by Lemma 3.3, $\{z\}^{\delta s(\Lambda,s)} = \{x\}^{\delta s(\Lambda,s)}$. Similarly, we have $\{z\}^{\delta s(\Lambda,s)} = \{y\}^{\delta s(\Lambda,s)}$ and hence $\{x\}^{\delta s(\Lambda,s)} = \{y\}^{\delta s(\Lambda,s)}$. This contradicts that $\{x\}^{\delta s(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}$. Thus, $\{x\}^{\delta s(\Lambda,s)} \cap \{y\}^{\delta s(\Lambda,s)} = \emptyset$. This shows that (X, τ) is $\delta s(\Lambda, s) - R_0$.

Theorem 3.3. For a topological space (X, τ) , the following properties are equivalent:

(1) (X, τ) is δs(Λ, s)-R₀.
(2) x ∈ {y}^{δs(Λ,s)} if and only if y ∈ {x}^{δs(Λ,s)}.

Proof. (1) \Rightarrow (2): Suppose that $x \in \{y\}^{\delta s(\Lambda,s)}$. By Lemma 3.3, $y \in \delta s(\Lambda, s) Ker(\{x\})$ and hence

 $\delta s(\Lambda, s) Ker(\{x\}) \cap \delta s(\Lambda, s) Ker(\{y\}) \neq \emptyset.$

By Theorem 3.2, $\delta s(\Lambda, s) Ker(\{x\}) = \delta s(\Lambda, s) Ker(\{y\})$ and hence $x \in \delta s(\Lambda, s) Ker(\{y\})$. Thus, by Lemma 3.3, $y \in \{x\}^{\delta s(\Lambda, s)}$. The converse is similarly shown.

(2) \Rightarrow (1): Let $U \in \delta s(\Lambda, s)O(X, \tau)$ and $x \in U$. If $y \notin U$, then $U \cap \{y\}^{\delta s(\Lambda, s)} = \emptyset$. Thus, $x \notin \{y\}^{\delta s(\Lambda, s)}$ and $y \notin \{x\}^{\delta s(\Lambda, s)}$. This implies that $\{x\}^{\delta s(\Lambda, s)} \subseteq U$. Therefore, (X, τ) is $\delta s(\Lambda, s)$ - R_0 .

Theorem 3.4. A topological space (X, τ) is $\delta s(\Lambda, s)$ - R_0 if and only if for each x and y in X,

$$\{x\}^{\delta s(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}$$

implies $\{x\}^{\delta s(\Lambda,s)} \cap \{y\}^{\delta s(\Lambda,s)} = \emptyset$.

Proof. Suppose that (X, τ) is $\delta s(\Lambda, s) - R_0$ and $x, y \in X$ such that $\{x\}^{\delta s(\Lambda, s)} \neq \{y\}^{\delta s(\Lambda, s)}$. Then, there exists $z \in \{x\}^{\delta s(\Lambda, s)}$ such that $z \notin \{y\}^{\delta s(\Lambda, s)}$ (or $z \in \{y\}^{\delta s(\Lambda, s)}$ such that $z \notin \{x\}^{\delta s(\Lambda, s)}$). There exists $V \in \delta s(\Lambda, s)O(X, \tau)$ such that $y \notin V$ and $z \in V$; hence $x \in V$. Therefore, $x \notin \{y\}^{\delta s(\Lambda, s)}$. Thus,

$$x \in (X - \{y\}^{\delta s(\Lambda, s)}) \in \delta s(\Lambda, s)O(X, \tau),$$

which implies $\{x\}^{\delta s(\Lambda,s)} \subseteq X - \{y\}^{\delta s(\Lambda,s)}$ and $\{x\}^{\delta s(\Lambda,s)} \cap \{y\}^{\delta s(\Lambda,s)} = \emptyset$. The proof for otherwise is similar.

Conversely, let $V \in \delta s(\Lambda, s)O(X, \tau)$ and $x \in V$. Suppose that $y \notin V$. Then, $x \neq y$ and $x \notin \{y\}^{\delta s(\Lambda,s)}$. Therefore, $\{x\}^{\delta s(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}$. By the hypothesis, $\{x\}^{\delta s(\Lambda,s)} \cap \{y\}^{\delta s(\Lambda,s)} = \emptyset$. Thus, $y \notin \{x\}^{\delta s(\Lambda,s)}$ and hence $\{x\}^{\delta s(\Lambda,s)} \subseteq V$. This shows that (X, τ) is $\delta s(\Lambda, s)-R_0$.

Theorem 3.5. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\delta s(\Lambda, s)$ - R_0 .
- (2) For each nonempty subset A of X and each $V \in \delta s(\Lambda, s)O(X, \tau)$ such that $A \cap V \neq \emptyset$, there exists $F \in \delta s(\Lambda, s)C(X, \tau)$ such that $A \cap F \neq \emptyset$ and $F \subseteq V$.
- (3) For each $V \in \delta s(\Lambda, s)O(X, \tau)$, $V = \cup \{F \in \delta s(\Lambda, s)C(X, \tau) \mid F \subseteq V\}$.
- (4) For each $F \in \delta s(\Lambda, s)C(X, \tau)$, $F = \cap \{V \in \delta s(\Lambda, s)O(X, \tau) \mid F \subseteq V\}$.
- (5) For each $x \in X$, $\{x\}^{\delta s(\Lambda,s)} \subseteq \delta s(\Lambda, s) Ker(\{x\})$.

Proof. (1) \Rightarrow (2): Let *A* be a nonempty subset of *X* and $V \in \delta s(\Lambda, s)O(X, \tau)$ such that $A \cap V \neq \emptyset$. There exists $x \in A \cap V$. Since $x \in V \in \delta s(\Lambda, s)O(X, \tau)$, $\{x\}^{\delta s(\Lambda, s)} \subseteq V$. Put $F = \{x\}^{\delta s(\Lambda, s)}$. Then, we have $F \in \delta s(\Lambda, s)C(X, \tau)$, $F \subseteq V$ and $A \cap F \neq \emptyset$.

(2) \Rightarrow (3): Let $V \in \delta s(\Lambda, s)O(X, \tau)$. Then, $V \supseteq \cup \{F \in \delta s(\Lambda, s)C(X, \tau) \mid F \subseteq V\}$. Let x be any point of V. There exists $F \in \delta s(\Lambda, s)C(X, \tau)$ such that $x \in F$ and $F \subseteq V$. Thus,

$$x \in F \subseteq \cup \{F \in \delta s(\Lambda, s)C(X, \tau) \mid F \subseteq V\}$$

and hence $V = \cup \{F \in \delta s(\Lambda, s)C(X, \tau) \mid F \subseteq V\}.$

 $(3) \Rightarrow (4)$: The proof is obvious.

(4) \Rightarrow (5): Let x be any point of X and $y \notin \delta s(\Lambda, s) Ker(\{x\})$. There exists $U \in \delta s(\Lambda, s)O(X, \tau)$ such that $x \in U$ and $y \notin U$; hence $\{y\}^{\delta s(\Lambda, s)} \cap U = \emptyset$.

By (4), $(\cap \{V \in \delta s(\Lambda, s)O(X, \tau) \mid \{y\}^{\delta s(\Lambda, s)} \subseteq V\}) \cap U = \emptyset$ and there exists $W \in \delta s(\Lambda, s)O(X, \tau)$ such that $x \notin W$ and $\{y\}^{\delta s(\Lambda, s)} \subseteq W$. Therefore, $W \cap \{x\}^{\delta s(\Lambda, s)} = \emptyset$ and $y \notin \{x\}^{\delta s(\Lambda, s)}$. Thus, $\{x\}^{\delta s(\Lambda, s)} \subseteq \delta s(\Lambda, s) \mathcal{K}er(\{x\})$.

 $(5) \Rightarrow (1)$: Let $U \in \delta s(\Lambda, s)O(X, \tau)$ and $x \in U$. Let $y \in \delta s(\Lambda, s)Ker(\{x\})$. Then, $x \in \{y\}^{\delta s(\Lambda, s)}$ and $y \in U$. Thus, $\delta s(\Lambda, s)Ker(\{x\}) \subseteq U$ and hence $\{x\}^{\delta s(\Lambda, s)} \subseteq U$. This shows that (X, τ) is $\delta s(\Lambda, s)-R_0$.

Corollary 3.2. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\delta s(\Lambda, s)$ - R_0 ;
- (2) $\{x\}^{\delta s(\Lambda,s)} = \delta s(\Lambda,s) \operatorname{Ker}(\{x\})$ for each $x \in X$.

Proof. (1) \Rightarrow (2): Suppose that (X, τ) is $\delta s(\Lambda, s) - R_0$. By Theorem 3.5, $\{x\}^{\delta s(\Lambda, s)} \subseteq \delta s(\Lambda, s) Ker(\{x\})$ for each $x \in X$. Let $y \in \delta s(\Lambda, s) Ker(\{x\})$. Then, $x \in \{y\}^{\delta s(\Lambda, s)}$ and by Theorem 3.4,

$$\{x\}^{\delta s(\Lambda,s)} = \{y\}^{\delta s(\Lambda,s)}.$$

Thus, $y \in \{x\}^{\delta s(\Lambda,s)}$ and hence $\delta s(\Lambda,s) Ker(\{x\}) \subseteq \{x\}^{\delta s(\Lambda,s)}$. This shows that $\{x\}^{\delta s(\Lambda,s)} = \delta s(\Lambda,s) Ker(\{x\})$.

 $(2) \Rightarrow (1)$: This is obvious by Theorem 3.5.

Theorem 3.6. For a topological space (X, τ) , the following properties are equivalent:

(1) (X, τ) is $\delta s(\Lambda, s)$ - R_0 .

(2) For each $F \in \delta s(\Lambda, s)C(X, \tau)$, $F = \delta s(\Lambda, s)Ker(F)$.

- (3) For each $F \in \delta s(\Lambda, s)C(X, \tau)$ and $x \in F$, $\delta s(\Lambda, s)Ker(\{x\}) \subseteq F$.
- (4) For each $x \in X$, $\delta s(\Lambda, s) Ker(\{x\}) \subseteq \{x\}^{\delta s(\Lambda, s)}$.

Proof. (1) \Rightarrow (2): This obviously follows from Theorem 3.5.

(2) \Rightarrow (3): Let $F \in \delta s(\Lambda, s)C(X, \tau)$ and $x \in F$. By (2), $\delta s(\Lambda, s)Ker(\{x\}) \subseteq \delta s(\Lambda, s)Ker(F) = F$. (3) \Rightarrow (4): Let $x \in X$. Since $x \in \{x\}^{\delta s(\Lambda, s)}$ and $\{x\}^{\delta s(\Lambda, s)}$ is $\delta s(\Lambda, s)$ -closed, by (3),

$$\delta s(\Lambda, s) Ker(\{x\}) \subseteq \{x\}^{\delta s(\Lambda, s)}$$

(4) \Rightarrow (1): We show the implication by using Theorem 3.3. Let $x \in \{y\}^{\delta s(\Lambda,s)}$. By Lemma 3.3,

$$y \in \delta s(\Lambda, s) Ker(\{x\}).$$

Since $x \in \{x\}^{\delta s(\Lambda,s)}$ and $\{x\}^{\delta s(\Lambda,s)}$ is $\delta s(\Lambda,s)$ -closed, by (4), $y \in \delta s(\Lambda,s)Ker(\{x\}) \subseteq \{x\}^{\delta s(\Lambda,s)}$. Thus, $x \in \{y\}^{\delta s(\Lambda,s)}$ implies $y \in \{x\}^{\delta s(\Lambda,s)}$. The converse is obvious and (X, τ) is $\delta s(\Lambda, s)$ - R_0 . \Box

Definition 3.3. [20] Let (X, τ) be a topological space and $x \in X$. A subset $\langle x \rangle_{\delta s(\Lambda,s)}$ is defined as follows: $\langle x \rangle_{\delta s(\Lambda,s)} = \delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \cap \{x\}^{\delta s(\Lambda,s)}$.

Theorem 3.7. A topological space (X, τ) is $\delta s(\Lambda, s) - R_0$ if and only if $\langle x \rangle_{\delta s(\Lambda, s)} = \{x\}^{\delta s(\Lambda, s)}$ for each $x \in X$.

Proof. Let $x \in X$. By Corollary 3.2, $\delta s(\Lambda, s) Ker(\{x\}) = \{x\}^{\delta s(\Lambda, s)}$. Thus,

$$\langle x \rangle_{\delta s(\Lambda,s)} = \delta s(\Lambda,s) \operatorname{Ker}(\{x\}) \cap \{x\}^{\delta s(\Lambda,s)} = \{x\}^{\delta s(\Lambda,s)}.$$

Conversely, let $x \in X$. By the hypothesis,

$$\{x\}^{\delta s(\Lambda,s)} = \langle x \rangle_{\delta s(\Lambda,s)} = \delta s(\Lambda,s) \operatorname{Ker}(\{x\}) \cap \{x\}^{\delta s(\Lambda,s)} \subseteq \delta s(\Lambda,s) \operatorname{Ker}(\{x\}).$$

It follows from Theorem 3.5 that (X, τ) is $\delta s(\Lambda, s)$ - R_0 .

4. On
$$\delta s(\Lambda, s)$$
- R_1 spaces

We begin this section by introducing the notion of $\delta s(\Lambda, s)$ - R_1 spaces.

Definition 4.1. A topological space (X, τ) is said to be $\delta s(\Lambda, s)$ - R_1 if for each x and y in X such that $\{x\}^{\delta s(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}$, there exist disjoint $\delta s(\Lambda, s)$ -open sets U and V such that $\{x\}^{\delta s(\Lambda,s)} \subseteq U$ and $\{y\}^{\delta s(\Lambda,s)} \subseteq V$.

Theorem 4.1. A topological space (X, τ) is $\delta s(\Lambda, s)-R_1$ if and only if for each x and y in X such that $\{x\}^{\delta s(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}$, there exist $\delta s(\Lambda, s)$ -closed sets F and K such that $x \in F$, $y \notin F$, $y \in K$, $x \notin K$ and $X = F \cup K$.

Proof. Let x and y be any points in X with $\{x\}^{\delta s(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}$. Then, there exist disjoint

 $U, V \in \delta s(\Lambda, s)O(X, \tau)$

such that $\{x\}^{\delta s(\Lambda,s)} \subseteq U$ and $\{y\}^{\delta s(\Lambda,s)} \subseteq V$. Now, put F = X - V and K = X - U. Then, F and K are $\delta s(\Lambda, s)$ -closed sets of X such that $x \in F$, $y \notin F$, $y \in K$, $x \notin K$ and $X = F \cup K$.

Conversely, let x and y be any points in X such that $\{x\}^{\delta s(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}$. Then,

$$\{x\}^{\delta s(\Lambda,s)} \cap \{y\}^{\delta s(\Lambda,s)} = \emptyset.$$

In fact, if $z \in \{x\}^{\delta s(\Lambda,s)} \cap \{y\}^{\delta s(\Lambda,s)}$, then $\{z\}^{\delta s(\Lambda,s)} \neq \{x\}^{\delta s(\Lambda,s)}$ or $\{z\}^{\delta s(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}$. In case $\{z\}^{\delta s(\Lambda,s)} \neq \{x\}^{\delta s(\Lambda,s)}$, by the hypothesis, there exists a $\delta s(\Lambda, s)$ -closed set F such that $x \in F$ and $z \notin F$. Then, $z \in \{x\}^{\delta s(\Lambda,s)} \subseteq F$. This contradicts that $z \notin F$. In case $\{z\}^{\delta s(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}$, similarly, this leads to the contradiction. Thus, $\{x\}^{\delta s(\Lambda,s)} \cap \{y\}^{\delta s(\Lambda,s)} = \emptyset$, by Corollary 3.1, (X, τ) is $\delta s(\Lambda, s)$ - R_0 . By the hypothesis, there exist $\delta s(\Lambda, s)$ -closed sets F and K such that $x \in F$, $y \notin F$, $y \in K$, $x \notin K$ and $X = F \cup K$. Put U = X - K and V = X - F. Then, $x \in U \in \delta s(\Lambda, s)O(X, \tau)$ and $y \in V \in \delta s(\Lambda, s)O(X, \tau)$. Since (X, τ) is $\delta s(\Lambda, s)$ - R_0 , we have $\{x\}^{\delta s(\Lambda,s)} \subseteq U$, $\{y\}^{\delta s(\Lambda,s)} \subseteq V$ and also $U \cap V = \emptyset$. This shows that (X, τ) is $\delta s(\Lambda, s)$ - R_1 .

Definition 4.2. Let A be a subset of a topological space (X, τ) . The $\theta \delta s(\Lambda, s)$ -closure of A, $A^{\theta \delta s(\Lambda, s)}$, is defined as follows:

 $A^{\theta\delta s(\Lambda,s)} = \{ x \in X \mid A \cap U^{\delta s(\Lambda,s)} \neq \emptyset \text{ for each } U \in \delta s(\Lambda,s)O(X,\tau) \text{ containing } x \}.$

Lemma 4.1. If a topological space (X, τ) is $\delta s(\Lambda, s)$ - R_1 , then (X, τ) is $\delta s(\Lambda, s)$ - R_0 .

Proof. Let $U \in \delta s(\Lambda, s)O(X, \tau)$ and $x \in U$. If $y \notin U$, then $U \cap \{y\}^{\delta s(\Lambda, s)} = \emptyset$ and $x \notin \{y\}^{\delta s(\Lambda, s)}$. This implies that $\{x\}^{\delta s(\Lambda, s)} \neq \{y\}^{\delta s(\Lambda, s)}$. Since (X, τ) is $\delta s(\Lambda, s) - R_1$, there exists $V \in \delta s(\Lambda, s)O(X, \tau)$ such that $\{y\}^{\delta s(\Lambda, s)} \subseteq V$ and $x \notin V$. Thus, $V \cap \{x\}^{\delta s(\Lambda, s)} = \emptyset$ and hence $y \notin \{x\}^{\delta s(\Lambda, s)}$. Therefore, $\{x\}^{\delta s(\Lambda, s)} \subseteq U$. This shows that (X, τ) is $\delta s(\Lambda, s) - R_0$.

Theorem 4.2. A topological space (X, τ) is $\delta s(\Lambda, s)$ - R_1 if and only if $\langle x \rangle_{\delta s(\Lambda, s)} = \{x\}^{\theta \delta s(\Lambda, s)}$ for each $x \in X$.

Proof. Let (X, τ) be $\delta s(\Lambda, s)$ - R_1 . By Lemma 4.1, (X, τ) is $\delta s(\Lambda, s)$ - R_0 and by Theorem 3.7,

$$\langle x \rangle_{\delta s(\Lambda,s)} = \{x\}^{\delta s(\Lambda,s)} \subseteq \{x\}^{\theta \delta s(\Lambda,s)}$$

for each $x \in X$. Thus, $\langle x \rangle_{\delta s(\Lambda,s)} \subseteq \{x\}^{\theta \delta s(\Lambda,s)}$ for each $x \in X$. In order to show the opposite inclusion, suppose that $y \notin \langle x \rangle_{\delta s(\Lambda,s)}$. Then, $\langle x \rangle_{\delta s(\Lambda,s)} \neq \langle y \rangle_{\delta s(\Lambda,s)}$. Since (X, τ) is $\delta s(\Lambda, s)$ - R_0 , by Theorem 3.7, $\{x\}^{\delta s(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}$. Since (X, τ) is $\delta s(\Lambda, s)$ - R_1 , there exist disjoint $\delta s(\Lambda, s)$ -open sets U

and V of X such that $\{x\}^{\delta s(\Lambda,s)} \subseteq U$ and $\{y\}^{\delta s(\Lambda,s)} \subseteq V$. Since $\{x\} \cap V^{\delta s(\Lambda,s)} \subseteq U \cap V^{\delta s(\Lambda,s)} = \emptyset$, $y \notin \{x\}^{\theta \delta s(\Lambda,s)}$. Thus, $\{x\}^{\theta \delta s(\Lambda,s)} \subseteq \langle x \rangle_{\delta s(\Lambda,s)}$ and hence $\{x\}^{\theta \delta s(\Lambda,s)} = \langle x \rangle_{\delta s(\Lambda,s)}$.

Conversely, suppose that $\{x\}^{\theta\delta s(\Lambda,s)} = \langle x \rangle_{\delta s(\Lambda,s)}$ for each $x \in X$. Then,

$$\langle x \rangle_{\delta s(\Lambda,s)} = \{x\}^{\theta \delta s(\Lambda,s)} \supseteq \{x\}^{\delta s(\Lambda,s)} \supseteq \langle x \rangle_{\delta s(\Lambda,s)}$$

and $\langle x \rangle_{\delta s(\Lambda,s)} = \{x\}^{\delta s(\Lambda,s)}$ for each $x \in X$. By Theorem 3.7, (X, τ) is $\delta s(\Lambda, s) - R_0$. Suppose that

 $\{x\}^{\delta s(\Lambda,s)} \neq \{y\}^{\delta s(\Lambda,s)}.$

Thus, by Corollary 3.1, $\{x\}^{\delta s(\Lambda,s)} \cap \{y\}^{\delta s(\Lambda,s)} = \emptyset$. By Theorem 3.7, $\langle x \rangle_{\delta s(\Lambda,s)} \cap \langle y \rangle_{\delta s(\Lambda,s)} = \emptyset$ and hence $\{x\}^{\theta \delta s(\Lambda,s)} \cap \{y\}^{\theta \delta s(\Lambda,s)} = \emptyset$. Since $y \notin \{x\}^{\theta \delta s(\Lambda,s)}$, there exists a $\delta s(\Lambda, s)$ -open set U of Xsuch that $y \in U \subseteq U^{\delta s(\Lambda,s)} \subseteq X - \{x\}$. Let $V = X - U^{\delta s(\Lambda,s)}$, then $x \in V \in \delta s(\Lambda, s)O(X, \tau)$. Since (X, τ) is $\delta s(\Lambda, s)$ - R_0 , $\{y\}^{\delta s(\Lambda,s)} \subseteq U$, $\{x\}^{\delta s(\Lambda,s)} \subseteq V$ and $U \cap V = \emptyset$. This shows that (X, τ) is $\delta s(\Lambda, s)$ - R_1 .

Corollary 4.1. A topological space (X, τ) is $\delta s(\Lambda, s)$ - R_1 if and only if $\{x\}^{\delta s(\Lambda, s)} = \{x\}^{\theta \delta s(\Lambda, s)}$ for each $x \in X$.

Proof. Let (X, τ) be a $\delta s(\Lambda, s)$ - R_1 space. By Theorem 4.2, we have

$$\{x\}^{\delta s(\Lambda,s)} \supseteq \langle x \rangle_{\delta s(\Lambda,s)} = \{x\}^{\theta \delta s(\Lambda,s)} \supseteq \{x\}^{\delta s(\Lambda,s)}$$

and hence $\{x\}^{\delta s(\Lambda,s)} = \{x\}^{\theta \delta s(\Lambda,s)}$ for each $x \in X$.

Conversely, suppose that $\{x\}^{\delta s(\Lambda,s)} = \{x\}^{\theta \delta s(\Lambda,s)}$ for each $x \in X$. First, we show that (X, τ) is $\delta s(\Lambda, s)$ - R_0 . Let $U \in \delta s(\Lambda, s)O(X, \tau)$ and $x \in U$. Let $y \notin U$. Then, $U \cap \{y\}^{\delta s(\Lambda,s)} = U \cap \{y\}^{\theta \delta s(\Lambda,s)} = \emptyset$. Thus, $x \notin \{y\}^{\theta \delta s(\Lambda,s)}$. There exists $V \in \delta s(\Lambda, s)O(X, \tau)$ such that $x \in V$ and $y \notin V^{\delta s(\Lambda,s)}$. Since

$$\{x\}^{\delta s(\Lambda,s)} \subset V^{\delta s(\Lambda,s)}$$

 $y \notin \{x\}^{\delta s(\Lambda,s)}$. This shows that $\{x\}^{\delta s(\Lambda,s)} \subseteq U$ and hence (X, τ) is $\delta s(\Lambda, s)$ - R_0 . By Theorem 3.7,

$$\langle x \rangle_{\delta s(\Lambda,s)} = \{x\}^{\delta s(\Lambda,s)} = \{x\}^{\theta \delta s(\Lambda,s)}$$

for each $x \in X$. Thus, by Theorem 4.2, (X, τ) is $\delta s(\Lambda, s)$ - R_1 .

Definition 4.3. A topological space (X, τ) is said to be:

- (a) $\delta s(\Lambda, s)-T_0$ if for any pair of distinct points in X, there exists a $\delta s(\Lambda, s)$ -open set containing one of the points but not the other;
- (b) $\delta s(\Lambda, s)-T_1$ if for any pair of distinct points x and y in X, there exist $\delta s(\Lambda, s)$ -open sets U and V of X such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$;
- (c) $\delta s(\Lambda, s)-T_2$ if for any pair of distinct points x and y in X, there exist $\delta s(\Lambda, s)$ -open sets U and V of X such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Lemma 4.2. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\delta s(\Lambda, s)$ - T_1 .
- (2) For each $x \in X$, $\{x\}$ is $\delta s(\Lambda, s)$ -closed.
- (3) (X, τ) is $\delta s(\Lambda, s)$ - R_0 and $\delta s(\Lambda, s)$ - T_0 .

Proof. (1) \Rightarrow (2): Let x be any point of X. Let y be any point of X such that $y \neq x$. There exists a $\delta s(\Lambda, s)$ -open sets U of X such that $y \in U$ and $x \notin U$. Thus, $y \notin \{x\}^{\delta s(\Lambda, s)}$ and hence $\{x\}^{\delta s(\Lambda, s)} = \{x\}$. This shows that $\{x\}$ is $\delta s(\Lambda, s)$ -closed.

 $(2) \Rightarrow (3)$: The proof is obvious.

(3) \Rightarrow (1): Let x and y be any distinct points of X. Since (X, τ) is $\delta s(\Lambda, s)-T_0$, there exists a $\delta s(\Lambda, s)$ -open sets U of X such that either $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$. In case $x \in U$ and $y \notin U$, we have $x \in \{x\}^{\delta s(\Lambda, s)} \subseteq U$ and hence $y \in X - U \subseteq X - \{x\}^{\delta s(\Lambda, s)}$. Since the proof of the other is quite similar, (X, τ) is $\delta s(\Lambda, s)-T_1$.

Theorem 4.3. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\delta s(\Lambda, s)$ - T_2 .
- (2) (X, τ) is $\delta s(\Lambda, s)$ - R_1 and $\delta s(\Lambda, s)$ - T_1 .
- (3) (X, τ) is $\delta s(\Lambda, s)$ - R_1 and $\delta s(\Lambda, s)$ - T_0 .

Proof. (1) \Rightarrow (2): Since (X, τ) is $\delta s(\Lambda, s) - T_2$, (X, τ) is $\delta s(\Lambda, s) - T_1$. Let x and y be any points of X such that $\{x\}^{\delta s(\Lambda, s)} \neq \{y\}^{\delta s(\Lambda, s)}$. Thus, by Lemma 4.2, $\{x\} = \{x\}^{\delta s(\Lambda, s)} = \{y\}^{\delta s(\Lambda, s)} = \{y\}$ and there exist disjoint $\delta s(\Lambda, s)$ -open sets U and V of X such that $\{x\}^{\delta s(\Lambda, s)} = \{x\} \subseteq U$ and $\{y\}^{\delta s(\Lambda, s)} = \{y\} \subseteq V$. This shows that (X, τ) is $\delta s(\Lambda, s) - R_1$.

 $(2) \Rightarrow (3)$: The proof is obvious.

(3) \Rightarrow (1): Let (X, τ) be $\delta s(\Lambda, s)$ - R_1 and $\delta s(\Lambda, s)$ - T_0 . By Lemma 4.1 and 4.2, (X, τ) is $\delta s(\Lambda, s)$ - T_1 and every singleton is $\delta s(\Lambda, s)$ -closed. Let x and y be any distinct points of X. Then,

$${x}^{\delta s(\Lambda,s)} = {x} \neq {y} = {y}^{\delta s(\Lambda,s)}$$

and there exist disjoint $\delta s(\Lambda, s)$ -open sets U and V of X such that $x \in U$ and $y \in V$. This shows that (X, τ) is $\delta s(\Lambda, s)$ - T_2 .

Acknowledgements: This research project was financially supported by Mahasarakham University. **Conflicts of Interest:** The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- C. Boonpok, C. Viriyapong, On Some Forms of Closed Sets and Related Topics, Eur. J. Pure Appl. Math. 16 (2023), 336-362. https://doi.org/10.29020/nybg.ejpam.v16i1.4582.
- [2] F. Cammaroto, T. Noiri, On Λ_m-Sets and Related Topological Spaces, Acta Math Hung. 109 (2005), 261-279. https://doi.org/10.1007/s10474-005-0245-4.

- [3] M. Caldas, M. Ganster, D.N. Georgiou, S. Jafari, S. P. Moshokoa, δ-Semiopen Sets in Topology, Topol. Proc. 29 (2005), 369-383.
- [4] M. Caldas, S. Jafari, T. Noiri, Characterizations of Λ_{θ} - R_0 and Λ_{θ} - R_1 Topological Spaces, Acta Math. Hung. 103 (2004), 85–95. https://doi.org/10.1023/B:AMHU.0000028238.17482.54.
- [5] M. Caldas, D.N. Georgiou, S. Jafari, T. Noiri, More on δ -Semiopen Sets, Note Mat. 22 (2003), 113–126.
- [6] M.C. Cueva, J. Dontchev, G.Λ_s-Sets and G.V_s-Sets, arXiv:math/9810080 [math.GN], (1998). http://arxiv.org/ abs/math/9810080.
- [7] A.S. Davis, Indexed Systems of Neighborhoods for General Topological Spaces, Amer. Math. Mon. 68 (1961), 886–894. https://doi.org/10.1080/00029890.1961.11989785.
- [8] C. Dorsett, R_0 and R_1 Topological Spaces, Mat. Vesnik, 2 (1978), 117–122.
- [9] C. Dorsett, Semi- T_2 , Semi- R_1 and Semi- R_0 Topological Spaces, Ann. Soc. Sci. Bruxelles, 92 (1978), 143–150.
- [10] K.K. Dube, A Note on R_1 Topological Spaces, Period Math. Hung. 13 (1982), 267–271.
- [11] K.K. Dube, A Note on R₀ Topological Spaces, Mat. Vesnik, 11 (1974), 203–208.
- [12] N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. Math. Mon. 70 (1963), 36–41. https://doi.org/10.1080/00029890.1963.11990039.
- [13] S. Lugojan, Generalized Topology, Stud. Cerc. Mat. 34 (1982), 348-360.
- [14] S.N. Maheshwari, R. Prasad, On (*R*₀)_s-Spaces, Portug. Math. 34 (1975), 213–217.
- [15] M.G. Murdeshwar, S.A. Naimpally, R1-topological spaces, Canad. Math. Bull. 9 (1966), 521–523.
- [16] S.A. Naimpally, On R₀ Topological Spaces, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 10 (1967), 53–54.
- [17] T. Noiri, Unified Characterizations for Modifications of R₀ and R₁ Topological Spaces, Rend. Circ. Mat. Palermo (2), 60 (2006), 29–42.
- [18] T. Noiri, Remarks on δ -Semi-Open Sets and δ -Preopen Sets, Demonstr. Math. 36 (2003), 1007–1020.
- [19] J.H. Park, B.Y. Lee, M.J. Son, On δ-Semiopen Sets in Topological Spaces, J. Indian Acad. Math. 19 (1997), 59–67.
- [20] P. Pue-on, C. Boonpok, On $\delta s(\Lambda, s)$ -Open Sets in Topological Spaces, Int. J. Math. Comput. Sci. 18 (2023), 749–753.
- [21] N.A. Shanin, On Separation in Topological Spaces, Dokl. Akad. Nauk. SSSR, 38 (1943), 110–113.
- [22] N. Srisarakham, C. Boonpok, On Characterizations of $\delta p(\Lambda, s)$ - \mathscr{D}_1 Spaces, Int. J. Math. Comput. Sci. 18 (2023), 743–747.
- [23] N.V. Veličko, H-Closed Topological Spaces, Amer. Math. Soc. Transl. 78 (1968), 102–118.