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Abstract. In this manuscript, we incorporate Caputo-Hadamard derivatives in impulsive fractional dif-
ferential equations to obtain a new class of impulsive fractional form. Further, the existence of solutions
to the proposed problem has been inferred under a state-dependent delay and suitable hypotheses in

phase spaces. Finally, the considered problem has been supported by an illustrative application.

1. Introduction

The modeling of several events in numerous branches of science and engineering can greatly benefit
from the use of fractional differential equations (FDEs) and fractional integral equations (FIEs).
In fact, there are many applications in electrochemistry, control, porous media, viscoelasticity, and

other fields. We can find basic mathematics and many applications of fractional calculus in the
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monographs [1,3-9, 14]. FDEs involving the Caputo and Hadamard derivatives have recently received
a lot of attention in studies; for examples, see the publications [10-13].

Modeling scientific phenomena has long employed delay differential equations (DEs) or functional
DEs with or without impulse. The delay has frequently been thought of as either a fixed constant or as
an integral, in which case it is referred to as a distributed delay; for examples, see the books [15-17],
and the papers [18,19].

In the study of both qualitative and quantitative theory for functional DEs, the idea of the phase
space (PS) Q is crucial. A seminormed space that satisfies the appropriate axioms is a usual choice,
as described by Hale and Kato [19]. We recommend reading [11,20,21] for a more in-depth discussion
on this subject.

However, in recent years, modeling has been suggested for complex scenarios where the delay
depends on the unidentified functions; for example, see [22, 23] and the references therein. These
equations are usually referred to as state-dependent delay equations. Recently, among other things,
existence results for functional differential equations were developed when the solution to impulsive
situations depended on the delay over a finite interval. Many papers have addressed this purpose, either
by introducing the Caputo functional fractional operators or by introducing other fractional operators
with state-dependent delays. For more information, see [24—33]. According to our knowledge, there
are no works in the literature that discuss Caputo-Hadamard fractional (CHF) order functional DEs

with state-dependent delay and impulses. The paper’s goal is to get that study started.
In this study, we focus on the existence of solutions to the following initial value problems (I\VPs)
for coupled Impulsive fractional differential equations (IFDEs):

HDES(T) = X (T, Sp(r.30). Enreny) - forae. Te K=1[b,Q], b>0, T# 7, j=1,2,..m, £€(0,1],

HDE(T) =X (T, énirer) Sp(r.s,)) . forae. 7€ K =[b, Q] b>0, T7#7, j=12.,m oce€(0,1],
AS,_, = I, (s ). A, =4 (&), =12,

S(7) = ¢(71), &(1) =(7), T € (—00, b,
(1.1)
where €H D% and €H D9 are CHF derivatives with order £ and o, respectively, x,x : K x Ax A - R
are given functions, ¢, ¢ € €, the functions /; : R — R are continuous, j = 1,2, .., m. Further,
b<To<m < <Tp < Tp1=Q, S|, = S(7]7) — S(177), S(1]7) = limjer (75 + €),
and Q is an abstract PS.

S(777) = limje- (7 4 €), similarly Ag|,_

2. Preliminaries

This part is devoted to present some preliminary facts that will be used in the sequel.
Assume that C (K, R) refers to the space of all continuous functions on the interval K. It is a

Banach space (BS) under the norm

1Slloe = sup{IS(7)| : 7 € K}
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Assume also AC (K, R) refers to the space of all absolutely continuous functions & : K — R, and
ACI(K,R) ={w: K = R: k" lw(T) € AC(K,R)}, where k = L.

Definition 2.1. [4] For the function w : [b, c] — R, the HF integral of order £ is described as

lﬁw (1) = I—zﬁ)/ (Iog 2)271 wis) ds, b,c >0,
b

provided that the integral exists.

Definition 2.2. [34] Assume that AC[b,c] = {w : [b,c] — C : k" tw(7) € AC[b,c]}, 0 < b <
c < oo, let £ € C such that Re(£) > 0. The CH derivative of fractional order £ for the function
w € ACJ[b, c| is defined as follows:

(i) If¢=neN, then
(CHDﬁw) (1) = K"w(T).

(i) If£ ¢ N, and n = [Re(£)] + 1, then

et () [ ) ot
b

where [Re(£)] is the integer part of the real number Re(£) and log(.) = log.(.).

Lemma 2.1. [34] Suppose that & € AC/![b, c] and £ € C, then

n—1 JS Ny
1 (1053) (1) = () - 3 (109 7)'
= &

3. Main assumptions

In this study, we will utilize an axiomatic definition of phase Q2 that Hale and Kato introduced in [19]
and adhere to the language from [35], but we will also add some transformations. As a result, the
seminormed linear space of functions (£2, ||.||q) will map (—oo, b] into R. Because we want a solution
to the problem (1.1) to be continuous on (Tn, Tm+1] and the left hand limit exists for every T, the

first two axioms on €2 are necessary. The axioms that €2 must adhere to are as follows:

(S1) If 8, €1 (=00, Q] = R, Q >0, S0, & € 2, and I(7,7), %(Tf), &(1,7). 5(7'J-+) exist with
%(Tj_) = (1) and 5(7'1-_) =&(7j), j=1,2,..,m, then for every 7 € [b, Q\{71, T2, , Tm}
the circumstances below are true:

(1) Sr, & € Q25 and 7 and &7 are continuous functions on [b, Q\{71, T2, -+, Tm};
(2) there are constants X,Y > 0 such that [S(7)| < X ||S7|lq and [E(T)] <Y ¢+ ]lq
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(3) there are two continuous functions B(.),C(.) : Ry — R4 independent of & and two
locally bounded functions D(.), E(.) : R4 — R4 independent of &, such that

{ ISrllg < B(T)sup{|S(s)| : s € [b, Q1} + D(T) S0l .
I€-llq < C(T)sup{I€(s)] : s € [b, QI} + E(7) [|€ollg -

Clearly,
1(S7, &0)llaxa < A(T)sup {|S(s) +&(s)| s € [b, Q + A (1) (S0, é0)laxa }f »

where [[(S7, &7)llaxq = IS7llq + [I€rllg . A(T) = B(7) + C(7), A*(T) = D(7) + E(7).
(S2) The space 2 is complete.

Set
Bo = sup{B(7):7€[bQ]}, Co=sup{C(T):Te€[bQ]}
Do = sup{D(7):7€[bQ]}, Eg=sup{E(T):T€[bQ]},
N = sup{A(T):7€[bQ]}, Ng=sup{A(T):Te[bQ]}.

Consider the following spaces:

J:K—=R, S€AC, ((15, 741, R), j=1,---,m, and there exist
AC' (K.R) =
S(r") and S(777), j=1,---,m, with S(777) = (7)),
and
; E:K =R, £€AC, ((1j, 741, R), j=1,---, m, and there exist
AC" (K.R) =

E(r) and €(r7), j=1,-- . m, with £(r) = (7).
The above spaces are BSs with norms
1S{[acr = sup{l[S(T)llg : 7 € [b, R} and [|€][ sc = sup {[[&(T)lr : T € [b, Q]},

respectively.
Clearly, the product space (= AC’ x AC",]R) is a BS with the norm

1S, Oz = ISllac + €l ac -

Put
Qo ={3.¢: (—00, Q] = R\ (S,¢) € (K, R)NQ} and K' = K\{T1, T2, -+ , Tm}.

Definition 3.1. Suppose that the functions S, € € Qg have £ and ot" derivative on K', respectively.

We say that the pair (3, €) is a solution to Problem (1.1) if & and & satisfy (1.1).

The next result will be helpful in the following as a result of Lemma 2.1.
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Lemma 3.1. Assume that £,0 € (0,1] and p,m € (K, R). The pair (3, &) is a solution to the FIEs

;

i -1
%b""%f(bg 7 p(s)ds if T € [b, 1],
b
T (log Y A) 1 55)
(1) = %b+ﬁ2f(log J) psd5+r([)f(|09 ) deS
J=1T7j1
m
XS0, T E [T Tia), =1
J:
and
( T o—1 n()
£b+ﬁf(|09 ) ds, if T € [b, 1],
b
o—1 _1
£(T) = &b+ ﬁjzl‘rfl (|Og TJ) ﬂ(s)d5_|_ . f(log ) @ds
/ J

+ ;/J(é(ﬂ ). T € [T, Tjya), J=1,--- m,
if and only if & and & are ;;o/ution to the fractional IVP
( CHDES(T) = p(T), for each T € K

CHDeE(T) = n(T), foreach T € K,

A%h:@. =1 (9(7}_)> . and A£|T:Tj = (g(Tj—)) j=1,-,m,
S(b) =y, and £(b) = &p, T € (=00, b].

It is necessary to present the following postulates.

(P1) The functions 7 — ¢+ and T — 9, are continuous from

z(p~.n7) ={(o(s, ). n(s,¥)) : (5.8),(s,9¥) € KxQ, p(s,¢) <0 and n(s, ) <0}

into Q and there is a bounded and continuous functions M®, M¥ : z(p~,n~) — (0, 00) so
that

l6(T)llg < MP(7) I dllg. and [[9(T)llq < MY(7) [¥llg for every T € (o™, n7).

(P2) The functions x,X : K x Ax A — R are continuous.
(P3) There exist u,v € C(K,Ry) and a continuous and nondecreasing function & : [0, c0) X

[0, 00) — (0, 0) such that

IX(T,3,8)| < u(m)P (IS, [€]), foreach T € K, &, & € Q with HI’ZUHOo < 0

X (1,6, 3)] < v(T)®P(|€],]S]), for each 7 € K, S, € € Q with [[/7v]| < oo

(P4) There are positive constants Lq, L3, -+, Ly, L}, so that
L.
1 ° J > L
@ (L L) (oa(m)* flull
L* _
and / > 1,j=1--,m (3.1)

@ (L. L) (og(m)? vl
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4. Main theorem

Now, we are able to formulate our basic theory in this part as follows:

Theorem 4.1. According to the hypotheses (P1) — (Ps), the problem (1.1) has at least one solution
on (—oo, Q.

Proof. We split the proof into the following steps:
Step 1: Consider the problem below
HDEI(T) = X (T, Spr.3). Enrey)) » forae. 7€ K=[b, 7],

CHDUf(’T) (7’ E’n(Tﬁ-r) \Sp(.,- \XT)) forae. Te K= [b, 7'1],
S(m) = @(71), &(1) =%(7), T € (00, b].

Describe the operator W : €2, x Q2 — Q2 as

o(T), if T € (=00, b],

W(S, &)(1) = T .
#E)+ g [ (0% DX (7 Sy Ensen) € if 7€ [,
and
W(T), if T € (—00, b],
W(E S)(7) =

-
$(b) + ey | (o9 % 27X (s Ensiee) Spisia) € I T E[b 7],
Assume that r(.), q(.) : (—oo, T1] — R are functions given by

o(T), if T € (=00, b], Y(1), if T € (—00, b],
r(T) = and q(71) =
o(b), if T €[b, 1], Y(b), if T € [b, T].

Then rp = ¢ and qg = Y. For each h,ﬁ € Qr, with hp =0 = Eo, we denote by v,V the
functions defined by

0, if 7 € (00, b, 0, if T € (=00, b],
v(T) = and V(1) =
h(r), if T € [b, 1], h(r), if T € [b, 7.

If &(.) and &(.) fulfill the integral equations

e_
S(1) = ¢(b) + gy [ (g T)° " x (T, Sp(s.0). o)) &

ds

-1 __
(log T)° X (5. €n(s ) Sos.30)) 2.

oy c-%\]

§r) = (b) + iy
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we can split up (.) and &(.) into S(7) = v(7) + r(7) and &£(1) = V(1) + q(T), T € [b, T1],
which yields S; = vr + rr and & = Vi + g, for each T € [b, 1] and the functions h(.) and

B(.) satisfy
-1 ~ ds
(log T)" X (S Vo(s.vetrs) T Fo(svetre)s Vi(s,0etas) T Tn(s.Tetas))
o—1__ ~ d
(log T)™ "X (S. Vs 0atqe) T (s, tetas) Volsivetre) T lo(s,vatrs)) 5

Set the product
Ro X Rg = {(h/f;) € Qr, X Qqpy 1 ho :O:Eo}

under the norm

|5 7) o = 1)

where | (nB) | = (il + B, and |(4.7)
Define the operator B : Ryg X Rg — Rg by

+ sup {‘h(s) —1—3(5)’ ‘s € [b,Tl]},

= lInllg + |[3]

QxR

-
B (h h> (1) = %{ (log % ) X (S Vo(svstre) T To(svst 1) V(s 0tas) T On(s,9etas)) %
-

B (h.h) (1) = sy [ (109 D)7 R (5. Ungs ) + Onstan): Volowstr) + ofostr))
b

It is obvious that the operator B possessing a coupled fixed point (CFP) is equivalent to the
operator W having a CFP. So, we must demonstrate that B has a CFP, which is the solution
to problem (1.1). For this regards, the Leray-Schauder alternate will be employed as the

following claims:
Claim (i): Show that B is continuous. Assume that {h,} and {h,} are two sequences such that

h, — h and h, — hin Ro. Then
)B (hn,ﬂn) (1) - B (h,ﬂ) (’7’)‘
T
1 T\¢-1 N
< F(Z)/ (|09 g) ‘X (5' Vo(s.vas+rs) T To(s,vns+re)r Vn(s,Vns+qs) T qn(stnerqs))
b

N ds
—X (5' Vo(s,vst+rs) T No(s,vs+rs)r V(s Us+qs) T qn(s,Verqs))‘ S

and

‘B (En, hn) (r)— B (F, h) (7)’

1 T7\0—1 . N
S r (O') / (Iog g) }X (5’ V”?(sv?ns‘l'CIs) + q”7(5vVn5+(75)’ VP(SvVns'f‘rs) + rP(SvVns"rl’s))
b

— o~ ds
—-X (5’ Vn(s.Vs+as) + An(s,Vs+as)+ Vo(s.vs+rs) + rp(s,vs+r$))| ?
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The continuity of x and X implies that
HB (hn,ﬂn) _B (h,ﬁ) H 50, and HB (En, hn) _B (B, h) H 0, as 1 — o0o.

Claim (ii): Prove that B maps bounded sets into bounded sets in Ry. In fact, it suffices to demon-

strate that for any A > 0, there exists a positive constant © such that h,ﬁ € Q) =

{h,FERO:H(h,ﬁN gx},
RoXRO

o (13)] <o ms = 1) <o

To achieve this, using hypothesis (Ps), we get

o))
< L /T(Io Iy_l] (s.v, +r Vos o + S )‘ﬁ
= r(e) g X S Vp(s,vs+rs) o(s.vs+rs) V(s Vs+qs) T An(s.Vs+qs) S
! m d
< r/ Iog u(s)+u(S)H(Vp(s,vs+r5)+rp(5,vs+r5) (s, 7+as) + On(s.7+as) Qxﬂ)}j
1 e 1 ds
< l_/ |Og u(s)?
1 T\¢-1 _ N
e)/<|09 g) U(S)H(Vp(s,vs+rs)+rp(s,vs+rs),Vn(s,Vs+qs)+C]n(svps+qs) QXQ)?
b
(log @)* (|09 Q)" o ds
= (€+ 1) H H (£_|- 1) H (5)” (H‘YP(S,VSJrrs)YSp(s,verrs) QXQ) ?
(log Q)* (Iog Q)* N .
< Lo Tl + LS (0 163, + Ao I0(6) + Wb + A 10, Wles)
(log Q)* . (log Q) ) )
< tarn st T 1Ok (N2 + A0 l9(b) + $(b)| + A5 9. Ylaxa) = ©.
Similarly,
o)
(log Q)7 (|OgQ)
S T Mt T a1 Ol (A +Aq I8(5) + 9(b) + Ao 19, dllaxe) = ©.

where HleuHoO < 00, HleﬁHOO < 00, HlevHOo < o0, and HIWHOO < oo. The above
inequalities imply that

Jo ()] < s s ()] <
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Claim (iii): Show that B maps bounded sets into equicontinuous sets in Rp. For this, assume that
€1,€> € [b, T1] with €1 < €2 and Q, be bounded set of Ry x Rp as in Claim (ii). Then

for h,h € 2, we can write
)B (h,ﬁ) (e2) — B (h,ﬁ) (61)‘
€

ds

< 1 | €2 v
=T (ﬁ) (09 ?) ‘X (5, Vo(s,vs+rs) + rp(S,Vs+f5)' Vn(s.Vs+qs) + qn(s,Vs+qs))| ?

ds

X ‘X (5, Vo(s,vs+rs) T o(s,vstrs): Vn(s,Vs—s-qs) + qn(s,Vs+qs))‘ S

€1

b | [ o0 2)"* 2+ [ (g )" 2

<
€1 0
Nl (AX + Mg [9(5) +%(b)] + g ¥, 61
M)
/(Iog 7>e 1 ds—l—/(l 9?2)271%
€1 0
< fwfgow@g—mqu
+2MH(Nﬁ+AﬂﬂﬂijN+AH¢¢Wom@ﬂ_bMQW-
Similarly,

‘B (E, h) () — B (E, h) (61)‘

_éyﬁﬁaw@g—mmqna
2171 (hA + Ao 6(6) + (BN + Ao I8 )

Mo+1)
The right-hand side of the above inequalities tends to zero as €; — €>. Hence, B is
continuous and completely continuous (CC) as a result of Claims (i) to (iii) and the

Arzela-Ascoli theorem.
Claim (iv): A priori bounds. Assume that (hﬁ) is a solution of the equations h = B (hﬁ) and

h=68B <ﬁ h) , for some ¢ € (0,1). Then, for each T € [b, T1], one has
B (nh) (1) =y
B (h.h) (7)

(Iog ) (5 Vo(s,vs+rs) T To(s,vetrs) v77(5,?s+qs) + qn(s,?s+qs)) %'

/
=t

(log ) (5 Vn(s.vs+as) T An(s,vtas)r Yo(s.vs+rs) T rﬂ(s,vs+rs)) %'
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A (T)]

which yields from (P3) and (FPy) that

1 T\ 41 N ds
< () (Iog g) ‘X (5' Vo(s,vstrs) T To(s,vstrs)r V(s Vstqs) T qT)(Sst"‘QS))‘ iy
b
1 T T\¢-1 ds
< r (@) <|09 g) U(S)CD (‘ Vo(s,vs+rs) + 1 Fo(s,vs+rs) ’ Vn(s,Vs+as) + An(s,Vs+as) ) ?
b
(log Q) lull o -
< () ® (H Vo(s,vs+rs) T No(s,vs+rs) || H V(s Vs+as) T An(s.Vs+qs) )
(log Q) ||ul]
= 899%) Wlee g (p, 2%).
re+1) ( )
Similarly
(log Q)7 [Vl
h ‘ < T o0
| < Sr T e @)
But, using (S1)(3), we have
[Vots.vetre) F Toswetr
S H (5 Vs=+rs) + H (5 V5+l’5)
< Bo ESEJD {h(s)} + Dqllhollq + Bq S;JD {r(s)} + Dqllnllq
S
< Bgsup{h(s):se€[b 1]} + Dqlldllg+ Bqlle(b)| =
and
HVn(s,Verqs) + An(s,vstas) llg
< nsstanlla T llansanralla
< Co su {h(s)}+ Eqho| +Co sup {q(s)} + Eqllllg
s€[b, 7] s€[b,T]
< Cosup{A(s) s € (0,71} + EqIWllg + Colw(b)] = A"

This implies that

7]
Il 1 .

rrp (09 Q) [l @ (8, 8%) =7 5y (Iog Q)7 vl ® (A7, 8)

Then by axiom (3.1), there exist L1 > 0, L} > 0 such that ||h]|, # L1 and HEHOO # L.
Let Vi = {h,ﬁ € Ro: |hllo < L1, HEHOO < L’{} - The operator B - Vi x Vi — Rg is CC.
From the choice of V4, there is no h and h such that h = 6B (hﬁ) and h= 6B (F h) ,
0 € (0,1). We conclude that B has a CFP (hﬁ) € V1 x V4 as a result of the nonlinear

Leray-Shauder alternative, which is a solution to Problem (1.1).
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Step 2: Consider the following problem:

CHD‘Z (7') (7', %p(Tng),En(TfT)), forae. Te K= [7'1,’7'2],
CHpog(r) = Y(T Enirer) So(r.s, )) , fora.e. 7€ K=[m, 1],
S(ryH) = (1) = 1 (Sw(11)) + €(77) = €(0) = 1 (éu(77))
3(b) = Sp(7), &(b) = &p(T), T € (00, T1].

Let Ry = {S,€ € Qr, : S(17") and £(77") exist} . Describe the operator Wy : Ry x Ry — Ry

as
Sp(T), if T € (=00, T1],
WA(S, )(T) = { Su(ry) + Iy (Su(ry))
b J (09 )" (1. Byt o) %0 7 €l
and

&p(7), if T € (o0, ],

WA(6,9)(T) = § &(11) + I (€6(T1))
+ﬁ / (log 5)0—1? (T' En(rér) %p(T,%T)) ?s if 7 € [11, 2],

Let r(.),q(.) : (=00, T1] — R be functions defined by

Sp(T), If T € (—00, T1],
r(t) =

Sp(Ty ) + I (%b(Tf)) ,if T e [m, ],
Ep(T), if T € (—00, T1],

and q(1) =
Eo(my) + Ip (€p(17))  if T € [11, 2]

Then ry, = 3y and g, = &p. For each h,E € Ry with hy, =0 = ﬁﬁ, we denote by v, v the
functions described as
0, if 7€ (—o0, 1], 0, if 7€ (—o0, 1],
v(T) = and V(1) =

h(T), if T € [11, 2], //;(7') if 7€ [, ]

If 3(.) and &(.) satisfy the integral equations
-
_ _ -1
(1) = Su(11) + 16 (S(71) + gy J (log 5 ) (T Sp(s50), Enis)) ©

(1) = () + Ip (€p(T7)) + TfT('Og D)7 R (T Enerery Spran) £
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Step 3:

we can decompose up (.) and £(.) into (1) = v(1) + r(7) and &(1) = V(T) + q(7),
T € [11,72], which lead to 8¢ = v + 1 and & = V; + qr, for each T € [11, T2] and the
functions h(.) and h(.) justify

(log ) X (S V(s vt rs) + Fo(svstrs) V(s as) + In(s. 5ot as)) =

ds

h(T) = %@
% (log T ) - X (s, Vi(s.%s+as) T On(s.etas) Vi(s.vtrs) T rp(s,vs+rs)) s

,
J
b
~ T
W) =gy S
b
Set the product
Ry, X Ry, = {(h,ﬁ) € Ry x Ry @ hy, :o:ﬁﬁ}.
Define the operator By : Ry, X Ry, = Ry, by

~ 7 -1 ~
B1 <h- h) (T) = ﬁ { (|09 %) X (S, Vo(s,vs+rs) + Fo(s,vs+rs) Vn(s,Vs+gs) + qn(S,Vs+qs)) %

o—1__ ~ d
(log 2)" " X (S, Vi(s.0utqe) + Gn(s.0etae) Vilsvetrs) T Fo(svetrs) 5

B (H, h) (T) = 5y

T—4

By the same method used in Step 1, we can prove that B; is continuous and CC, and if the
pair (hﬁ) is a possible solution of the equations h = 0B (hﬂ) and h = 0B1 (H h) , for
some § € (0,1), then there exist L, > 0, L5 > 0 such that ||h||,, # L2 and HEHOO # L3
Put Vs = {h,ﬁ € Rry |l < Lo, HEHOO < L;}. From the choice of V4, there is no h and
h such that h = 0By (hﬁ) and h = 0By (E h) , 0 € (0,1). According to nonlinear Leray-

Shauder alternative, we conclude that By has a CFP (h,ﬁ) € V1 x V4, which is a solution to
Problem (1.1).
We carry on with this method while keeping in mind that <&, = %|[m'Q] and £, = £|[m‘Q] are

solutions to the problem

CHDe (T) (7’, %p(TﬁT)' 5,,(7,&)) , forae. Te K= [Tm, Q],
CHD"&(T) (’T 5,,7(,,-&) \Sp(.r\, )) , forae. Te K= [’Tm, Q],

(T3) = S(T_1) = Im (Sm-1(75)) + €(73) = &(Tp2) = I (€m—1(75)) .

(1) = Sm_1(7), &(7) =E€m_1(T), T € (—00, Tm_1].

&l

0

Following that, the solution to Problem (1.1) is defined by

Sp(T), if T € (—00, 7], ([ ¢p(T), if T € (—00, 1],
%(T) — %1(7’), if 7€ [7'1,’7'2], and 5(7_) _ &1(’7’), if 7€ ['7'117'2],
(7). 7 € (T, Q, | &m(T), T € (Tm. Q.
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5. An application
To strengthen and support our findings, in this section, we apply Theorem 4.1 to discuss the
existence of the solution to the following coupled IFDEs:

CH ey "S(ro(S()E(r—C(Er) _
HDI(T) = st e forae TEK = [Lel L€ (0.1)

CHDog(T) — 16;2;95(7'—((5(7')))\Y(T—Q(\Y(T)))’ forae TeE K = [1, e]v = (0’ 1]v (5.1)

3(m—0(S(7)))E (1 —C(&(T)))
1 (S(1)) = [2 (15 = 9)S(s)ds, 1 (4(17)) = [2(1; — 9)é(s)ds, j=1,2,...m
S(m) = ¢(71), &(7) = (1), T € (00, 1],
where €H D% and €7D are CHF derivatives with order £ and o, respectively, o,¢ € C (R, [0, >0)),
(¢, %) € Qpxe, and

Q= {%,5 € C((—o0,1,R): I|m e®3(0) and lim e%f¢(8) exist in R}.
—0o0 6——o0
The norm of 2,x¢ is described as
g, € = sup {eetO913(9) + £(0)| ).
I9: €l = _sup {e19130) + €)1}

Clearly,
ISl = sup {699 3(0)[} and Jiglle = sup {e“€(O)]}.
fe(—o0 0€(—00,0]
We claim that €2, ¢ is a PS. For thls, we realize the following two steps:

(1) For (S7,&7) € Qo x Q¢ = Qpxe, let $,€ 1 (—o0, e] = R such that Sy € Q, and & € Q.

Then
, lim e¥3,(0) = o I|m e3(T+6) = Iim e () = eg I|m e%3(8) < oo,
——00 =

lim e¢.(0) = lim ¢ (T+0)= lim e T¢ (9) = eC lim e%9¢0(0) < oo.
6——o00 6——o00 60— —o0 0——o0

(I1) A priori bounds. We show that

(S, €r)llgue < A(T)sup {|S(s) +&(s)] = s € [1, el + A" (7) (S0, €0)llgee | -

Taking X =Y = A = A" =1, it follows from (S1)(2),(3) that [S(T)[ < [[Srl,, [E(T)] < (€71l

and
[(S7, &) lgxe < sup{[S(s) +&(s)] : s € [1, ]} + [|(So, &)l pxc -
Hence
IS+ (0)] =[S (@4 7)| and [S7(0)] = [£(6+7)].
If 6 +7 <1, we have
S7 (0)] < sup{[S(s)] : —oo < s < 1} and [&7 (0)] < sup{[§(s)]: —o0 < s <1},

If 6+ 7> 1, we get

IS (0)] <sup{|S(s)]:1<s<e}and & (0) <sup{|§(s)]:1<s<e}.
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For 8 + T € [1, e], we can write
IS-(0)] < sup{|S(s)]: —o0 < s <1} +sup{|S(s)|:1<s<e},
& (O)] < sup{|€(s)] : —oo < s <1} +sup{[{(s)[:1<s<e}.
Thus, we have
1S7lly < sup{|S(s)]: 1< s <e}+[Soll,. (5.2)
and
1€7ll¢ < sup{l€(s)]: 1< s <e}+ Il (5.3)
Combining (5.2) and (5.3), one has

(37, &)l gx¢ < sup{IS(s) +&(s)l = s € [1, el} + [1(So, €o)ll ¢ -
It is obvious that (Qpx¢. II.llx¢) is a BS. Thus, Qgx¢ is a PS.

Next, set

o(1.¢) =T —0(¢ (7)), n(T. %) =7 —((P (7)), forae. (1.9) (1.9) € KxQ,

e To(r. d)n(T.Y)  _ _ e 2Tp(T, ¢)n(T, )
XM ) = 1020 gytr ) X0 = T 3 gy )

fora.e. (1,¢), (1. 9) € K x Qgxe¢,

7

g&@»:ll@—gwgwﬁmg@@n:/ (1, — $)¢(s)ds,j = 1,2,... m.

—00

Then there exists a continuous and nondecreasing function ® : [0, c0) x [0, 00) — (0, c0) such that

Lo )| _
X(ro ) < e B ST = u(ro (0], ),

. o Lo Ol _
X(ro ) < e BT = v (9 10).

where u(T) = e~ 7 and v(T) = 7?7,
Since
lo(T. @) In(T. )|
¢ =
(8. 19) = 3rargt st gy < o Ol in(r.w)l.
lo(T. @) In(T. )|
o (v, = , )|,
(W.10) = 3rarg T gy < 1o Olin(r.v)
then for each 7 € [1, €], £,0 € (0, 1], there exist L1, L], -, Ly, L}, > 0 such that
Fe+1)L, > I'(é—i; 1_)51- _ eﬂ'(ﬁ:— 1) 1 j=1..m
o (Lj, L) Gog(r)fllul, LS 5
r L r Ly g2t
Ny (o +1)L; _ (U—:l,)zTJ:e r(0+1)>1,j:1,--',m-
(L5 4) (og(r)7 vl Likie L

Hence, the hypotheses (P1) — (Ps) of Theorem 4.1 are fulfilled. Therefore, the system (5.1) has at

least one solution on (—o0, €].
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6. Conclusion

Fractional DEs are considered a fruitful branch of nonlinear analysis. Impulsive DEs appear when, at
certain moments, they change their state quickly and have variant applications in medicine, engineering,
physics, dynamics, economics, pharmacology, etc. On the other hand, functional DEs via state-
dependent delay typically arise in applications as models of equations. As a consequence, work on
these types of equations has gained a lot of attention in the last few years by using several kinds
of fractional derivatives. In this work, by using a fixed point technique, we ensured the existence of
solutions to an IVP for a coupled FDE involving Caputo-Hadamard derivatives in PSs with a state-
dependent delay and an impulsive. Moreover, we illustrated the obtained results with a concrete
application where the suitable conditions are well applicable.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publi-

cation of this paper.
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