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Abstract. The complex dynamics of a predator-prey system in discrete time are studied. In this system,

we consider the prey’s Gompertz growth and the square-root functional response. The existence of

fixed points and stability are examined. Using the center manifold and bifurcation theory, we found

that the system undergoes transcritical bifurcation, period-doubling bifurcation, and Neimark-Sacker

bifurcation. In addition, numerical examples are presented to illustrate the consistency of the analytical

findings. The bifurcation diagrams show that the positive fixed point is stable if the death rate of the

predator is greater than a threshold value. Biologically, it means that to prevent the predator population

from growing uncontrollably and stability of the positive fixed point, the predator’s death rate should

be greater than the threshold value.

1. Introduction

In mathematical ecology, a predator-prey interaction is essential due to its significance and universal

existence. One of the foremost imperative subjects in mathematical ecology is the dynamic mutual

action between predator and prey populations, which aids in conserving species in a habitat. The first

predator-prey interaction was derived independently by Lotka [1], and Volterra [2], and it is known as

the Lotka-Volterra predator-prey system. Since then, numerous researchers have made much progress

considering different biological facts.
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The functional response is an essential component of predator-prey interactions within population

dynamics. It illustrates the link between the predator’s consumption rate and the density of prey.

It denotes how much prey each predator consumes. Holling (1965) proposed three distinct types of

functional responses [3]. Subsequently, a number of functional responses were proposed by scholars

such as Crowley-Martin [4] and Beddington-DeAngelis [5, 6]. Later, several research studies investi-

gated models centered on predator-prey interactions, encompassing diverse categories of functional

responses [7–12].

Some prey populations exhibit herd behavior, where interactions between predators and prey occur

primarily at the boundaries of the prey population. The nature of this interaction is not sufficiently

explicable through Holling-type responses. It is noteworthy that a particular population of prey exhibits

collective behavior known as herd behavior. Therefore, the rate at which a predator captures its prey

differs from conventional models. As an example, the predation rate of zooplankton by fish in marine

ecosystems exceeds the predation rate of phytoplankton. The observed phenomenon entails the

manifestation of herding behavior among phytoplankton. The utilization of the square root of the

prey population was employed by Ajraldi et al. [13] as a method to investigate the herd behavior of

the prey population. This strategy facilitated the predator’s ability to interact with the prey in the

boundary region of the group. Numerous scholars have investigated the mechanisms of predator-prey

relationships by utilizing square-root functional responses [14–23].

We examine a predator-prey interaction when the prey exhibits group defense, which is represented

by the set of ordinary differential equations given as:
dx
dt = xg(x,K)− yp(x),

dy
dt = −dy + q(x)y ,

(1.1)

where x , y , K > 0, and d > 0 are the prey population density, predator population density, carrying

capacity, and predator’s death rate, respectively. In the absence of a predator, the function g(x,K)

indicates the particular growth rate of the prey. We employ Gompertz growth [24] of prey g(x,K) =

r ln(Kx ), with a natural growth rate r > 0. The predator response function is represented by p(x),

and we assume it is of square root type, i.e, p(x) = m
√
x , where m > 0 represents the predator’s

search efficiency. Moreover, q(x) describes the conversion rate of prey. For some positive constant

c, q(x) = cp(x) in Gauss’ model. Considering all assumptions, system (1.1) takes the following form:


dx
dt = rx ln(Kx )−m

√
xy ,

dy
dt = −dy + cm

√
xy .

(1.2)

Due to the square root term, the Jacobian of system (1.2) possesses a singularity. We utilize

the transformations x(t) = u2(t) and y(t) = v(t) to understand it better. After applying this

transformation to system (1.2), we obtain
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du
dt = 1

2 ru ln( K
u2 )− 1

2mv,

dv
dt = −dv + cmuv.

(1.3)

In cases where a population has no overlapping generations, discrete systems that are governed by

difference equations are comparatively more appropriate than continuous systems. Several species,

such as monocarpic plants and semelparous animals, exhibit distinct generations that remain different

from one another, and reproductive events occur at anticipated intervals during specific mating sea-

sons. Discrete-time mappings or difference equations are employed to depict their interrelationships.

Discrete-time dynamical systems have complicated and diversified dynamical properties [25–31]. The

system to be analyzed in this work is then obtained by using the forward Euler technique on the system

(1.3) as follows: un+1 = un + h
2 (run ln( K

u2
n

)−mvn),

vn+1 = vn + h(cmunvn − dvn),
(1.4)

where h > 0 denotes the step size. The main contributions of this study are listed as follows:

• A discrete-time predator-prey system with Gompertz growth and herd behavior is proposed.

• The study investigates the existence and topological categorization of fixed points.

• The results of our study indicate that the system (1.4) undergoes transcritical, period-doubling

(PD), and Neimark-Sacker (NS) bifurcations.

The following outlines the format of the paper: Section 2 investigates the existence and stability of

fixed points in the system (1.4). In Section 3, we employ the center manifold theorem and bifurcation

theory to analyze local bifurcation analysis at fixed points of the system (1.4). Section 4 presents

some examples to verify our theoretical results. Some closing observations are added in Section 5.

2. Existence and stability of fixed points

The long-term behavior of dynamical system depends on fixed points. Stable fixed points cause

the system to converge, while unstable ones cause oscillation or chaos. The existence and stability

conditions for the fixed points of system (1.4) are investigated in this section. By simple algebraic com-

putations, the system (1.4) is found to have two fixed points: P1(
√
K, 0) and P2( d

cm ,
rd
cm2 ln(kc

2m2

d2 )).

The first fixed point P1 is a boundary point. Biologically, it indicates that when there are no predators

around, the number of prey approaches the square root of the carrying capacity. The second fixed

point, P2 is the unique positive fixed point in the system (1.4) if K > d2

c2m2 .

Now, we will look at the local stability of the fixed points in the system (1.4). The eigenvalues of

the Jacobian matrix computed at the fixed points define the local stability of the fixed points. At the

point (ū, v̄), the Jacobian matrix of system (1.4) is
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J(ū, v̄) =

[
1− hr + 1

2hr ln( K
ū2 ) −hm2

chmv̄ 1− dh + chmū

]
. (2.1)

We apply the following results to examine the stability of the fixed points:

Lemma 2.1. [32] Let P (q) = q2 +Sq+ T be the characteristic polynomial of J(ū, v̄), and q1, q2 be

the two roots of P (q) = 0.

(i) If |q1,2| < 1, then (ū, v̄) is a sink (LAS),

(ii) If |q1,2| > 1, then (ū, v̄) is a source,

(iii) if |q1| < 1 ∧ |q2| > 1 (or |q1| > 1 ∧ |q2| < 1), then (ū, v̄) is a saddle point (SP),

(iv) if either |q1| = 1 or |q2| = 1, then (ū, v̄) is a non-hyperbolic point (NHP).

Lemma 2.2. [32] Let P (q) = q2 + Sq + T and P (1) > 0. If q1, q2 are roots of P (q) = 0, then

(i) |q1,2| < 1 if P (−1) > 0 ∧ T < 1,

(ii) |q1| < 1 ∧ |q2| > 1 (or |q1| > 1 ∧ |q2| < 1) if P (−1) < 0,

(iii) |q1| > 1 ∧ |q2| > 1 if P (−1) > 0 ∧ T > 1,

(iv) q1 = −1 ∧ |q2| 6= 1 if P (−1) = 0 ∧ S 6= 0, 2,

(v) q1 ∧ q2 are complex, and |q1,2| = 1 if S2 − 4T < 0 ∧ T = 1.

The Jacobian matrix computed at the fixed point P1(
√
K, 0) is

J(P1) =

[
1− hr −mh2

0 1− dh + cmh
√
K

]
.

The following result describes the topological classification of P1(
√
K, 0):

Proposition 2.1. The fixed point P1(
√
K, 0) is

(i) LAS if

d > cm
√
K and 0 < h < min

{
2
r ,

2
d−cm

√
K

}
,
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(ii) a source if any of the following is true:

(a) d < cm
√
K and h > 2

r ,

(b) d > cm
√
K and h > max

{
2
r ,

2
d−cm

√
K

}
,

(iii) a SP if any of the following is true:

(a) d < cm
√
K and h < 2

r ,

(b) d > cm
√
K and min

{
2
r ,

2
d−cm

√
K

}
< h < max

{
2
r ,

2
d−cm

√
K

}
,

(iv) NHP if any of the following is true:

(a) h = 2
r ,

(b) d = cm
√
K,

(c) h = 2
d−cm

√
K
, d 6= cm

√
K.

It is evident that if d = cm
√
K, then one of the eigenvalues of J(P1) is 1. Consequently, a

transcritical bifurcation may occur if the parameters change in a close neighborhood of Γ1.

Γ1 =

{
h, r, K,m, c, d ∈ R+

∣∣∣∣d = d1 = cm
√
K, h 6=

2

r

}
.

Moreover, if h = 2
r or h = 2

d−cm
√
K
, d 6= cm

√
K, then one of the eigenvalues of J(P1) is −1. So,

a PD bifurcation may occur if the parameters change in a close neighborhood of Γ2 or Γ3, where

Γ2 =

{
h, r, K,m, c, d ∈ R+

∣∣∣∣h = h1 =
2

r
, h 6=

2

d − cm
√
K
, d 6= cm

√
K

}
,

and

Γ3 =

{
h, r, K,m, c, d ∈ R+

∣∣∣∣h = h12 =
2

d − cm
√
K
, d 6= cm

√
K, h 6=

2

r

}
.

The Jacobian matrix at P2( d
cm ,

rd
cm2 ln(kc

2m2

d2 )) is

J(P2) =

[
1− hr + hr

2 ln(kc
2m2

d2 ) −mh2
dhr
m ln(kc

2m2

d2 ) 1

]
.

The characteristic polynomial of J(P2) is

P (q) = q2 + Sq + T, (2.2)

where

S = −2 + A1h, T = 1− A1h + A2h
2,

and

A1 = r −
r

2
ln

(
kc2m2

d2

)
, A2 =

dr

2
ln

(
kc2m2

d2

)
.

Through simple calculations, we obtain
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P (0) = 1− A1h + A2h
2,

P (1) = A2h
2 > 0,

P (−1) = 4− 2A1h + A2h
2.

Using the lemma (2.1), we acquire the local dynamics of the fixed point P2( d
cm ,

rd
cm2 ln(kc

2m2

d2 )).

Proposition 2.2. Assume that k > d2

c2m2 . The fixed point P2( d
cm ,

rd
cm2 ln(kc

2m2

d2 )) of the system (1.4)

is

(1) LAS if any of the following is true:

(a) A1 > 0, A2
1 − 4A2 < 0, and 0 < h < A1

A2
,

(b) A1 > 0, A2
1 − 4A2 ≥ 0, and 0 < h <

A1−
√
A2

1−4A2

A2
,

(2) source if any of the following is true:

(a) A1 ≤ 0,

(b) A1 > 0, A2
1 − 4A2 ≤ 0, and h > A1

A2
,

(c) A1 > 0, A2
1 − 4A2 > 0, and h > A1+

√
A2

1−4A2

A2
,

(3) SP if any of the following is true:

A1 > 0, A2
1 − 4A2 > 0, and A1−

√
A2

1−4A2

A2
< h <

A1+
√
A2

1−4A2

A2
,

(4) NHP if any of the following is true:

(a) A1 > 0, A2
1 − 4A2 > 0, and h =

A1±
√
A2

1−4A2

A2
,

(b) A1 > 0, A2
1 − 4A2 < 0, and h = A1

A2
.

The condition for J(P2) eigenvalues to be unit-modulus complex is established when A1 > 0,

A2
1 − 4A2 < 0, and h = A1

A2
. Thus, the NS bifurcation occurs at point P2 in the system (1.4) when

the parameters are altered in the vicinity of Ω1.

Ω1 =

{
h, r, K,m, c, d ∈ R+

∣∣∣∣A1 > 0, A2
1 − 4A2 < 0, h = h3 =

A1

A2

}
.

Furthermore, if A1 > 0, A2
1 − 4A2 > 0, and h =

A1±
√
A2

1−4A2

A2
, one of the eigenvalues of the matrix

J(P2) is −1, while the other eigenvalue λ meets the condition that |λ| 6= 1. If the parameters fluctuate

slightly around Ω2 or Ω3, a PD bifurcation may occur, where

Ω2 =

{
h, r, K,m, c, d ∈ R+

∣∣∣∣A1 > 0, A2
1 − 4A2 > 0, h = h21 =

A1 +
√
A2

1 − 4A2

A2

}
,

and
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Ω3 =

{
h, r, K,m, c, d ∈ R+

∣∣∣∣A1 > 0, A2
1 − 4A2 > 0, h = h2 =

A1 −
√
A2

1 − 4A2

A2

}
.

3. Local Bifurcation Analysis

The present section delves into various types of fixed-point bifurcations that could potentially man-

ifest in the system (1.4). Bifurcations in predator-prey systems manifest as a result of alterations

in the parameters. A slight modification in the parameter leads to a bifurcation. Bifurcations in

predator-prey systems play a crucial role in forecasting the dynamics of wild populations and formu-

lating viable approaches for sustainable management. Improper management of bifurcations can lead

to disturbances in population dynamics and the consequent destruction of ecosystems. For a detailed

bifurcation analysis, we recommend that readers refer to [31,33–39].

3.1. Transcritical Bifurcation at P1(
√
K, 0).

This section discusses transcritical bifurcation at the boundary fixed point P1(
√
K, 0) using cen-

ter manifold theory. Assuming that (h, r, K,m, c, d) ∈ Γ1, and γ be small perturbation in d , the

subsequent perturbation of the system (1.4) is taken into consideration:un+1 = un + h
2 (run ln( K

u2
n

)−mvn),

vn+1 = vn + h(cmunvn − (d1 + γ)vn).
(3.1)

In order to translate fixed point P1(
√
K, 0) to (0, 0), we define the translation map as follows:

an = un −
√
K, bn = vn.

As a result of this translation map, the system (3.1) transforms to

[
an+1

bn+1

]
=

[
1− hr −hm2

0 1

][
an

bn

]
+

[
− hr

2
√
K
a2
n + hr

6K a
3
n +O((|an|+ |bn|+ |γ|)4)

−hγbn + chmanbn +O((|an|+ |bn|+ |γ|)4)

]
. (3.2)

Let

T =

[
−mr2 1

1 0

]
.

Under the following transformation

[
an

bn

]
= T

[
en

fn

]
, (3.3)

the system (3.2) becomes



8 Int. J. Anal. Appl. (2023), 21:100

[
en+1

fn+1

]
=

[
1 0

0 1− hr

][
en

fn

]
+

[
− chm2

2r e
2
n + chmenfn − henγ +O((|en|+ |fn|+ |γ|)4)

F (en, fn, γ)

]
, (3.4)

where

F (en, fn, γ) = −
hm2(2cm + r√

K
)

8r2
e2
n −

hm3

48Kr2
e3
n +

hm

2
(

1√
K

+
cm

r
)enfn +

hm2

8Kr
e2
n fn

−
hr

2
√
K
f 2
n −

hm

4K
enf

2
n +

hr

6K
f 3
n −

hm

2r
enγ +O((|en|+ |fn|+ |γ|)4).

Subsequently, the center manifold is obtained for the system (3.4). This can be defined by the

following:

WC =

{
(en, fn, γ) ∈ R3

∣∣∣∣fn = c1e
2
n + c2enγ + c3γ

2 +O((|en|+ |γ|)3)

}
,

where

c1 = −
m2(2cm + r√

K
)

8r3
, c2 = −

m

2r2
, c3 = 0.

Hence, the center manifold-restricted system (3.4) is

F̃ : en+1 = en −
chm2

2r
e2
n − henγ −

chm3(2cm + r√
K

)

8r3
e3
n −

chm2

2r2
e2
nγ.

Since F̃ (0, 0) = 0, F̃en(0, 0) = 1, F̃γ(0, 0) = 0, F̃enen(0, 0) = − chm2

r 6= 0, F̃enγ(0, 0) = −h 6= 0,

the system (1.4) experiences transcritical bifurcation at the fixed point P1(
√
K, 0).

The following theorem provides the parametric conditions for the presence and direction of trans-

critical bifurcation for system (1.4) at its boundary fixed point P1(
√
K, 0).

Theorem 3.1. Assume that (h, r, K,m, c, d) ∈ Γ1, then the system (1.4) experiences transcritical

bifurcation at P1(
√
K, 0) when d varies in a small neighborhood of d1 = cm

√
K. Furthermore, if

d > d1, then the system (1.4) has 2 fixed points, and if d < d1, then the system (1.4) has only one

fixed point P1(
√
K, 0).

3.2. PD Bifurcation at P1(
√
K, 0).

The PD bifurcation at the fixed point P1(
√
K, 0) in Γ2 is discussed in this section. For the domain

Γ3, a similar investigation can be done. Suppose that (h, r, K,m, c, d) ∈ Γ2, and γ be minimal change

in h, the subsequent perturbation of the system (1.4) is taken into consideration:un+1 = un + h1+γ
2 (run ln( K

u2
n

)−mvn),

vn+1 = vn + (h1 + γ)(cmunvn − dvn).
(3.5)

In order to translate the fixed point P1(
√
K, 0) to (0, 0), we define the translation map as follows:

an = un −
√
K, bn = vn.
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As a result of this translation map, the system (3.5) transforms to[
an+1

bn+1

]
=

[
−1 −mr
0 −2d+2cm

√
K+r

r

][
an

bn

]

+

[
−m2 bnγ − ranγ −

1√
K
a2
n − r

2
√
K
a2
nγ + 1

3K a
3
n +O((|an|+ |bn|+ |γ|)4)

(−d + cm
√
K)bnγ + 2cm

r anbn + cmanbnγ +O((|an|+ |bn|+ |γ|)4)

]
.

(3.6)

Let

T =

1 − m
2(−d+cm

√
K+r)

0 1

 .
Under the following transformation

[
an

bn

]
= T

[
en

fn

]
, (3.7)

system (3.6) becomes

[
en+1

fn+1

]
=

[
−1 0

0 −2d+2cm
√
K+r

r

][
en

fn

]
+

[
F (en, fn, γ)

G(en, fn, γ)

]
, (3.8)

where

F (en, fn, γ) = C1e
2
n + C2e

3
n + C3enfn + C4e

2
n fn + C5f

2
n + C6enf

2
n + C7f

3
n + C8enγ + C9e

2
nγ + C10enfnγ

+O((|en|+ |fn|+ |γ|)4),

G(en, fn, γ) =
2cm

r
enfn −

cm2

r(−d + cm
√
K + r)

f 2
n + (−d + cm

√
K)fnγ + cmenfnγ +O((|en|+ |fn|+ |γ|)4),

C1 = −
1√
K
, C2 =

1

3K
, C3 =

m(cm
√
K + r)

r
√
K(−d + cm

√
K + r)

, C4 =
m

2dK − 2cmK3/2 − 2Kr
,

C5 = −
m2(2cm

√
K + r)

4r
√
K(−d + cm

√
K + r)2

, C6 =
m2

4K(−d + cm
√
K + r)2

, C7 = −
m3

24K(−d + cm
√
K + r)3

,

C8 = −r, C9 =
−r√
K
, C10 =

m(cm
√
K + r)

2
√
K(−d + cm

√
K + r)

.

Subsequently, the center manifold WC for the system (3.8) is computed and characterized as

follows:

WC =

{
(en, fn, γ) ∈ R3

∣∣∣∣fn = c1e
2
n + c2enγ + c3γ

2 +O((|en|+ |γ|)3)

}
,

where

c1 = 0, c2 = 0, c3 = 0.

System (3.8) when confined to the center manifold is expressed as follows:
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F̃ : en+1 = −en −
1√
K
e2
n +

1

3K
e3
n − renγ −

r√
K
e2
nγ. (3.9)

For map (3.9) to experience PD bifurcation, we need the value of the following two expressions to

be non-zero:

l1 = F̃γ F̃enen + 2F̃enγ

∣∣∣∣
(0,0)

, l2 =
1

2
(F̃enen)2 +

1

3
F̃enenen .

From simple computations, we obtain

l1 = −2r, l2 =
8

3K
.

The following theorem provides the parametric conditions for the presence and direction of PD

bifurcation for system (1.4) at its boundary fixed point P1(
√
K, 0).

Theorem 3.2. Assume that (h, r, K,m, c, d) ∈ Γ2, then the system (1.4) experiences PD bifurcation

at P1(
√
K, 0) when h varies in a small neighborhood of h1 = 2

r . Furthermore, the period-2 points that

bifurcate from P1(
√
K, 0) are stable.

3.3. PD Bifurcation at P2( d
cm ,

rd
cm2 ln(kc

2m2

d2 )).

The PD bifurcation at the fixed point P2( d
cm ,

rd
cm2 ln(kc

2m2

d2 )) for the domain Ω3 is discussed in this

section. For the domain Ω2, a similar investigation can be done. Suppose that (h, r, K,m, c, d) ∈
Ω3, and γ be minimal change in h, the subsequent perturbation of the system (1.4) is taken into

consideration: un+1 = un + h2+γ
2 (run ln( K

u2
n

)−mvn),

vn+1 = vn + (h2 + γ)(cmunvn − dvn).
(3.10)

In order to translate fixed point P2( d
cm ,

rd
cm2 ln(kc

2m2

d2 )) to (0, 0), we define the translation map as

follows:

an = un −
d

cm
, bn = vn −

rd

cm2
ln(
kc2m2

d2
).

As a result of this translation map, the system (3.10) transforms to

[
an+1

bn+1

]
=

[
1− A1h2 −h2m

2
2h2A2
m 1

][
an

bn

]
+

[
F (an, bn, γ)

G(an, bn, γ)

]
, (3.11)

where

F (an, bn, γ) = −
m

2
bnγ −

ch2mr

2d
a2
n −

cmr

2d
a2
nγ +

c2h2m
2r

6d2
a3
n − A1anγ +O((|an|+ |bn|+ |γ|)4),

G(an, bn, γ) = ch2manbn + cmanbnγ +
2A2

m
anγ +O((|an|+ |bn|+ |γ|)4).

For h2 =
A1−
√
A2

1−4A2

A2
, the eigenvalues of J(P2) are λ1 = −1 and λ2 = 3− A1h2.

Let
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T =

 m

−A1+
√
A2

1−4A2
−−A

2
1m+A1m

√
A2

1−4A2+2A2m

2A2(−A1+
√
A2

1−4A2)

1 1

 .
Under the following transformation

[
an

bn

]
= T

[
en

fn

]
. (3.12)

System (3.11) becomes

[
en+1

fn+1

]
=

[
−1 0

0 λ2

][
en

fn

]
+

[
F (en, fn, γ)

G(en, fn, γ)

]
, (3.13)

where

λ2 =
2A4

1 − 2A3
1

√
A2

1 − 4A2 − 11A2
1A2 + 7A1A2

√
A2

1 − 4A2 + 12A2
2

A2(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
,

F (en, fn, γ) = D1e
2
n +D2e

3
n +D3enfn +D4e

2
n fn +D5f

2
n +D6enf

2
n +D7f

3
n +D8enγ +D9e

2
nγ +D10enfnγ

+O((|en|+ |fn|+ |γ|)4),

G(en, fn, γ) = E1e
2
n + E2e

3
n + E3enfn + E4e

2
n fn + E5f

2
n + E6enf

2
n + E7f

3
n + E8e

2
nγ + E9fnγ + E10enfnγ

+O((|en|+ |fn|+ |γ|)4),

D1 = −
cm2(−A2

1d + A1d
√
A2

1 − 4A2 + A2(2d − r))

A2d(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
,

D2 = −
c2m4r

3d2(−A1 +
√
A2

1 − 4A2)(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
,

D3 = −
cm2(−A2

1 + A1

√
A2

1 − 4A2 + 2A2)(A2
1d − A1d

√
A2

1 − 4A2 + 2A2r)

2A2
2d(−A2

1 + A1

√
A2

1 − 4A2 + 4A2)
,

D4 =
c2m4r(−A2

1 + A1

√
A2

1 − 4A2 + 2A2)

2A2d2(−A1 +
√
A2

1 − 4A2)(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
,

D5 =
cm2(2d + r)(A2

1 − A1

√
A2

1 − 4A2 − 2A2)2

4A2
2d(−A2

1 + A1

√
A2

1 − 4A2 + 4A2)
,

D6 = −
c2m4r(A2

1 − A1

√
A2

1 − 4A2 − 2A2)2

4A2
2d

2(−A1 +
√
A2

1 − 4A2)(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
,

D6 = −
c2m4r(A2

1 − A1

√
A2

1 − 4A2 − 2A2)2

4A2
2d

2(−A1 +
√
A2

1 − 4A2)(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
,

D7 =
c2m4r(−A2

1 + A1

√
A2

1 − 4A2 + 2A2)3

24A3
2d

2(−A1 +
√
A2

1 − 4A2)(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
,

D8 =
2A2

−A1 +
√
A2

1 − 4A2

,
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D9 =
2cm2(−A2

1d + A1d
√
A2

1 − 4A2 + A2(2d − r))

d(−A1 +
√
A2

1 − 4A2)(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
,

D10 = −
cm2(−A2

1 + A1

√
A2

1 − 4A2 + 2A2)(−A2
1d + A1d

√
A2

1 − 4A2 − 2A2r)

2A2d(−A1 +
√
A2

1 − 4A2)(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
,

E1 = −
cm2(2d + r)

d(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
,

E2 =
c2m4r

3d2(−A1 +
√
A2

1 − 4A2)(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
,

E3 =
cm2(2A2r − A2

1(d + r) + A1(d + r)
√
A2

1 − 4A2)

A2d(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
,

E4 =
c2m4r(−A2

1 + A1

√
A2

1 − 4A2 + 2A2)

2A2d2(−A1 +
√
A2

1 − 4A2)(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
,

E5 =
cm2(−2A2

1A2(d − 2r) + 2A1A2(d − r)
√
A2

1 − 4A2 − A4
1r + A3

1r
√
A2

1 − 4A2 + 2A2
2(2d − r))

2A2
2d(−A2

1 + A1

√
A2

1 − 4A2 + 4A2)
,

E6 =
c2m4r(A2

1 − A1

√
A2

1 − 4A2 − 2A2)2

4A2
2d

2(−A1 +
√
A2

1 − 4A2)(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
,

E7 = −
c2m4r(−A2

1 + A1

√
A2

1 − 4A2 + 2A2)3

24A3
2d

2(−A1 +
√
A2

1 − 4A2)(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
,

E8 =
2A2cm

2(2d + r)

d(−A1 +
√
A2

1 − 4A2)(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
,

E9 =
2(−A4

1 + A3
1

√
A2

1 − 4A2 + 5A2
1A2 − 3A1A2

√
A2

1 − 4A2 − 4A2
2)

(−A1 +
√
A2

1 − 4A2)(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
,

E10 = −
cm2(2A2r − A2

1(d + r) + A1(d + r)
√
A2

1 − 4A2)

d(−A1 +
√
A2

1 − 4A2)(−A2
1 + A1

√
A2

1 − 4A2 + 4A2)
.

Next, we derive the center manifold for (3.13), which may be characterized as follows:

WC =

{
(en, fn, γ) ∈ R3

∣∣∣∣fn = c1e
2
n + c2enγ + c3γ

2 +O((|en|+ |γ|)3)

}
,

where

c1 =
A2cm

2(2d + r)

2d(A4
1 + A3

1

√
A2

1 − 4A2 − 5A2
1A2 − 3A1A2

√
A2

1 − 4A2 + 4A2
2)
, c2 = 0, c3 = 0.

System (3.13) restricted to the center manifold is

F̃ : en+1 = −en +D1e
2
n +D2e

3
n +D8enγ +D9e

2
nγ +

D3E1

1− λ2
e3
n . (3.14)

For map (3.14) to experience PD bifurcation, we need the value of the following two expressions

to be non-zero:

l1 = F̃γ F̃enen + 2F̃enγ

∣∣∣∣
(0,0)

, l2 =
1

2
(F̃enen)2 +

1

3
F̃enenen .

From simple computations, we obtain
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l1 = 2D8, l2 = 2(D2
1 +D2 +

D3E1

1− λ2
).

The following result is drawn from the calculations mentioned above:

Theorem 3.3. Suppose that (h, r, K,m, c, d) ∈ Ω3. The system (1.4) undergoes PD bifurcation

at the fixed point P2( d
cm ,

rd
cm2 ln(kc

2m2

d2 )) if l2 6= 0 and h differs in a small neighborhood of h2 =
A1−
√
A2

1−4A2

A2
. Moreover, if l2 > 0 (respectively l2 < 0), then the period-2 orbits that bifurcate from

P2( d
cm ,

rd
cm2 ln(kc

2m2

d2 )) are stable (respectively, unstable).

3.4. NS Bifurcation at P2( d
cm ,

rd
cm2 ln(kc

2m2

d2 )).

This section discusses the NS bifurcation at the fixed point P2( d
cm ,

rd
cm2 ln(kc

2m2

d2 )) for the domain

Ω1. Suppose that (h, r, K,m, c, d) ∈ Ω1, and γ be minimal change in h3, the subsequent perturbation

of the system (1.4) is taken into consideration:

un+1 = un + h3+γ
2 (run ln( K

u2
n

)−mvn),

vn+1 = vn + (h3 + γ)(cmunvn − dvn).
(3.15)

We define an = un − d
cm , bn = vn − rd

cm2 ln(kc
2m2

d2 ), to translate fixed point P2( d
cm ,

rd
cm2 ln(kc

2m2

d2 ))

to (0, 0). As a result of this translation map, the system (3.15) transforms to

[
an+1

bn+1

]
=

[
1− A1(A1+A2γ)

A2
−m2 (A1

A2
+ γ)

2A1+2A2γ
m 1

][
an

bn

]
+

[
F (an, bn)

G(an, bn)

]
, (3.16)

where

F (an, bn) = −
cmr(A1

A2
+ γ)

2d
a2
n +

c2m2r(A1
A2

+ γ)

6d2
a3
n +O((|an|+ |bn|+ |γ|)4),

G(an, bn) = cm(
A1

A2
+ γ)anbn +O((|an|+ |bn|+ |γ|)4).

The characteristic equation corresponding to the linearized part of the system (3.16) at the origin

is

λ2 − α(γ)λ+ β(γ) = 0, (3.17)

where

α(γ) = 2−
A2

1

A2
− A1γ,

β(γ) = 1 + A1γ + A2γ
2.

The equation (3.17) roots are complex that have the property |λ1,2| = 1, which are given by

λ1,2 =
α(γ)± i

√
4β(γ)− α2(γ)

2
.
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By computations, we obtain

|λ1| = |λ2| =
√
β(γ),

and (
d |λ1|
dγ

)
γ=0

=

(
d |λ2|
dγ

)
γ=0

=
A1

2
> 0.

Moreover, it is required that λi1, λ
i
2 6= 1 for i = 1, 2, 3, 4 at γ = 0, which is equivalent to α(0) 6=

±2, 0, 1. Since A1 > 0, A2
1 − 4A2 < 0 and α(0) = 2 − A2

1
A2
, therefore α(0) 6= ±2. We only need to

require that α(0) 6= 0, 1, which leads to A2
1 6= 2A2, A2.

The canonical form at γ = 0 of the linear part in (3.16) is achieved through the utilization of the

subsequent transformation: [
an

bn

]
=

−A1m
2A2

0

A2
1

2A2
−A1

√
4A2−A2

1

2A2

[en
fn

]
. (3.18)

Upon application of the mapping (3.18), the system (3.16) transforms as follows:

[
en+1

fn+1

]
=

[
µ −ν
ν µ

][
en

fn

]
+

[
F (en, fn)

G(en, fn)

]
, (3.19)

where

µ = 1−
A2

1

2A2
, ν =

A1

√
4A2 − A2

1

2A2
,

F (en, fn) =
A2

1cm
2r

4A2
2d

e2
n +

A3
1c

2m4r

24A3
2d

2
e3
n +O((|en|+ |fn|+ |γ|)4),

G(en, fn) =
A3

1cm
2(2d + r)

4A2
2d
√

4A2 − A2
1

e2
n +

A4
1c

2m4r

24A3
2d

2
√

4A2 − A2
1

e3
n −

A2
1cm

2

2A2
2

enfn +O((|en|+ |fn|+ |γ|)4).

The below-mentioned number L explains how the invariant curve appears in a system going through

the NS bifurcation.

L =

([
−Re

(
(1− 2λ1)λ2

2

1− λ1
η20η11

)
−

1

2
|η11|2 − |η02|2 + Re(λ2η21)

])
γ=0

,

where

η20 =
1

8
[Fenen − Ffnfn + 2Genfn + i(Genen − Gfnfn − 2Fenfn)] ,

η11 =
1

4
[Fenen + Ffnfn + i(Genen + Gfnfn)] ,

η02 =
1

8
[Fenen − Ffnfn − 2Genfn + i(Genen − Gfnfn + 2Fenfn)] ,

η21 =
1

16
[Fenenen + Fenfnfn + Genenfn + Gfnfnfn + i(Genenen + Genfnfn − Fenenfn − Ffnfnfn)] .

From the calculations shown above, we can obtain the following result:
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Theorem 3.4. Consider (h, r, K,m, c, d) ∈ Ω1 and A2
1 6= 2A2, A2. When the parameter h differs in

a small neighborhood of h3 = A1
A2
, the system (1.4) undergoes NS bifurcation at the fixed point P2 if

L 6= 0. Additionally, if L > 0, a repelling invariant closed curve bifurcates from P2, whereas if L < 0,

an attracting invariant closed curve bifurcates from P2.

4. Numerical examples

This section will strengthen our theoretical investigations of the system by presenting some numer-

ical examples that illustrate its numerous qualitative properties.

4.1. PD bifurcation of the system (1.4) at P2 by using h as bifurcation parameter.

Consider the following parametric values:

c = 0.9, m = 0.5, d = 0.15, r = 1.5, k = 0.12,

and initial conditions u0 = 0.5, v0 = 0.05. For these values, the bifurcation value is h = 1.39251, and

the positive fixed point is obtained as P2(0.333333, 0.076961). The eigenvalues of J(P2) are obtained

as λ1 = −1, λ2 = 0.991606, confirming that the system (1.4) undergoes period doubling bifurcation

at P2(0.333333, 0.076961) as h passes through h0 = 1.39251. Figures (1a,1b) depict bifurcation

figures for h ∈ [1.1, 1.7]. The MLE is plotted in figure (1c).

The fixed point is a LAS for these parametric values if 0 < h < 1.39251. Figures (1d,1e,1f)

depict phase portraits of the system (1.4) for distinct values of h. From the figures, the

P2(0.333333, 0.076961) is a LAS for 0 < h < 1.39251, but fails to retain stability at h = 1.39251,

where the system (1.4) experiences PD bifurcation.

4.2. NS bifurcation of the system (1.4) at P2 by using h as bifurcation parameter.

Consider the following parametric values:

c = 0.9, m = 0.5, d = 0.15, r = 1.5, k = 0.5,

and initial conditions u0 = 0.4, v0 = 1.4. For these values, the bifurcation value is h = 2.19813, and

the positive fixed point is obtained as P2(0.333333, 1.50408). The eigenvalues of J(P2) are computed

as λ1 = 0.591212−0.806516i , λ2 = 0.591212+0.806516i with |λ1,2| = 1, confirming that the system

(1.4) is going through NS bifurcation at P2(0.333333, 1.50408) as h passes through h0 = 2.19813.

Figures (2a,2b) depict bifurcation diagrams for h ∈ [2.1, 2.8]. The MLE is plotted in figure 2c.

The fixed point P2 is a LAS for these parametric values if h < 2.19813. Figures (2d-2k) depict

phase portraits of the system (1.4) for some values of h. From the figures, P2 is a LAS for h < 2.19813

but loses stability at h = 2.19813, where the system (1.4) goes through NS bifurcation. A smooth

curve that is invariant emerges for values of h ≥ 2.19813, with its radius increasing proportionally to

the increase in h. The sudden disappearance of the invariant curve and subsequent emergence of a
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(a) (b)

(c)
(d)

(e) (f)

Figure 1. Bifurcation diagrams, MLE graph, phase portraits for c = 0.9, m = 0.5, d =

0.15, r = 1.5, k = 0.12, u0 = 0.5, v0 = 0.05.



Int. J. Anal. Appl. (2023), 21:100 17

periodic orbit are observed upon increasing the value of h. Subsequently, the periodic orbit is replaced

by an invariant curve. The phenomenon persists until a strange attractor appears. See Figures (2l-2o).

4.3. NS bifurcation of the system (1.4) at P2 by using d as bifurcation parameter.

Consider the following parametric values:

c = 0.9, m = 0.5, r = 1.5, k = 0.5, h = 2.19813,

and initial conditions u0 = 0.4, v0 = 1.4. For these values, the bifurcation value is d = 0.15,

and the positive fixed point is obtained as P2(0.333333, 1.50408). The eigenvalues of J(P2) are

λ1 = 0.591212 − 0.806518i , λ2 = 0.591212 + 0.806518i with |λ1,2| = 1, indicating that the system

(1.4) is experiencing NS bifurcation at P2(0.333333, 1.50408) as the bifurcation parameter d passes

through d0 = 0.15. Figures (3a,3b) depict bifurcation diagrams for d ∈ [0.14, 0.17]. The MLE

is plotted in figure 3c. The bifurcation diagrams show that the positive fixed point is stable if the

death rate of the predator is greater than a threshold value. Biologically, it means that to prevent the

predator population from growing uncontrollably and stability of the positive fixed point, the predator’s

death rate should be greater than the threshold value.

4.4. Sensitive dependence on initial conditions.

Sensitive dependency on initial conditions implies that small changes in the initial populations of

predator and prey may result in drastically different long-term population dynamics. This phenomenon

highlights the importance of accurate and precise measurements of the initial conditions in ecological

investigations and the requirement for strong modeling tools that can account for data uncertainty

and variability. It also highlights the difficulties in forecasting the long-term dynamics of ecological

systems since even minor errors in the initial conditions may lead to considerable errors in predictions.

Figure (4) depicts 2 perturbed trajectories in blue and red colors to highlight the sensitivity of the

system (1.4) to initial conditions. The two trajectories are initially overlapping and identical, but the

divergence between them grows fast after a few repetitions. Figure (4) plots the u− and v−coordinates
of the two trajectories for the system (1.4) against the number of iterations, revealing a reactive

reliance on the initial conditions. The initial perturbation of 2 trajectories is 0.0001. The 2 trajectories

with initial points (u0, v0) = (0.4, 1.4) (trajectory in blue color) and (u0, v0) = (0.4001, 1.4001)

(trajectory in red color) are calculated and plotted in figure (4), respectively. The trajectories of

the system (1.4) are depicted in figure (4) to be sensitively dependent on the initial conditions, i.e.,

complex dynamic behavior happens with an initial perturbation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 2. Bifurcation diagrams, MLE graph, phase portraits for c = 0.9, m = 0.5, d =

0.15, r = 1.5, k = 0.5, u0 = 0.4, v0 = 1.4.
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(a) (b)

(c)

Figure 3. Bifurcation diagrams, MLE graph for c = 0.9, m = 0.5, r = 1.5, k =

0.5, h = 2.19813, u0 = 0.4, v0 = 1.4.
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Figure 4. Sensitive dependence on initial conditions of the system (1.4)

5. Conclusion

The nonlinear dynamics of a novel discrete-time predator-prey system with square root functional

response and Gompertz growth of prey, generated using the forward Euler discretization method, were

examined in this study. The system has a boundary fixed point (
√
K, 0) which always exists, and an

interior fixed point ( d
cm ,

rd
cm2 ln(kc

2m2

d2 )) which exists only if the carrying capacity of prey is greater

than a threshold value. Using bifurcation theory and the center manifold theorem, it is shown that

the system’s fixed points have transcritical bifurcation, PD bifurcation, and NS bifurcation. The less

integral step size h can stabilize the positive fixed point. However, the large integral step size can

destabilize the positive fixed point, resulting in more complex dynamical behaviors, as depicted in the

figures. Moreover, we see that if the death rate of the predator is greater than a threshold value, then

the positive fixed point is stable; otherwise, it is unstable. This threshold value shows the lowest death

rate necessary to prevent the predator population from exploding and to maintain a stable equilibrium

between predator and prey populations. Moreover, it is demonstrated that the trajectories of the

system (1.4) are sensitive to the initial values. Slight variations in initial conditions can significantly

affect the long-term dynamics of ecological systems. The sensitive dependence on initial conditions
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emphasizes the importance of accurate and precise measurements and the need for robust modeling

techniques in ecological studies.
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