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Abstract. In the present research paper, an investigation is undertaken of Steinhaus type theorems for
Norlund-(M,X\,) and Norlund-Euler(M, X,) method of summability in K, a complete non-trivially valued
Non-Archimedean field. The conditions for statistical summability for those matrices are discussed in
such fields K. The consistency of Norlund-(M, A,) method of summability is investigated when different
sequences are used in the summation process. Further, the relation between Nérlund-Euler(M, Xp)

summable and its statistical summability is also established.

1. Introduction

Summability methods originated with the study of convergent and divergent series by distinguished
mathematicians Euler, Gauss, Cauchy, and Abel. The theory of summability starts with the definition
of Abel Convergence. Some well-known summability methods are, Norlund transformation, Norlund
type transformation, Holder means, Cesaro means, Euler means, Hausdroff means, Taylor Exponential
transformation, Borel Exponential transformation etc. G.H. Hardy developed study on Divergent
series, while A. Zygmund studied on Trigonometric series.

The theory of p-adic fields, which are non-Archimedean in nature was defined by Kurt Hensel.
Voronoi and Norlund defined Norlund method of summability, V.K. Srinivasan [16] introduced Nérlund
method of summability in ultrametric fields. P.N. Natarajan developed Norlund method of summability

and weighted means method in Non-Archimedean fields. Further, he introduced (M, \,) method,
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cauchy multiplication method of (M, \,) summable series [12] and verified Steinhaus type theorems [6,
8,11,14] in non-Archimedean fields. Suja and Srinivasan developed on N6rlund method of summability
in ultrametric fields, and established the relation between (N, p,) summability and Nérlund statistical
convergence. Loku and Aljimi introduced Norlund-Euler-X\ statistical convergence for reals in their
study [5]. Many researchers studied Norlund-Euler statistical convergence [2, 3].

In this paper, Norlund-(M,X,), and Norlund-Euler-(M,X\,) methods of summability are introduced.
Steinhaus type theorems for these newly developed methods are verified in ultrametric field K. For a
general reference on ultrametric analysis, it is recommended that the Book [1] be used.

Throughout this article, K denotes a non-trivially valued, non-Archimedean complete field.

2. Preliminaries
Definition 2.1. Let x = {xx} be a sequence of elements of K,{x} is said to be statistically convergent
to a limit '¢’, if for any given € > 0,

1
lim El{k <n:|xx—4£ >¢e}=0.

n—oo

Where, vertical bars indicate the number of elements that lie outside the neighbourhood Be(x, £) [17].

Definition 2.2. Consider A = {apk}, anx € K.k = 0,1,2,3,..., and a sequence x = {xx}, Xk €
K. k=0,1,2,3,... A-Transform of {xx} denoted by {(Ax),} is defined as (Ax)p, = > e ankXk, k =
0,1,2,3,...

If the A-Transform of {xx} converges to a limit ¢, it is said that the sequence {xx} is A-Summable
to ¢’ [10].

Definition 2.3. Given the sequence p = {p,} of elements of K, the Nérlund Method (N, p,,) is defined

as the infinite matrix {anx}, where

Pn—k [

-l if k<n
dnk = )

0, if k>n

Where |p,| < |pol,n=0,1,2,3...and P, => "} _opk, n = 0,1,2,3, ...
The matrix {anx} is denoted by (N, p,), and it is called a Norlund Matrix [16].

Example 2.1. Consider the sequence {p,} = 1,1,1,..., (N, pn) Norlund matrix for this sequence is
defined as,
i, ifk<n
A= {ank} =
0, ifk>n
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Definition 2.4. Given A = {\,} with |i_>m A, = 0, the
n o0

matrix B = {b,x} where

1 00 0.......
1 3 0 0.......
1 1
1 3 L o0 ...
1 1 1
12§Z .......

0 0

0 0

0
11
n—1 n

(M, X)) method is defined by the infinite

An—k. If k<n

0, if k>n

The Matrix {bpx} is denoted by (M, A\,) [12].

Example 2.2. Consider the sequence {A\,} = 1,3, %, ...,
an nx n— (M, \,) matrix for this sequence is ,
1
A — {ank} — n—k+1"'
0,

1 0 0....

1

11 0 0.,

1 1

1 11 1

Definition 2.5. Let A and B be transforms.

if k<n

if k>n

i) If the sequence {xx}§° is both A-summable and B-summable then A and B are comparable for

{x 38

ii) If, given any sequence for which A and B are comparable, and if the A transform converges to the

same value as B transform, then, A and B are said to be consistent [15].

Theorem 2.1. Silverman - Toeplitz theorem A matrix A= {ay«} is said to be regular if and only if

i)

sup apk| < oo
nk

i)

lim a, =0, k=0,1,2,3,...
n—oo
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fii)

(o]
lim E ank = 1.
n—oo

k=0

Definition 2.6. Given a sequence x = {xx}, the Norlund-(M, A,) Method is defined as matrix

k PiXi ;

A= {ank} =
0, if k>n
Example 2.3. Consider the sequence {p,} = 1,1,1,..., Given a sequence x = {xx}, the Norlund-
(M, \p) Method is defined as matrix
ko1
L’? Loif k<n
A= {ank} =
0, if k>n
1 0 0 O... ... ...
3 1
3 : 0 0.0 oo
11 1 1
u : ! 0o e 0 0
i Xhi XS XL 3 1
n n n n oot 2n n

Definition 2.7. The series Y 2, xk, is said to be statistically summable to "¢’ by Nérlund-(M, \p)
| 1 k X —
method if lim_ Sk <n: Sl BB — € > e} =0.

Definition 2.8. Let (X,Y') be the sequence space of elements from K.

A={an} € (X,Y) ,if {(Ax)n} €Y, whenever x = {xx}.

Let £, denote the space of all bounded sequences in K, and ¢ denote the closed subspace of £
consisting of all convergent sequences in K.

If A€ c, then A is said to be regular. The set of all regular matrices is denoted by (c, c; P), where
P denotes “Preservation of limits".

For any regular matrix A = {a,x}, Steinhaus type theorem is stated as (¢, ¢; P) N (€oo, ¢) = ¢ [11].

Definition 2.9. Let x = {xx} be sequence of elements of K.
The series 220:0 Xk is summable to S, by Norlund-Euler(M, \,) method, and it is denoted by S, —
S(NE(M, \p), p) if,

n
Z bk = S,where by = tgho + tk_1 A1 + tkoXo + ... (2.1)
k=0
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Where, t(NE(MAn).p)(E.r) _ Sro (P% PRy P dni€ijhj—kxk), n=0,1,2,3,...

where d,; = %:'

@ _ (@ —aq, ifi <
Y 0, ifi>]

Definition 2.10. The series Y 72, xk, is said to be statistically summable to '¢' by N&rlund-
Euler(M, X\,) method if

n||—>moo E k <n: Fn ZZ dn/G/J‘)\J‘_ka - (7,| > € =0. (2.2)
J=k i=j
By A = {an} € (¢, (INE(M, X\p),p)) it is denoted that (Ax), € (NE(M,\,), p), whenever x =

{Xk} e X.

3. Steinhaus type theorem for Norlund-(M, X)) method of summability

Theorem 3.1. Norlund-(M, X,) Method is regular if and only if

n—k N
N lim 2.i=0 Pr—k—iXi -0 (3.1)

n—o0 P,

—k
S Pn—k—ii < o

A (3.2)

i) sup
n,k

iy lim Yo Yo Poteidy

n—o00 P,

=1 (3.3)

Proof. Let Norlund-(M, \,) be regular.

Let .
S0 Pr—k—iN

apk = P
n

Since nli_)moo Ap =0, Z)\n =1.
n=0
||m ZH OZ/ Opn k— /)\ :1

n—oo Py

Now

lim a, = 1,
n—oo

e ||m ZnOZ/Op”k/k

n—o0 P,

i.e., lim 2= OZ’ 0 Pn—iX i1

n—o0 P,

=1
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Conversely, if

Zn OZ/OP”’ =1
Pn

o
lim E ank =1
n—oo

n=0

ZnOZ/Op”’ =1

[im
n—00 P,
n—k
Since lim —Z/:O Po—k=iAi =1
n—o0 P,

lim ap, = lim

n—o00 n—o00 P,
Since % is bounded, it follows that
n—k
=k o,
sup |M| < o0
n,k 'Dn

By Theorem 2.1 Nérlund-(M, X\,) is Regular.

Theorem 3.2. A= {an} € (¢, (N(M, Xp), p)) if and only if

) Sup | 1 n—k
) k 32 Pn—k—iAj| < 00
n i=0

i) nIL)moo—Zp,, k—ini = 0.

oo n—k

iii) nlemFZan kei\j=1.

Mh=0 i=0

Proof. A matrix A = {au«} is regular iff

i) sup apk| < o0
nk
ii)nImeank =0,k=0,1,23,...

oo
i) lim g ank = 1.
n—oo
k=0

Sufficiency part

Let Equations 3.4-3.6 hold true, and let A ={a,x} denote the A-transform of {xx}.

(AX)n = anex

k=0

En Ozlop”k»\ =1,k=0,1,2,3...

(3.4)

(3.5)

(3.6)
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For the Norlund-Euler(M, A,) matrix of {apx}

where

n—k pp_k—i\i ;
Ei:O R if k <n

dnk =
0, if k>n

—K Pa—k—iAi
B = {bn} =X
Using equations 3.2 & 3.3 of Theorem 3.1, and Theorem 2.1, the following is obtained.

{ankxk} €c,

k=0 n=0
ie.,
0o 1 n—k o0
{z (zpn_k_,x) } e
k=0 \" " i=0 =0
ie.,
o
00 1 n n—j
Z B Pn—j—iNiX; €c
k=0 \ " j=0 i=0 0
1 =
— Z anka} Sie
" k=0 n=0
(Ax)n € (N(M, Xn). p)
Thus

A€ (¢, (N(M, Xn), p)).
Necessity part
Let
A€ (¢, (N(M, Xn), p))
So far
x ={xc} € ¢, {(AX)n}pzo € (N(M, X\p), p)

. o
0 n n—j

i.e., Z PLZZ/)”,J’,,-)\,-)Q € c,

k=0 \ ' " j=0 i=0 =0

0o 1 n—k o0
/-6-,{2 (F,nZPn—k—/>\/> Xk} € c,
k=0 n=0

=0

o) o0
{Z bk Xk } €c,
k=0 n=0

B ={bu} € (c, c).
Using Theorem 2.1, it is seen that equations 3.4- 3.6 hold good.

The A-Transform of the convergent sequence {xx}, is considered
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where x, = k,0 < k< p—1.
It is noted that A = {a,«} converges for n=0,1,2,3...

Hence, proved. ]

Corollary 3.1. A< (¢, (N(M, X\p), p); P)
le., Ae (c,(N(M,X\p), p)) with

. 1 n n—1 1 .
n|l_>moo P {12; Pn—iXiXo + ,Z% Pn—i—1AiX1 + ...+ ,Z% P1—iAiXn—1 + PoXoXn ¢ = klmm Xk

Rearranging the terms, the following is obtained.

. 1 n n—1 1 .
n|l_>moo P {Po /Z; An—iXi + P1 /Z; An—iXi + ...+ Ppn-1 /Z; An—iXi + PnroXo ¢ = k|l_>moo Xk

. 1 .
lim — {po(Ax)n + p1(AX)n-1+ ...+ pa(Ax)o} = lim xk
n—oo P, k—o0
x = {xx} holds good if and only if 3.4-3.6 of Theorem 3.2 hold true.

Theorem 3.3. A = {a,k} € (bso, (N(M, Xp), p)) if and only if equations 3.4 & 3.5 of Theorem 3.2

are true and

n'LmOO Supk|pi(Pa—j—iXi — Pn—j—it1Ai)| =0 (3.7)
Proof. Proof follows directly from Theorem 3.2. OJ

The following theorem is Steinhaus type theorem in non-Archimedean field using Norlund-(M, Ap,)

method of summability.
Theorem 3.4. (¢, (N(M, X\p),p); P) N (boo, (N(M, Xp), p)) = ¢.

Proof. Let A= {amn} € (c,(N(M, X\,), p); P) N (dso, (N(M, X\p), P))

lim sup |a,x — 1| =0.
N—00 n koo

: A
lim sup | nPk _ 1] = 0.
N—=00 n k—oo n

|>\npk
Pn
= A\gpk=P,.Vn, k=0,1,2,3,...

~1/=0.Ynk=0123,...

which is a =<«
As per our assumption, {P,} is a sequence of non-decreasing elements of K.
Hence, (¢, (N(M, Xp), p); P) N (Yoo, (N(M, Xp), p)) = ¢. O

Theorem 3.5. If a sequence is Nérlund-(M, X,;) summable to '¢ then it is statistically summable to
"¢’ by Norlund-(M, \,) method.
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Proof. Given x = {xx} is Nérlund-(M, X,) summable to "¢’
The partial sum S, = Y ¢_o Xk is summable to "¢’ by Nérlund-(M, X,) method.

consider,

(N MA).P) e‘ = (3.8)

k
Z P/X/)\k y

i=0

Fix an m < k such that, | 321 282 (x — £)] < M, M > 0 is a real value for all k.

To prove,

PiXi _
ngmoof|{k<n |Z Nl =€l =0

Equation (3.8) can be rewritten as,
t(N(M An).P) e‘ ’Zm >\nP/ (Xk _ e) + Z[ mtl >\np/ (Xk _ e)‘

<max{|2 2 (= ), Z ”"'u—en} (3.9)

i=m+1
Now {xx} is summable to ¢’ by Nérlund-(M, X,) method.
=

n

lim tSNMA)P) _ gl — 0, as n — .

By (3.9), Max {| 70 22 (%6 — 1. ISK i 200 — 0|} =
le.,

. npl npl
n||—>mooMaX{Z Ixk — €], |Z |k_£|}

i=0 i=m+1
In particular, for a given € > 0, we have,

lim — Z AnPilxk — 2] = 0.

e ki m+1

e, lim P Z/ m+1 Anpilxk —£] = 0.V k > m.

n—oo

—

p’X’xk _ g >e =0
k

Wk <
DRI

= {xx} is statistically summable to "¢’ by Nérlund-(M, X)) method. O
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4. Steinhaus type theorem using Norlund-Euler-(M, X\,) method of summability

Theorem 4.1. A= {ay} € (c,(NE(M, Xp), p)) if and only if

o0 o0
N lim ZZa eiXi_m=0.
) 00 - niCyNj—m

J=m i=j

00 00
ii) Supn,k|zzani6ij>\j—m|zo-

j=m i=j

oo o0 0

jif) - lim_ SN aniehiom =0.

m=0j=m i=j
Proof. Sufficiency part Let 4.1,4.2 & 4.3 hold good.

Let A= {hnk} denote the Nérlund-Euler (M, X,) matrix of {xx},

where {hox} = > 020> 072 0 Do anieijAj—m, k = 0,1,2,3. .. is defined.
Using equations 4.2, 4.3 and Theorem 2.1, the following result is obtained

1 oo 00
B = {bnk}x bnk = Fnzzpne,j)\j,ka, n, k= 0,1,2,3,...

j=k i=j
It is seen that,
{Z bnka} €c
k=0 0
i.e.,
o0 1 oo (0.0]
PBITDI) BIAHIRIEN S
k=0 " j=k i=j =0
ie.,
1 oo o0
PO IPILIL NV B
k=0 j=k i=j n=0
1 & ~
{ hnka} €c
Pn
k=0 n=0
(Axn) € (¢, (NE(M, Xn), P))
Thus

A€ (c,(NE(M, ), p)).

Necessity part
A€ (c,(NE(M. Xn), p))

(Axn) € (¢, (NE(M, Xn), p))

1 *
{P E hnka} €C
k=0 n—=0

(4.1)

(4.2)

(4.3)



Int. J. Anal. Appl. (2023), 21:114 11

o0

n=0
o 1 oo x &
Z(FZane,JAJ,k)xk €c
k=0 " j=k i=j _
n=0
[e’s) oo
{Z bnkxk} €c,
k=0 n=0

B = {bnk} € (C, C)

Using Theorem 2.1, it is noted that equations 4.1-4.3 hold good.

Considering the A-Transform of the convergent sequence {xx} where x, =k, 0 < k <p—1,
it is found that A = {a,x} converges for n=10,1,2,3...

le., B={bn} € (c, c).

Hence, proved. O

Corollary 4.1.
Ac (c,(NE(M, X,),p); P)

A€ (c,(NE(M, Xp),p))
with
-1 .
lim ={po(Ax)n + P1(AX)n—1 + ...+ pn(AX)o} = lim xx
n—o0 Ppy k—00

x = {xx} holds true if and only if equations 4.1-4.3 holds good.

Theorem 4.2. A = {ael ik} € (4o, (NE(M, Xp), p)) if and only if 4.1 & 4.3 of Theorem 4.1 are true

and
o [o@) o o
1im Supy i |pi Yo an-ivvieNk— DD an-iiehik || =0 (4.4)
=k i=j j=k i=j
Proof. Proof of theorem is direct. O

Theorem 4.3. (¢, (INE(M, X\p), p); P) N (Yoo, (NE(M, Xp), P)) = ¢

Proof. Let A= {aehk} € (¢, (INE(M, X\p), p); P) N (Yoo, (INE(M, Xp), p))
using Theorem 4.1 , the following is obtained

lpnl = |pol, n=0,1,2,3,...

i (Pi i Pr‘hn—/,k>

k=0 " i=0
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converges uniformly to 0.
o n

. 1
— i 3 (5 S nhe )
k=0 =0
oo 1 n
=3 (3o
k=0 i=0
=0

which is a contradiction to our assumption that A € (¢, (NE(M, X,), p)).
Hence, (¢, (INE(M, Xn), p); P) N (bso, (NE(M, Xp), p)) = ¢ O

Theorem 4.4. Any two regular methods NE(M, X\,) and NE(M, w,) are consistent.
Proof. Let NE(M, \,) and NE(M, u,) be regular.
= lim > bixi=0

Let 7y, be the product of \,, u, matrices. So,

Yn = Xopn + AMpbn—1+ ...+ Antbo, forn=20,1,2,3,... (4.5)
Up = Anbo + Xn_1b1 + ...+ Xibp—1 + Xobs, forn=20,1,2,3,... (4.6)
Vp = Unbg + tp_1b1 + ...+ 1bp_1 + tobp, forn=20,1,2,3,... (4.7)

Consider,

Wp = Ynbo + Yn—1b1 + ... +¥1bn—1 + Yobn

= (MNotn +Aipbn—1+ ... FXppbo)bo + (Notbn—1 + Aitbn—2+ ...+ XNp_opb1 + Ap_1pbo) by + .. A (Nopr +
A1k0)bn—1 + Nokobn

= No(tnbo + pn—1b1+ ...+ p1bn—1+pobn) + A1 (n—1bo + phn—2b1 +. ..+ p1bs—2 + pobp-1) +... +
An—1(k1bo + pob1) + Anpobo

=XoVn+AVo1 4+ ...+ A1 + g

Whp =Ao(Vn — X) + A1(Vpe1 — x) + ...+ Apm1(vai — x) + Xp(vo — x)+

X(>\0+>\1+...+>\n71+>\n)

lim [Ao(vn —X)+ A (Vo1 —x) 4+ ...+ Apm1(vi — x) + An(vo ~x)] =0

n—oo

using similar proof and logic of proof discussed by P.N. Natarajan in [12], the following is obtained,

o0

[im anx.g =x.1=x
n—oo
n=0

i.e., lim w,=x
n—oo
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similarly, we can prove

lim wy, =y
n—oo
It is noted that x =y . Hence, NE(M, \,) and NE(M, u,) are consistent. O

Theorem 4.5. If a sequence is Norlund-Euler(M, X)) Summable to ’#’, then it is Statistically summable

to 2.

Proof. Given x = {xx} is Norlund-Euler(M, X,) summable to ¢’
The partial sum S, = Y_7_, X is summable to "¢’ by Nérlund-Euler(M, X,) method.

ie.,
n
Z b = £, where by = tghg + tk—1 A1 + tko Ao + ...
k=0
Where,
0 1 o o
tl(qNE(M,An)vP)(E,r) _ Z (E Z Z dnjeu.)\jkak) n=0,1,2,3,...Where dpj = %
k=0 " j=k i=j n
o Qa7 ifis)
Y 0, ifi>j
consider,

t{gNE(M,An)vp)(E-f) _ 4 _ Z ;n ZZ dni€jjAj—k(xx — £)

k=0 Jj=k i=j

_ éz(zzdn,e,jxj_k)xk_e (4.8)
k=0 j=k

i=J

Fix an m < k such that, |Z P P J dniejhj—k(x — )| < M,
M > 0 is a real value for all k.

To prove ,
lim 3 Hk s<n: |P ZJ P J AnjeijAj—kxk — £ = EH = 0, for some ¥.

n—oo
4.8 can be rewritten as,

[© < 2ENNe olNe o]

‘t,(]NE(M.xn),p)(E,r) ‘ Z DN dniey -k (X — Xm + Xm — £)

M= 0=k i=j

m oo o0

Zzzdn/eu = k(Xk Xm)+ Z szmeu \j— k(Xm_ )

k=0 j=k i=j k=m+1 j=k i=j
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< max Pi ZZZdn,eU j— k(Xk — xm)|, Z szmeu j— k(Xm —£) (4.9)

nk:OJk/J k=m+1 j=k i=j

Now {xx} is summable to ¢’ by Norlund-Euler(M, X,) method.
(NE(M.Xn).p)(E.r)

— lim ‘tn —e‘zo, as n — oo,
n—o0
. By (4.9),
m oo oo
Zzzdmeu j— k|Xk Z szn/eu \j— k|Xm e| = 0.
kOJ k i=j km+1J k i=j
le.,

M 1 o0 o0 o0
n||_>moo/\//ax BB _Zm: Jz;;dn,e,jkj_ﬂxm—ﬂ =0.

In particular, for a given € > 0, it is seen that,

[R5 D ) SUTE I

k=m+1 j=k i=j

le.,
nILmOOF d,,,e,J j—k|Xm =€ =0.V k > m.
J=k i=j
1
= nI|_>moof|{k <n: |FHZZd,Ue,J j—kXk — €| > €}| = 0, for some £
J=k i=j
— {xx} is statistically summable to ¢’ by Nérlund-Euler(M, X,) method. O

5. Conclusions

In this research paper, Norlund-(M, \,) and Norlund-Euler-(M,\,) of summability are introduced.
Steinhaus type theorems are investigated in a non-trivially valued non-Archimedean field. The relation
between Norlund-Euler(M, X,) summability, N6rlund-Euler(M, X,) method statistical summability, and
properties of Nérlund-(M, X,;) method of summability is proved. It is also proved that Norlund-(M, Ap)
method of summability is consistent, when different sequences {\,} or {u,} are used in the summation
process. Further, the relation betweeen Nérlund-Euler(M, X,) summability and statistical summability
in non-Archimedean field is discussed.
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