International Journal of Analysis and Applications International Journal of matysis and Applications

$\delta s(\Lambda, s)-R_{0}$ Spaces and $\delta s(\Lambda, s)-R_{1}$ Spaces

Chawalit Boonpok, Jeeranunt Khampakdee*

Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
*Corresponding author: jeeranunt.k@msu.ac.th

Abstract. Our main purpose is to introduce the notions of $\delta s(\Lambda, s)-R_{0}$ spaces and $\delta s(\Lambda, s)-R_{1}$ spaces. Moreover, several characterizations of $\delta s(\Lambda, s)-R_{0}$ spaces and $\delta s(\Lambda, s)-R_{1}$ spaces are investigated.

1. Introduction

The concept of R_{0} topological spaces was first introduced by Shanin [21]. Davis [7] introduced the concept of a separation axiom called R_{1}. These concepts are further investigated by Naimpally [16], Dube [11] and Dorsett [8]. Murdeshwar and Naimpally [15] and Dube [10] studied some of the fundamental properties of the class of R_{1} topological spaces. As natural generalizations of the separations axioms R_{0} and R_{1}, the concepts of semi- R_{0} and semi- R_{1} spaces were introduced and studied by Maheshwari and Prasad [14] and Dorsett [9]. Caldas et al. [4] introduced and investigated two new weak separation axioms called $\Lambda_{\theta}-R_{0}$ and $\Lambda_{\theta^{-}} R_{1}$ by using the notions of (Λ, θ)-open sets and the (Λ, θ)-closure operator. Cammaroto and Noiri [2] defined a weak separation axiom m - R_{0} in m-spaces which are equivalent to generalized topological spaces due to Lugojan [13]. Noiri [17] introduced the notion of $m-R_{1}$ spaces and investigated several characterizations of $m-R_{0}$ spaces and $m-R_{1}$ spaces. Moreover, Levine [12] introduced the concept of semi-open sets which is weaker than the concept of open sets in topological spaces. Veličko [23] introduced δ-open sets, which are stronger than open sets. Park et al. [19] have offered new notion called δ-semiopen sets which are stronger than semi-open sets but weaker than δ-open sets and investigated the relationships between several types of these open sets. Caldas et al. [5] investigated some weak separation axioms by utilizing δ-semiopen

[^0]2020 Mathematics Subject Classification. 54A05, 54D10.
Key words and phrases. $\delta s(\Lambda, s)$-open set; $\delta s(\Lambda, s)-R_{0}$ space; $\delta s(\Lambda, s)-R_{1}$ space.
sets and the δ-semiclosure operator. Caldas et al. [3] investigated the notion of δ - Λ_{s}-semiclosed sets which is defined as the intersection of a δ - Λ_{s}-set and a δ-semiclosed set. Noiri [18] showed that a subset A of a topological space (X, τ) is δ-semiopen in (X, τ) if and only if it is semi-open in $\left(X, \tau_{s}\right)$. In [1], the present authors introduced and investigated the concept of (Λ, s)-closed sets by utilizing the notions of Λ_{s}-sets and semi-closed sets. Pue-on and Boonpok [20] introduced and studied the notions of $\delta s(\Lambda, s)$-open sets and $\delta s(\Lambda, s)$-closed sets. In this paper, we introduce the notions of $\delta s(\Lambda, s)$ R_{0} spaces and $\delta s(\Lambda, s)-R_{1}$ spaces. Furthermore, several characterizations of $\delta s(\Lambda, s)-R_{0}$ spaces and $\delta s(\Lambda, s)-R_{1}$ spaces are discussed.

2. Preliminaries

Let A be a subset of a topological space (X, τ). The closure of A and the interior of A are denoted by $\mathrm{Cl}(A)$ and $\operatorname{lnt}(A)$, respectively. A subset A of a topological space (X, τ) is called semi-open [12] if $A \subseteq \mathrm{Cl}(\operatorname{lnt}(A))$. The family of all semi-open sets in a topological space (X, τ) is denoted by $S O(X, \tau)$. A subset $A^{\wedge_{s}}[6]$ is defined as follows: $A^{\wedge_{s}}=\cap\{U \mid U \supseteq A, U \in S O(X, \tau)\}$. A subset A of a topological space (X, τ) is called a Λ_{s}-set [6] if $A=A^{\Lambda_{s}}$. A subset A of a topological space (X, τ) is called (Λ, s)-closed [1] if $A=T \cap C$, where T is a Λ_{s}-set and C is a semi-closed set. The complement of a (Λ, s)-closed set is called (Λ, s)-open. The family of all (Λ, s)-closed (resp. (Λ, s)-open) sets in a topological space (X, τ) is denoted by $\Lambda_{s} C(X, \tau)$ (resp. $\Lambda_{s} O(X, \tau)$). Let A be a subset of a topological space (X, τ). A point $x \in X$ is called a (Λ, s)-cluster point [1] of A if $A \cap U \neq \emptyset$ for every (Λ, s)-open set U of X containing x. The set of all (Λ, s)-cluster points of A is called the (Λ, s)-closure [1] of A and is denoted by $A^{(\Lambda, s)}$. The union of all (Λ, s)-open sets of X contained in A is called the (Λ, s)-interior [1] of A and is denoted by $A_{(\Lambda, s)}$. A point x of X is called a $\delta(\Lambda, s)$-cluster point [22] of A if $A \cap\left[V^{(\Lambda, s)}\right]_{(\Lambda, s)} \neq \emptyset$ for every (Λ, s)-open set V of X containing x. The set of all $\delta(\Lambda, s)$-cluster points of A is called the $\delta(\Lambda, s)$-closure [22] of A and is denoted by $A^{\delta(\Lambda, s)}$. If $A=A^{\delta(\Lambda, s)}$, then A is said to be $\delta(\Lambda, s)$-closed [22]. The complement of a $\delta(\Lambda, s)$-closed set is said to be $\delta(\Lambda, s)$-open. The union of all $\delta(\Lambda, s)$-open sets of X contained in A is called the $\delta(\Lambda, s)$-interior [22] of A and is denoted by $A_{\delta(\Lambda, s)}$. A subset A of a topological space (X, τ) is said to be $\delta s(\Lambda, s)$-open [20] if $A \subseteq\left[A_{(\Lambda, s)}\right]^{\delta(\Lambda, s)}$. The complement of a $\delta s(\Lambda, s)$-open set is said to be $\delta s(\Lambda, s)$-closed. The family of all $\delta s(\Lambda, s)$-open (resp. $\delta s(\Lambda, s)$-closed) sets in a topological space (X, τ) is denoted by $\delta s(\Lambda, s) O(X, \tau)$ (resp. $\delta s(\Lambda, s) C(X, \tau)$). A subset N of a topological space (X, τ) is called a $\delta s(\Lambda, s)$-neighborhood [20] of a point $x \in X$ if there exists a $\delta s(\Lambda, s)$-open set V such that $x \in V \subseteq N$. Let A be a subset of a topological space (X, τ). A point x of X is called a $\delta s(\Lambda, s)$-cluster point [20] of A if $A \cap U \neq \emptyset$ for every $\delta s(\Lambda, s)$-open set U of X containing x. The set of all $\delta s(\Lambda, s)$-cluster points of A is called the $\delta s(\Lambda, s)$-closure [20] of A and is denoted by $A^{\delta s(\Lambda, s)}$.

Lemma 2.1. [20] For the $\delta s(\Lambda, s)$-closure of subsets A, B in a topological space (X, τ), the following properties hold:
(1) A is $\delta s(\Lambda, s)$-closed in (X, τ) if and only if $A=A^{\delta s(\Lambda, s)}$.
(2) If $A \subseteq B$, then $A^{\delta s(\Lambda, s)} \subseteq B^{\delta s(\Lambda, s)}$.
(3) $A^{\delta s(\Lambda, s)}$ is $\delta s(\Lambda, s)$-closed, that is, $A^{\delta s(\Lambda, s)}=\left[A^{\delta s(\Lambda, s)}\right]^{\delta s(\Lambda, s)}$.
3. On $\delta s(\Lambda, s)-R_{0}$ spaces

In this section, we introduce the concept of $\delta s(\Lambda, s)-R_{0}$ spaces. Moreover, some characterizations of $\delta s(\Lambda, s)-R_{0}$ spaces are discussed.

Definition 3.1. A topological space (X, τ) is called $\delta s(\Lambda, s)-R_{0}$ if for each $\delta s(\Lambda, s)$-open set U and each $x \in U,\{x\}^{\delta s(\wedge, s)} \subseteq U$.

Theorem 3.1. For a topological space (X, τ), the following properties are equivalent:
(1) (X, τ) is $\delta s(\Lambda, s)-R_{0}$.
(2) For each $\delta s(\Lambda, s)$-closed set F and each $x \in X-F$, there exists $U \in \delta s(\Lambda, s) O(X, \tau)$ such that $F \subseteq U$ and $x \notin U$.
(3) For each $\delta s(\Lambda, s)$-closed set F and each $x \in X-F, F \cap\{x\}^{\delta s(\Lambda, s)}=\emptyset$.
(4) For any distinct points x, y in $X,\{x\}^{\delta s(\Lambda, s)}=\{y\}^{\delta s(\Lambda, s)}$ or $\{x\}^{\delta s(\Lambda, s)} \cap\{y\}^{\delta s(\Lambda, s)}=\emptyset$.

Proof. $(1) \Rightarrow(2)$: Let F be a $\delta s(\Lambda, s)$-closed set and $x \in X-F$. Since (X, τ) is $\delta s(\Lambda, s)$ - R_{0}, we have $\{x\}^{\delta s(\Lambda, s)} \subseteq X-F$. Put $U=X-\{x\}^{\delta s(\Lambda, s)}$. Thus, by Lemma 2.1, $U \in \delta s(\Lambda, s) O(X, \tau), F \subseteq U$ and $x \notin U$.
$(2) \Rightarrow(3):$ Let F be a $\delta s(\Lambda, s)$-closed set and $x \in X-F$. By (2), there exists $U \in \delta s(\Lambda, s) O(X, \tau)$ such that $F \subseteq U$ and $x \notin U$. Since $U \in \delta s(\Lambda, s) O(X, \tau), U \cap\{x\}^{\delta s(\Lambda, s)}=\emptyset$ and hence $F \cap\{x\}^{\delta s(\Lambda, s)}=$ \emptyset.
(3) \Rightarrow (4): Let x and y be distinct points of X. Suppose that $\{x\}^{\delta s(\Lambda, s)} \cap\{y\}^{\delta s(\Lambda, s)} \neq \emptyset$. By (3), $x \in\{y\}^{\delta s(\Lambda, s)}$ and $y \in\{x\}^{\delta s(\Lambda, s)}$. By Lemma 2.1, $\{x\}^{\delta s(\Lambda, s)} \subseteq\{y\}^{\delta s(\Lambda, s)} \subseteq\{x\}^{\delta s(\Lambda, s)}$ and hence

$$
\{x\}^{\delta s(\Lambda, s)}=\{y\}^{\delta s(\Lambda, s)}
$$

(4) $\Rightarrow(1)$: Let $V \in \delta s(\Lambda, s) O(X, \tau)$ and $x \in V$. For each $y \notin V, V \cap\{y\}^{\delta s(\Lambda, s)}=\emptyset$ and hence $x \notin\{y\}^{\delta s(\Lambda, s)}$. Thus, $\{x\}^{\delta s(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}$. By (4), for each $y \notin V,\{x\}^{\delta s(\Lambda, s)} \cap\{y\}^{\delta s(\Lambda, s)}=\emptyset$. Since $X-V$ is $\delta s(\Lambda, s)$-closed, $y \in\{y\}^{\delta s(\Lambda, s)} \subseteq X-V$ and $\cup_{y \in X-V}\{y\}^{\delta s(\wedge, s)}=X-V$. Thus,

$$
\begin{aligned}
&\{x\}^{\delta s(\Lambda, s)} \cap(X-V)=\{x\}^{\delta s(\Lambda, s)} \cap\left[\cup_{\left.y \in X-V\{y\}^{\delta s(\Lambda, s)}\right]}\right. \\
&=\cup_{y \in X-V\left[\{x\}^{\delta s(\Lambda, s)} \cap\{y\}^{\delta s(\Lambda, s)}\right]} \\
&=\emptyset
\end{aligned}
$$

and hence $\{x\}^{\delta s(\Lambda, s)} \subseteq V$. This shows that (X, τ) is $\delta s(\Lambda, s)-R_{0}$.
Corollary 3.1. A topological space (X, τ) is $\delta s(\Lambda, s)-R_{0}$ if and only if for any points x and y in X, $\{x\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}$ implies $\{x\}^{\delta p(\Lambda, s)} \cap\{y\}^{\delta s(\Lambda, s)}=\emptyset$.

Proof. This is obvious by Theorem 3.1.
Conversely, let $U \in \delta s(\Lambda, s) O(X, \tau)$ and $x \in U$. If $y \notin U$, then $U \cap\{y\}^{\delta s(\Lambda, s)}=\emptyset$. Thus, $x \notin\{y\}^{\delta s(\Lambda, s)}$ and $\{x\}^{\delta s(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}$. By the hypothesis, $\{x\}^{\delta s(\Lambda, s)} \cap\{y\}^{\delta s(\Lambda, s)}=\emptyset$ and hence $y \notin\{x\}^{\delta s(\Lambda, s)}$. This shows that $\{x\}^{\delta s(\Lambda, s)} \subseteq U$. Therefore, (X, τ) is $\delta s(\Lambda, s)-R_{0}$.

Definition 3.2. [20] Let A be a subset of a topological space (X, τ). The $\delta s(\Lambda, s)$-kernel of A, denoted by $\delta s(\Lambda, s) \operatorname{Ker}(A)$, is defined to be the set $\delta s(\Lambda, s) \operatorname{Ker}(A)=\cap\{U \mid A \subseteq U, U \in \delta s(\Lambda, s) O(X, \tau)\}$.

Lemma 3.1. [20] For subsets A, B of a topological space (X, τ), the following properties hold:
(1) $A \subseteq \delta s(\Lambda, s) \operatorname{Ker}(A)$.
(2) If $A \subseteq B$, then $\delta s(\Lambda, s) \operatorname{Ker}(A) \subseteq \delta s(\Lambda, s) \operatorname{Ker}(B)$.
(3) $\delta s(\Lambda, s) \operatorname{Ker}(\delta s(\Lambda, s) \operatorname{Ker}(A))=\delta s(\Lambda, s) \operatorname{Ker}(A)$.
(4) If A is $\delta s(\Lambda, s)$-open, $\delta s(\Lambda, s) \operatorname{Ker}(A)=A$.

Lemma 3.2. [20] For any points x and y in a topological space (X, τ), the following properties are equivalent:
(1) $\delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \neq \delta s(\Lambda, s) \operatorname{Ker}(\{y\})$.
(2) $\{x\}^{\delta s(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}$.

Lemma 3.3. Let (X, τ) be a topological space and $x, y \in X$. Then, the following properties hold:
(1) $y \in \delta s(\Lambda, s) \operatorname{Ker}(\{x\})$ if and only if $x \in\{y\}^{\delta s(\Lambda, s)}$.
(2) $\delta s(\Lambda, s) \operatorname{Ker}(\{x\})=\delta s(\Lambda, s) \operatorname{Ker}(\{y\})$ if and only if $\{x\}^{\delta s(\Lambda, s)}=\{y\}^{\delta s(\Lambda, s)}$.

Proof. (1) Let $x \notin\{y\}^{\delta s(\Lambda, s)}$. Then, there exists $U \in \delta s(\Lambda, s) O(X, \tau)$ such that $x \in U$ and $y \notin U$. Thus, $y \notin \delta s(\Lambda, s) \operatorname{Ker}(\{x\})$. The converse is similarly shown.
(2) Suppose that $\delta s(\Lambda, s) \operatorname{Ker}(\{x\})=\delta s(\Lambda, s) \operatorname{Ker}(\{y\})$ for any $x, y \in X$. Since $x \in$ $\delta s(\Lambda, s) \operatorname{Ker}(\{x\}), x \in \delta s(\Lambda, s) \operatorname{Ker}(\{y\})$, by (1), $y \in\{x\}^{\delta s(\Lambda, s)}$. By Lemma 2.1, $\{y\}^{\delta s(\Lambda, s)} \subseteq$ $\{x\}^{\delta s(\Lambda, s)}$. Similarly, we have $\{x\}^{\delta s(\Lambda, s)} \subseteq\{y\}^{\delta s(\Lambda, s)}$ and hence $\{x\}^{\delta s(\Lambda, s)}=\{y\}^{\delta s(\Lambda, s)}$.

Conversely, suppose that $\{x\}^{\delta s(\Lambda, s)}=\{y\}^{\delta s(\Lambda, s)}$. Since $x \in\{x\}^{\delta s(\Lambda, s)}, x \in\{y\}^{\delta s(\Lambda, s)}$ and by (1),

$$
y \in \delta s(\Lambda, s) \operatorname{Ker}(\{x\})
$$

By Lemma 3.1, $\delta s(\Lambda, s) \operatorname{Ker}(\{y\}) \subseteq \delta s(\Lambda, s) \operatorname{Ker}(\delta s(\Lambda, s) \operatorname{Ker}(\{x\}))=\delta s(\Lambda, s) \operatorname{Ker}(\{x\})$. Similarly, we have $\delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \subseteq \delta p(\Lambda, s) \operatorname{Ker}(\{y\})$ and hence $\delta s(\Lambda, s) \operatorname{Ker}(\{x\})=\delta s(\Lambda, s) \operatorname{Ker}(\{y\})$.

Theorem 3.2. A topological space (X, τ) is $\delta s(\Lambda, s)-R_{0}$ if and only if for each points x and y in X, $\delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \neq \delta s(\Lambda, s) \operatorname{Ker}(\{y\})$ implies $\delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \cap \delta s(\Lambda, s) \operatorname{Ker}(\{y\})=\emptyset$.

Proof. Let (X, τ) be $\delta s(\Lambda, s)-R_{0}$. Suppose that $\delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \cap \delta s(\Lambda, s) \operatorname{Ker}(\{y\}) \neq \emptyset$. Let

$$
z \in \delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \cap \delta s(\Lambda, s) \operatorname{Ker}(\{y\}) .
$$

Then, $z \in \delta s(\Lambda, s) \operatorname{Ker}(\{x\})$ and by Lemma 3.3, $x \in\{z\}^{\delta s(\Lambda, s)}$. Thus, $x \in\{z\}^{\delta s(\Lambda, s)} \cap\{x\}^{\delta s(\Lambda, s)}$ and by Corollary 3.1, $\{z\}^{\delta s(\Lambda, s)}=\{x\}^{\delta s(\Lambda, s)}$. Similarly, we have $\{z\}^{\delta s(\Lambda, s)}=\{y\}^{\delta s(\Lambda, s)}$ and hence

$$
\{x\}^{\delta s(\Lambda, s)}=\{y\}^{\delta s(\Lambda, s)},
$$

by Lemma 3.3, $\delta s(\Lambda, s) \operatorname{Ker}(\{x\})=\delta s(\Lambda, s) \operatorname{Ker}(\{y\})$.
Conversely, we show the sufficiency by using Corollary 3.1. Suppose that $\{x\}^{\delta s(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}$. By Lemma 3.3, $\delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \neq \delta s(\Lambda, s) \operatorname{Ker}(\{y\})$ and hence $\delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \cap \delta s(\Lambda, s) \operatorname{Ker}(\{y\})=\emptyset$. Thus, $\{x\}^{\delta s(\Lambda, s)} \cap\{y\}^{\delta s(\Lambda, s)}=\emptyset$. In fact, assume that $z \in\{x\}^{\delta s(\Lambda, s)} \cap\{y\}^{\delta s(\Lambda, s)}$. Then, $z \in\{x\}^{\delta s(\Lambda, s)}$ implies $x \in \delta s(\Lambda, s) \operatorname{Ker}(\{z\})$ and hence $x \in \delta s(\Lambda, s) \operatorname{Ker}(\{z\}) \cap \delta s(\Lambda, s) \operatorname{Ker}(\{x\})$. By the hypothesis, $\delta s(\Lambda, s) \operatorname{Ker}(\{z\})=\delta s(\Lambda, s) \operatorname{Ker}(\{x\})$ and by Lemma 3.3, $\{z\}^{\delta s(\Lambda, s)}=\{x\}^{\delta s(\Lambda, s)}$. Similarly, we have $\{z\}^{\delta s(\Lambda, s)}=\{y\}^{\delta s(\Lambda, s)}$ and hence $\{x\}^{\delta s(\Lambda, s)}=\{y\}^{\delta s(\Lambda, s)}$. This contradicts that $\{x\}^{\delta s(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}$.
Thus, $\{x\}^{\delta s(\Lambda, s)} \cap\{y\}^{\delta s(\Lambda, s)}=\emptyset$. This shows that (X, τ) is $\delta s(\Lambda, s)-R_{0}$.
Theorem 3.3. For a topological space (X, τ), the following properties are equivalent:
(1) (X, τ) is $\delta s(\Lambda, s)-R_{0}$.
(2) $x \in\{y\}^{\delta s(\Lambda, s)}$ if and only if $y \in\{x\}^{\delta s(\Lambda, s)}$.

Proof. (1) \Rightarrow (2): Suppose that $x \in\{y\}^{\delta s(\Lambda, s)}$. By Lemma 3.3, $y \in \delta s(\Lambda, s) \operatorname{Ker}(\{x\})$ and hence

$$
\delta s(\wedge, s) \operatorname{Ker}(\{x\}) \cap \delta s(\wedge, s) \operatorname{Ker}(\{y\}) \neq \emptyset .
$$

By Theorem 3.2, $\delta s(\Lambda, s) \operatorname{Ker}(\{x\})=\delta s(\Lambda, s) \operatorname{Ker}(\{y\})$ and hence $x \in \delta s(\Lambda, s) \operatorname{Ker}(\{y\})$. Thus, by Lemma 3.3, $y \in\{x\}^{\delta s(\Lambda, s)}$. The converse is similarly shown.
(2) \Rightarrow (1): Let $U \in \delta s(\Lambda, s) O(X, \tau)$ and $x \in U$. If $y \notin U$, then $U \cap\{y\}^{\delta s(\Lambda, s)}=\emptyset$. Thus, $x \notin\{y\}^{\delta s(\Lambda, s)}$ and $y \notin\{x\}^{\delta s(\Lambda, s)}$. This implies that $\{x\}^{\delta s(\Lambda, s)} \subseteq U$. Therefore, (X, τ) is $\delta s(\Lambda, s)$ R_{0}.

Theorem 3.4. A topological space (X, τ) is $\delta s(\Lambda, s)-R_{0}$ if and only if for each x and y in X,

$$
\{x\}^{\delta s(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}
$$

implies $\{x\}^{\delta s(\Lambda, s)} \cap\{y\}^{\delta s(\Lambda, s)}=\emptyset$.
Proof. Suppose that (X, τ) is $\delta s(\Lambda, s)-R_{0}$ and $x, y \in X$ such that $\{x\}^{\delta s(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}$. Then, there exists $z \in\{x\}^{\delta s(\Lambda, s)}$ such that $z \notin\{y\}^{\delta s(\Lambda, s)}$ (or $z \in\{y\}^{\delta s(\Lambda, s)}$ such that $z \notin\{x\}^{\delta s(\Lambda, s)}$). There exists $V \in \delta s(\Lambda, s) O(X, \tau)$ such that $y \notin V$ and $z \in V$; hence $x \in V$. Therefore, $x \notin\{y\}^{\delta s(\Lambda, s)}$. Thus,

$$
x \in\left(X-\{y\}^{\delta s(\Lambda, s)}\right) \in \delta s(\Lambda, s) O(X, \tau)
$$

which implies $\{x\}^{\delta s(\Lambda, s)} \subseteq X-\{y\}^{\delta s(\Lambda, s)}$ and $\{x\}^{\delta s(\Lambda, s)} \cap\{y\}^{\delta s(\Lambda, s)}=\emptyset$. The proof for otherwise is similar.

Conversely, let $V \in \delta s(\Lambda, s) O(X, \tau)$ and $x \in V$. Suppose that $y \notin V$. Then, $x \neq y$ and $x \notin$ $\{y\}^{\delta s(\Lambda, s)}$. Therefore, $\{x\}^{\delta s(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}$. By the hypothesis, $\{x\}^{\delta s(\Lambda, s)} \cap\{y\}^{\delta s(\Lambda, s)}=\emptyset$. Thus, $y \notin\{x\}^{\delta s(\Lambda, s)}$ and hence $\{x\}^{\delta s(\Lambda, s)} \subseteq V$. This shows that (X, τ) is $\delta s(\Lambda, s)-R_{0}$.

Theorem 3.5. For a topological space (X, τ), the following properties are equivalent:
(1) (X, τ) is $\delta s(\Lambda, s)-R_{0}$.
(2) For each nonempty subset A of X and each $V \in \delta s(\Lambda, s) O(X, \tau)$ such that $A \cap V \neq \emptyset$, there exists $F \in \delta s(\Lambda, s) C(X, \tau)$ such that $A \cap F \neq \emptyset$ and $F \subseteq V$.
(3) For each $V \in \delta s(\Lambda, s) O(X, \tau), V=\cup\{F \in \delta s(\Lambda, s) C(X, \tau) \mid F \subseteq V\}$.
(4) For each $F \in \delta s(\Lambda, s) C(X, \tau), F=\cap\{V \in \delta s(\Lambda, s) O(X, \tau) \mid F \subseteq V\}$.
(5) For each $x \in X,\{x\}^{\delta s(\Lambda, s)} \subseteq \delta s(\Lambda, s) \operatorname{Ker}(\{x\})$.

Proof. (1) \Rightarrow (2): Let A be a nonempty subset of X and $V \in \delta s(\Lambda, s) O(X, \tau)$ such that $A \cap V \neq \emptyset$. There exists $x \in A \cap V$. Since $x \in V \in \delta s(\Lambda, s) O(X, \tau),\{x\}^{\delta s(\Lambda, s)} \subseteq V$. Put $F=\{x\}^{\delta s(\Lambda, s)}$. Then, we have $F \in \delta s(\Lambda, s) C(X, \tau), F \subseteq V$ and $A \cap F \neq \emptyset$.
(2) \Rightarrow (3): Let $V \in \delta s(\Lambda, s) O(X, \tau)$. Then, $V \supseteq \cup\{F \in \delta s(\Lambda, s) C(X, \tau) \mid F \subseteq V\}$. Let x be any point of V. There exists $F \in \delta s(\Lambda, s) C(X, \tau)$ such that $x \in F$ and $F \subseteq V$. Thus,

$$
x \in F \subseteq \cup\{F \in \delta s(\Lambda, s) C(X, \tau) \mid F \subseteq V\}
$$

and hence $V=\cup\{F \in \delta s(\Lambda, s) C(X, \tau) \mid F \subseteq V\}$.
$(3) \Rightarrow(4)$: The proof is obvious.
$(4) \Rightarrow(5)$: Let x be any point of X and $y \notin \delta s(\Lambda, s) \operatorname{Ker}(\{x\})$. There exists $U \in \delta s(\Lambda, s) O(X, \tau)$ such that $x \in U$ and $y \notin U$; hence $\{y\}^{\delta s(\Lambda, s)} \cap U=\emptyset$.
By (4), $\left(\cap\left\{V \in \delta s(\Lambda, s) O(X, \tau) \mid\{y\}^{\delta s(\Lambda, s)} \subseteq V\right\}\right) \cap U=\emptyset$ and there exists $W \in \delta s(\Lambda, s) O(X, \tau)$ such that $x \notin W$ and $\{y\}^{\delta s(\Lambda, s)} \subseteq W$. Therefore, $W \cap\{x\}^{\delta s(\Lambda, s)}=\emptyset$ and $y \notin\{x\}^{\delta s(\Lambda, s)}$. Thus, $\{x\}^{\delta s(\Lambda, s)} \subseteq \delta s(\Lambda, s) \operatorname{Ker}(\{x\})$.
(5) $\Rightarrow(1)$: Let $U \in \delta s(\Lambda, s) O(X, \tau)$ and $x \in U$. Let $y \in \delta s(\Lambda, s) \operatorname{Ker}(\{x\})$. Then, $x \in\{y\}^{\delta s(\Lambda, s)}$ and $y \in U$. Thus, $\delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \subseteq U$ and hence $\{x\}^{\delta s(\Lambda, s)} \subseteq U$. This shows that (X, τ) is $\delta s(\Lambda, s)-R_{0}$.

Corollary 3.2. For a topological space (X, τ), the following properties are equivalent:
(1) (X, τ) is $\delta s(\Lambda, s)-R_{0}$;
(2) $\{x\}^{\delta s(\wedge, s)}=\delta s(\Lambda, s) \operatorname{Ker}(\{x\})$ for each $x \in X$.

Proof. (1) \Rightarrow (2): Suppose that (X, τ) is $\delta s(\Lambda, s)-R_{0}$. By Theorem 3.5, $\{x\}^{\delta s(\Lambda, s)} \subseteq$ $\delta s(\Lambda, s) \operatorname{Ker}(\{x\})$ for each $x \in X$. Let $y \in \delta s(\Lambda, s) \operatorname{Ker}(\{x\})$. Then, $x \in\{y\}^{\delta s(\Lambda, s)}$ and by Theorem 3.4,

$$
\{x\}^{\delta s(\Lambda, s)}=\{y\}^{\delta s(\Lambda, s)} .
$$

Thus, $y \in\{x\}^{\delta s(\Lambda, s)}$ and hence $\delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \subseteq\{x\}^{\delta s(\Lambda, s)}$. This shows that $\{x\}^{\delta s(\Lambda, s)}=$ $\delta s(\Lambda, s) \operatorname{Ker}(\{x\})$.
$(2) \Rightarrow(1)$: This is obvious by Theorem 3.5.
Theorem 3.6. For a topological space (X, τ), the following properties are equivalent:
(1) (X, τ) is $\delta s(\Lambda, s)-R_{0}$.
(2) For each $F \in \delta s(\Lambda, s) C(X, \tau), F=\delta s(\Lambda, s) \operatorname{Ker}(F)$.
(3) For each $F \in \delta s(\Lambda, s) C(X, \tau)$ and $x \in F, \delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \subseteq F$.
(4) For each $x \in X, \delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \subseteq\{x\}^{\delta s(\Lambda, s)}$.

Proof. $(1) \Rightarrow(2)$: This obviously follows from Theorem 3.5.
$(2) \Rightarrow(3):$ Let $F \in \delta s(\Lambda, s) C(X, \tau)$ and $x \in F$. By $(2), \delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \subseteq \delta s(\Lambda, s) \operatorname{Ker}(F)=F$.
(3) \Rightarrow (4): Let $x \in X$. Since $x \in\{x\}^{\delta s(\Lambda, s)}$ and $\{x\}^{\delta s(\Lambda, s)}$ is $\delta s(\Lambda, s)$-closed, by (3),

$$
\delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \subseteq\{x\}^{\delta s(\wedge, s)}
$$

$(4) \Rightarrow(1):$ We show the implication by using Theorem 3.3. Let $x \in\{y\}^{\delta s(\wedge, s)}$. By Lemma 3.3,

$$
y \in \delta s(\Lambda, s) \operatorname{Ker}(\{x\})
$$

Since $x \in\{x\}^{\delta s(\Lambda, s)}$ and $\{x\}^{\delta s(\Lambda, s)}$ is $\delta s(\Lambda, s)$-closed, by (4), $y \in \delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \subseteq\{x\}^{\delta s(\Lambda, s)}$. Thus, $x \in\{y\}^{\delta s(\Lambda, s)}$ implies $y \in\{x\}^{\delta s(\Lambda, s)}$. The converse is obvious and (X, τ) is $\delta s(\Lambda, s)-R_{0}$.

Definition 3.3. [20] Let (X, τ) be a topological space and $x \in X$. A subset $\langle x\rangle_{\delta s(\Lambda, s)}$ is defined as follows: $\langle x\rangle_{\delta s(\Lambda, s)}=\delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \cap\{x\}^{\delta s(\Lambda, s)}$.

Theorem 3.7. A topological space (X, τ) is $\delta s(\Lambda, s)-R_{0}$ if and only if $\langle x\rangle_{\delta s(\Lambda, s)}=\{x\}^{\delta s(\Lambda, s)}$ for each $x \in X$.

Proof. Let $x \in X$. By Corollary 3.2, $\delta s(\Lambda, s) \operatorname{Ker}(\{x\})=\{x\}^{\delta s(\Lambda, s)}$. Thus,

$$
\langle x\rangle_{\delta s(\wedge, s)}=\delta s(\Lambda, s) K \operatorname{er}(\{x\}) \cap\{x\}^{\delta s(\wedge, s)}=\{x\}^{\delta s(\wedge, s)}
$$

Conversely, let $x \in X$. By the hypothesis,

$$
\{x\}^{\delta s(\wedge, s)}=\langle x\rangle_{\delta s(\wedge, s)}=\delta s(\Lambda, s) \operatorname{Ker}(\{x\}) \cap\{x\}^{\delta s(\wedge, s)} \subseteq \delta s(\Lambda, s) \operatorname{Ker}(\{x\})
$$

It follows from Theorem 3.5 that (X, τ) is $\delta s(\Lambda, s)-R_{0}$.
4. On $\delta s(\Lambda, s)-R_{1}$ spaces

We begin this section by introducing the notion of $\delta s(\Lambda, s)-R_{1}$ spaces.
Definition 4.1. A topological space (X, τ) is said to be $\delta s(\Lambda, s)-R_{1}$ if for each x and y in X such that $\{x\}^{\delta s(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}$, there exist disjoint $\delta s(\Lambda, s)$-open sets U and V such that $\{x\}^{\delta s(\Lambda, s)} \subseteq U$ and $\{y\}^{\delta s(\Lambda, s)} \subseteq V$.

Theorem 4.1. A topological space (X, τ) is $\delta s(\Lambda, s)-R_{1}$ if and only if for each x and y in X such that $\{x\}^{\delta s(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}$, there exist $\delta s(\Lambda, s)$-closed sets F and K such that $x \in F, y \notin F, y \in K$, $x \notin K$ and $X=F \cup K$.

Proof. Let x and y be any points in X with $\{x\}^{\delta s(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}$. Then, there exist disjoint

$$
U, V \in \delta s(\wedge, s) O(X, \tau)
$$

such that $\{x\}^{\delta s(\Lambda, s)} \subseteq U$ and $\{y\}^{\delta s(\Lambda, s)} \subseteq V$. Now, put $F=X-V$ and $K=X-U$. Then, F and K are $\delta s(\Lambda, s)$-closed sets of X such that $x \in F, y \notin F, y \in K, x \notin K$ and $X=F \cup K$.

Conversely, let x and y be any points in X such that $\{x\}^{\delta s(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}$. Then,

$$
\{x\}^{\delta s(\Lambda, s)} \cap\{y\}^{\delta s(\Lambda, s)}=\emptyset .
$$

In fact, if $z \in\{x\}^{\delta s(\Lambda, s)} \cap\{y\}^{\delta s(\Lambda, s)}$, then $\{z\}^{\delta s(\Lambda, s)} \neq\{x\}^{\delta s(\Lambda, s)}$ or $\{z\}^{\delta s(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}$. In case $\{z\}^{\delta s(\Lambda, s)} \neq\{x\}^{\delta s(\Lambda, s)}$, by the hypothesis, there exists a $\delta s(\Lambda, s)$-closed set F such that $x \in F$ and $z \notin F$. Then, $z \in\{x\}^{\delta s(\Lambda, s)} \subseteq F$. This contradicts that $z \notin F$. In case $\{z\}^{\delta s(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}$, similarly, this leads to the contradiction. Thus, $\{x\}^{\delta s(\Lambda, s)} \cap\{y\}^{\delta s(\Lambda, s)}=\emptyset$, by Corollary 3.1, (X, τ) is $\delta s(\Lambda, s)-R_{0}$. By the hypothesis, there exist $\delta s(\Lambda, s)$-closed sets F and K such that $x \in F, y \notin F$, $y \in K, x \notin K$ and $X=F \cup K$. Put $U=X-K$ and $V=X-F$. Then, $x \in U \in \delta s(\Lambda, s) O(X, \tau)$ and $y \in V \in \delta s(\Lambda, s) O(X, \tau)$. Since (X, τ) is $\delta s(\Lambda, s)-R_{0}$, we have $\{x\}^{\delta s(\Lambda, s)} \subseteq U,\{y\}^{\delta s(\Lambda, s)} \subseteq V$ and also $U \cap V=\emptyset$. This shows that (X, τ) is $\delta s(\Lambda, s)-R_{1}$.

Definition 4.2. Let A be a subset of a topological space (X, τ). The $\theta \delta s(\Lambda, s)$-closure of $A, A^{\theta \delta s(\Lambda, s)}$, is defined as follows:
$A^{\theta \delta s(\Lambda, s)}=\left\{x \in X \mid A \cap U^{\delta s(\Lambda, s)} \neq \emptyset\right.$ for each $U \in \delta s(\Lambda, s) O(X, \tau)$ containing $\left.x\right\}$.
Lemma 4.1. If a topological space (X, τ) is $\delta s(\Lambda, s)-R_{1}$, then (X, τ) is $\delta s(\Lambda, s)-R_{0}$.
Proof. Let $U \in \delta s(\Lambda, s) O(X, \tau)$ and $x \in U$. If $y \notin U$, then $U \cap\{y\}^{\delta s(\Lambda, s)}=\emptyset$ and $x \notin\{y\}^{\delta s(\Lambda, s)}$. This implies that $\{x\}^{\delta s(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}$. Since (X, τ) is $\delta s(\Lambda, s)-R_{1}$, there exists $V \in \delta s(\Lambda, s) O(X, \tau)$ such that $\{y\}^{\delta s(\Lambda, s)} \subseteq V$ and $x \notin V$. Thus, $V \cap\{x\}^{\delta s(\Lambda, s)}=\emptyset$ and hence $y \notin\{x\}^{\delta s(\Lambda, s)}$. Therefore, $\{x\}^{\delta s(\Lambda, s)} \subseteq U$. This shows that (X, τ) is $\delta s(\Lambda, s)-R_{0}$.

Theorem 4.2. A topological space (X, τ) is $\delta s(\Lambda, s)-R_{1}$ if and only if $\langle x\rangle_{\delta s(\Lambda, s)}=\{x\}^{\theta \delta s(\Lambda, s)}$ for each $x \in X$.

Proof. Let (X, τ) be $\delta s(\Lambda, s)-R_{1}$. By Lemma 4.1, (X, τ) is $\delta s(\Lambda, s)-R_{0}$ and by Theorem 3.7,

$$
\langle x\rangle_{\delta s(\Lambda, s)}=\{x\}^{\delta s(\Lambda, s)} \subseteq\{x\}^{\theta \delta s(\Lambda, s)}
$$

for each $x \in X$. Thus, $\langle x\rangle_{\delta s(\Lambda, s)} \subseteq\{x\}^{\theta \delta s(\Lambda, s)}$ for each $x \in X$. In order to show the opposite inclusion, suppose that $y \notin\langle x\rangle_{\delta s(\Lambda, s)}$. Then, $\langle x\rangle_{\delta s(\Lambda, s)} \neq\langle y\rangle_{\delta s(\Lambda, s)}$. Since (X, τ) is $\delta s(\Lambda, s)-R_{0}$, by Theorem 3.7, $\{x\}^{\delta s(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}$. Since (X, τ) is $\delta s(\Lambda, s)-R_{1}$, there exist disjoint $\delta s(\Lambda, s)$-open sets U
and V of X such that $\{x\}^{\delta s(\Lambda, s)} \subseteq U$ and $\{y\}^{\delta s(\Lambda, s)} \subseteq V$. Since $\{x\} \cap V^{\delta s(\Lambda, s)} \subseteq U \cap V^{\delta s(\Lambda, s)}=\emptyset$, $y \notin\{x\}^{\theta \delta s(\Lambda, s)}$. Thus, $\{x\}^{\theta \delta s(\Lambda, s)} \subseteq\langle x\rangle_{\delta s(\Lambda, s)}$ and hence $\{x\}^{\theta \delta s(\Lambda, s)}=\langle x\rangle_{\delta s(\Lambda, s)}$.

Conversely, suppose that $\{x\}^{\theta \delta s(\wedge, s)}=\langle x\rangle_{\delta s(\wedge, s)}$ for each $x \in X$. Then,

$$
\langle x\rangle_{\delta s(\Lambda, s)}=\{x\}^{\theta \delta s(\Lambda, s)} \supseteq\{x\}^{\delta s(\Lambda, s)} \supseteq\langle x\rangle_{\delta s(\Lambda, s)}
$$

and $\langle x\rangle_{\delta s(\Lambda, s)}=\{x\}^{\delta s(\Lambda, s)}$ for each $x \in X$. By Theorem 3.7, (X, τ) is $\delta s(\Lambda, s)-R_{0}$. Suppose that

$$
\{x\}^{\delta s(\wedge, s)} \neq\{y\}^{\delta s(\wedge, s)}
$$

Thus, by Corollary 3.1, $\{x\}^{\delta s(\Lambda, s)} \cap\{y\}^{\delta s(\Lambda, s)}=\emptyset$. By Theorem 3.7, $\langle x\rangle_{\delta s(\Lambda, s)} \cap\langle y\rangle_{\delta s(\Lambda, s)}=\emptyset$ and hence $\{x\}^{\theta \delta s(\Lambda, s)} \cap\{y\}^{\theta \delta s(\Lambda, s)}=\emptyset$. Since $y \notin\{x\}^{\theta \delta s(\Lambda, s)}$, there exists a $\delta s(\Lambda, s)$-open set U of X such that $y \in U \subseteq U^{\delta s(\Lambda, s)} \subseteq X-\{x\}$. Let $V=X-U^{\delta s(\Lambda, s)}$, then $x \in V \in \delta s(\Lambda, s) O(X, \tau)$. Since (X, τ) is $\delta s(\Lambda, s)-R_{0},\{y\}^{\delta s(\Lambda, s)} \subseteq U,\{x\}^{\delta s(\Lambda, s)} \subseteq V$ and $U \cap V=\emptyset$. This shows that (X, τ) is $\delta s(\Lambda, s)-R_{1}$.

Corollary 4.1. A topological space (X, τ) is $\delta s(\Lambda, s)-R_{1}$ if and only if $\{x\}^{\delta s(\Lambda, s)}=\{x\}^{\theta \delta s(\Lambda, s)}$ for each $x \in X$.

Proof. Let (X, τ) be a $\delta s(\Lambda, s)-R_{1}$ space. By Theorem 4.2, we have

$$
\{x\}^{\delta s(\Lambda, s)} \supseteq\langle x\rangle_{\delta s(\Lambda, s)}=\{x\}^{\theta \delta s(\Lambda, s)} \supseteq\{x\}^{\delta s(\Lambda, s)}
$$

and hence $\{x\}^{\delta s(\Lambda, s)}=\{x\}^{\theta \delta s(\Lambda, s)}$ for each $x \in X$.
Conversely, suppose that $\{x\}^{\delta s(\Lambda, s)}=\{x\}^{\theta \delta s(\Lambda, s)}$ for each $x \in X$. First, we show that (X, τ) is $\delta s(\Lambda, s)-R_{0}$. Let $U \in \delta s(\Lambda, s) O(X, \tau)$ and $x \in U$. Let $y \notin U$. Then, $U \cap\{y\}^{\delta s(\Lambda, s)}=U \cap\{y\}^{\theta \delta s(\Lambda, s)}=$ \emptyset. Thus, $x \notin\{y\}^{\theta \delta s(\Lambda, s)}$. There exists $V \in \delta s(\Lambda, s) O(X, \tau)$ such that $x \in V$ and $y \notin V^{\delta s(\Lambda, s)}$. Since

$$
\{x\}^{\delta s(\Lambda, s)} \subseteq V^{\delta s(\wedge, s)}
$$

$y \notin\{x\}^{\delta s(\Lambda, s)}$. This shows that $\{x\}^{\delta s(\Lambda, s)} \subseteq U$ and hence (X, τ) is $\delta s(\Lambda, s)-R_{0}$. By Theorem 3.7,

$$
\langle x\rangle_{\delta s(\Lambda, s)}=\{x\}^{\delta s(\Lambda, s)}=\{x\}^{\theta \delta s(\Lambda, s)}
$$

for each $x \in X$. Thus, by Theorem 4.2, (X, τ) is $\delta s(\Lambda, s)-R_{1}$.

Definition 4.3. A topological space (X, τ) is said to be:
(a) $\delta s(\Lambda, s)-T_{0}$ if for any pair of distinct points in X, there exists a $\delta s(\Lambda, s)$-open set containing one of the points but not the other;
(b) $\delta s(\Lambda, s)-T_{1}$ if for any pair of distinct points x and y in X, there exist $\delta s(\Lambda, s)$-open sets U and V of X such that $x \in U, y \notin U$ and $y \in V, x \notin V$;
(c) $\delta s(\Lambda, s)-T_{2}$ if for any pair of distinct points x and y in X, there exist $\delta s(\Lambda, s)$-open sets U and V of X such that $x \in U, y \in V$ and $U \cap V=\emptyset$.

Lemma 4.2. For a topological space (X, τ), the following properties are equivalent:
(1) (X, τ) is $\delta s(\wedge, s)-T_{1}$.
(2) For each $x \in X,\{x\}$ is $\delta s(\Lambda, s)$-closed.
(3) (X, τ) is $\delta s(\Lambda, s)-R_{0}$ and $\delta s(\Lambda, s)-T_{0}$.

Proof. (1) \Rightarrow (2): Let x be any point of X. Let y be any point of X such that $y \neq x$. There exists a $\delta s(\Lambda, s)$-open sets U of X such that $y \in U$ and $x \notin U$. Thus, $y \notin\{x\}^{\delta s(\Lambda, s)}$ and hence $\{x\}^{\delta s(\Lambda, s)}=\{x\}$. This shows that $\{x\}$ is $\delta s(\Lambda, s)$-closed.
$(2) \Rightarrow(3)$: The proof is obvious.
$(3) \Rightarrow(1)$: Let x and y be any distinct points of X. Since (X, τ) is $\delta s(\Lambda, s)-T_{0}$, there exists a $\delta s(\Lambda$, s)-open sets U of X such that either $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$. In case $x \in U$ and $y \notin U$, we have $x \in\{x\}^{\delta s(\Lambda, s)} \subseteq U$ and hence $y \in X-U \subseteq X-\{x\}^{\delta s(\Lambda, s)}$. Since the proof of the other is quite similar, (X, τ) is $\delta s(\Lambda, s)-T_{1}$.

Theorem 4.3. For a topological space (X, τ), the following properties are equivalent:
(1) (X, τ) is $\delta s(\Lambda, s)-T_{2}$.
(2) (X, τ) is $\delta s(\Lambda, s)-R_{1}$ and $\delta s(\Lambda, s)-T_{1}$.
(3) (X, τ) is $\delta s(\Lambda, s)-R_{1}$ and $\delta s(\Lambda, s)-T_{0}$.

Proof. (1) \Rightarrow (2): Since (X, τ) is $\delta s(\Lambda, s)-T_{2},(X, \tau)$ is $\delta s(\Lambda, s)-T_{1}$. Let x and y be any points of X such that $\{x\}^{\delta s(\Lambda, s)} \neq\{y\}^{\delta s(\Lambda, s)}$. Thus, by Lemma 4.2, $\{x\}=\{x\}^{\delta s(\Lambda, s)}=\{y\}^{\delta s(\Lambda, s)}=\{y\}$ and there exist disjoint $\delta s(\Lambda, s)$-open sets U and V of X such that $\{x\}^{\delta s(\Lambda, s)}=\{x\} \subseteq U$ and $\{y\}^{\delta s(\Lambda, s)}=\{y\} \subseteq V$. This shows that (X, τ) is $\delta s(\Lambda, s)-R_{1}$.
$(2) \Rightarrow(3)$: The proof is obvious.
$(3) \Rightarrow(1)$: Let (X, τ) be $\delta s(\Lambda, s)-R_{1}$ and $\delta s(\Lambda, s)-T_{0}$. By Lemma 4.1 and 4.2, (X, τ) is $\delta s(\Lambda, s)-T_{1}$ and every singleton is $\delta s(\Lambda, s)$-closed. Let x and y be any distinct points of X. Then,

$$
\{x\}^{\delta s(\Lambda, s)}=\{x\} \neq\{y\}=\{y\}^{\delta s(\Lambda, s)}
$$

and there exist disjoint $\delta s(\Lambda, s)$-open sets U and V of X such that $x \in U$ and $y \in V$. This shows that (X, τ) is $\delta s(\Lambda, s)-T_{2}$.

Acknowledgements: This research project was financially supported by Mahasarakham University.
Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] C. Boonpok, C. Viriyapong, On Some Forms of Closed Sets and Related Topics, Eur. J. Pure Appl. Math. 16 (2023), 336-362. https://doi.org/10.29020/nybg.ejpam.v16i1.4582.
[2] F. Cammaroto, T. Noiri, On \wedge_{m}-Sets and Related Topological Spaces, Acta Math Hung. 109 (2005), 261-279. https://doi.org/10.1007/s10474-005-0245-4.
[3] M. Caldas, M. Ganster, D.N. Georgiou, S. Jafari, S. P. Moshokoa, δ-Semiopen Sets in Topology, Topol. Proc. 29 (2005), 369-383.
[4] M. Caldas, S. Jafari, T. Noiri, Characterizations of $\Lambda_{\theta^{-}} R_{0}$ and $\Lambda_{\theta}-R_{1}$ Topological Spaces, Acta Math. Hung. 103 (2004), 85-95. https://doi.org/10.1023/B:AMHU.0000028238.17482.54.
[5] M. Caldas, D.N. Georgiou, S. Jafari, T. Noiri, More on δ-Semiopen Sets, Note Mat. 22 (2003), 113-126.
[6] M.C. Cueva, J. Dontchev, G. Λ_{s}-Sets and G.V ${ }_{s}$-Sets, arXiv:math/9810080 [math.GN], (1998). http://arxiv.org/ abs/math/9810080.
[7] A.S. Davis, Indexed Systems of Neighborhoods for General Topological Spaces, Amer. Math. Mon. 68 (1961), 886-894. https://doi.org/10.1080/00029890.1961.11989785.
[8] C. Dorsett, R_{0} and R_{1} Topological Spaces, Mat. Vesnik, 2 (1978), 117-122.
[9] C. Dorsett, Semi- T_{2}, Semi- R_{1} and Semi- R_{0} Topological Spaces, Ann. Soc. Sci. Bruxelles, 92 (1978), 143-150.
[10] K.K. Dube, A Note on R_{1} Topological Spaces, Period Math. Hung. 13 (1982), 267-271.
[11] K.K. Dube, A Note on R_{0} Topological Spaces, Mat. Vesnik, 11 (1974), 203-208.
[12] N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. Math. Mon. 70 (1963), 36-41. https://doi.org/10.1080/00029890.1963.11990039.
[13] S. Lugojan, Generalized Topology, Stud. Cerc. Mat. 34 (1982), 348-360.
[14] S.N. Maheshwari, R. Prasad, On $\left(R_{0}\right)_{s}$-Spaces, Portug. Math. 34 (1975), 213-217.
[15] M.G. Murdeshwar, S.A. Naimpally, R_{1}-topological spaces, Canad. Math. Bull. 9 (1966), 521-523.
[16] S.A. Naimpally, On Ro Topological Spaces, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 10 (1967), 53-54.
[17] T. Noiri, Unified Characterizations for Modifications of R_{0} and R_{1} Topological Spaces, Rend. Circ. Mat. Palermo (2), 60 (2006), 29-42.
[18] T. Noiri, Remarks on δ-Semi-Open Sets and δ-Preopen Sets, Demonstr. Math. 36 (2003), 1007-1020.
[19] J.H. Park, B.Y. Lee, M.J. Son, On δ-Semiopen Sets in Topological Spaces, J. Indian Acad. Math. 19 (1997), 59-67.
[20] P. Pue-on, C. Boonpok, On $\delta s(\Lambda, s)$-Open Sets in Topological Spaces, Int. J. Math. Comput. Sci. 18 (2023), 749-753.
[21] N.A. Shanin, On Separation in Topological Spaces, Dokl. Akad. Nauk. SSSR, 38 (1943), 110-113.
[22] N. Srisarakham, C. Boonpok, On Characterizations of $\delta p(\Lambda, s)-\mathscr{D}_{1}$ Spaces, Int. J. Math. Comput. Sci. 18 (2023), 743-747.
[23] N.V. Veličko, H-Closed Topological Spaces, Amer. Math. Soc. Transl. 78 (1968), 102-118.

[^0]: Received: Jun. 27, 2023.

