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Abstract. The psychological learning theory (PLT) in the formation of moral verdict is represented

by the choice-practice paradigm. It involves weighing the effects of various options and choosing one

to put into practice. This manuscript is devoted to presenting a general functional equation (FE) for

observing animal behavior in such situations. The proposed equation can be used to explain a number

of well-known learning and psychological theories. The existence and uniqueness of the solution to a

given equation are demonstrated using fixed point (FP) techniques. Furthermore, the stability of the

solution to the provided FE is explored in the sense of Hyers-Ulam-Rassias (HUR) and Hyers-Ulam

(HU). Ultimately, to emphasize the importance of our results, two examples are presented.

1. Introduction and Preliminaries Work

The study of intellectual, perceptual, and cognitive processes as models in mathematics is known

as mathematical psychology. As an alternative, learning in both humans and animals can be seen

as a series of choices among many input options. Preference sequences are frequently unexpected,

demonstrating that response choices are made at random even in simple recurrent studies in well-

controlled environments. Consequently, it is useful to represent variations in response likelihood over

trials by including systematic changes in a series of options. According to this viewpoint, the majority
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of learning research is focused on clarifying the likelihood of the occurrence of the events that make

up a random technique over particular actions.

The behavior of even the most superficial learning experiment may be represented using stochastic

processes, according to recent mathematical learning research. As a result, it is only partially original

(for further information, check [1,2]). However, after 1950, two important qualities emerged, accord-

ing to research mostly done by Bush, Estes, and Mosteller. First, it is essential that all models that

are suggested have an inclusive learning approach. Second, the analysis cannot be concealed from the

statistical characteristics of such models [3, 4].

Using the equation shown below, Istraţéscu [5] proposed the idea that predator animals could be

involved in 1976 by eating two different kinds of food.

<(κ) = κ< (ξ1 + (1− ξ1)κ) + (1− κ)< ((1− ξ2)κ) , for each κ ∈ J = [0, 1], (1.1)

where 0 < ξ1 ≤ ξ2 < 1 and < : J → R such that <(0) = 0 and <(1) = 1. Theoretically, a Markov

process with state space J and probabilities of transition from state κ to state ξ1 + (1 − ξ1)κ and

from state κ to state (1− ξ2)κ defines this behavior as follows:{
Q (κ → ξ1 + (1− ξ1)κ) = κ ,
Q (κ → (1− ξ1)κ) = 1− κ ,

respectively. A predator will target a particular class of prey if the initial chance of this class being

chosen is equal to κ , the solution < in the FE (1.1) indicates the ultimate probability of an event.

Bush and Mosteller’s experimental investigations [6] were discussed by Turab and Sintunavarat [7]

in 2019. They used their related probabilities to analyze the behavior of a paradise fish and then

presented the resulting model

<(κ) = κ< (ξ1κ + (1− ξ1)) + (1− κ)< (ξ2κ) , for each κ ∈ J, (1.2)

where 0 < ξ1 ≤ ξ2 < 1 and < : J → R such that <(0) = 0 and <(1) = 1.

In 2020, the following FE was proposed by the authors in [8] using the aforementioned methodology:

<(κ) = κ< (ξ1κ + (1− ξ1)β1) + (1− κ)< (ξ2κ + (1− ξ2)β2) , for each κ ∈ J, (1.3)

where 0 < ξ1 ≤ ξ2 < 1, β1, β2 ∈ J and < : J → R. This study examined a specific psychological

barrier displayed by dogs when kept indoors in a small closet using the FE described above.

Berinde and Khan [9] developed the ideas mentioned above and explored whether the equation

shown below has a unique solution:

<(κ) = κ< (=1κ) + (1− κ)< (=2κ) , for each κ ∈ J, (1.4)

where =1,=2 : J → J are given contraction mappings (CMs) and < : J → R. These kinds of functional
equations are also used to explain the relationship between predatory animals and their two choices of
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prey. In contrast, a few scholars talked about the stability [10], and convergence findings [11] of the

FEs.

In 2020, authors [12] considered a FE, which is a generalization of the concept described in [9] for

an arbitrary interval [%1, %2].

<(κ) =

(
κ − %1
%2 − %1

)
< (=1κ) +

(
1−
κ − %1
%2 − %1

)
< (=2κ) , for each κ ∈ [%1, %2], (1.5)

where =1,=2 : [%1, %2]→ [%1, %2] are CMs and < : [%1, %2]→ R.
Considering the transitional operators in Table 1, numerous results have been reached from diverse

investigations on the conduct of both people and animals in situations teaching likelihood; see [13–17]

for more information.

Based on the reward and chosen side framework presented in Table 1 by Bush and Wilson [6].

Writers [18] expanded the mentioned study in 2022 by assuming the FE below:

<(κ) = τϑ (κ)< (=1κ)+(1−τ)ϑ (κ)< (=2κ)+τ(1−ϑ (κ))< (=3κ)+(1−τ)(1−ϑ (κ))< (=4κ) ,

(1.6)

for each κ ∈ J, where =i : J → J, (i = 1, 2, 3, 4) are given maps, ϑ : J → J denotes the proportional

event probability, with a fixed percentage of occurrences falling inside a value of τ ∈ J, and < :

[%1, %2]→ R is an unknown.

Turab recently proposed the following FE [19] to extend the aforementioned model (1.6) to a

random interval [%1, %2] in order to continue the study in [6]:

<(κ) =

(
κ − %1
%2 − %1

)(
τ − %1
%2 − %1

)
< (=1κ) +

(
κ − %1
%2 − %1

)(
1−

τ − %1
%2 − %1

)
< (=2κ)

+

(
1−
κ − %1
%2 − %1

)(
τ − %1
%2 − %1

)
< (=3κ) +

(
1−
κ − %1
%2 − %1

)(
1−

τ − %1
%2 − %1

)
< (=4κ) , (1.7)

for each κ ∈ [%1, %2], where =i : [%1, %2] → [%1, %2], (i = 1, 2, 3, 4) are given maps, τ ∈ [0, 1] and

< : [%1, %2]→ R is an unknown.

The results of numerous studies that have looked at how various animals response to discovering

novel probabilistic patterns has substantially altered; see [20] for more details. An issue that frequently

arises in these investigations is: What would happen to the building if an animal refused to leave the

middle and stayed there?
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Neimark’s ground-breaking research on behavior in two-choice perspective situations must be taken

into account in order to provide a proper response to this question; see [21]. During tests, individuals

were given the option to select which of two lights would be turned on, while others could choose to

do nothing. Hence, the third type of event are the "blank trials," as she referred to them.

Motivated by the study mentioned above, we present the following general FE:

<(κ) = θ1(κ)< (=1κ) + θ2(κ)< (=2κ) + θ3(κ)< (=3κ) + · · ·+ θn(κ)< (=nκ) , (1.8)

for each κ ∈ J, where < : J → R, =i : J → J, are given maps and θi : J → J, (i = 1, 2, ..., n) are the

associated probabilities of the events with

θn(κ) = (1− θ1(κ)− θ2(κ)− · · · − θn−1(κ)) , n ∈ N.

In this instance, the Banach FP theorem will be used to show that the suggested equation (1.8)

has a unique solution (US). In addition, the stability of the suggested solution to the FE (1.8) will

be evaluated using the conclusions put out by HU and HUR. Finally, two examples are provided to

illustrate the importance of our study in this area..

The requirements that ensure there are solutions to the fitted system are also a focus of the

philosophy of FP theory. It contains techniques that can be used to handle problems in a number

of fields of mathematics. For the most recent research in this field, we suggest [22–28] and the

references therein.

The subsequent result is necessary for the development to proceed.

Theorem 1.1. [29] A self-mapping <, which is defined on a complete metric space (J, d), owns a

unique FP if it is a contraction, i.e., there is ν < 1 so that d
(
<`,<˜̀) ≤ νd (`, ˜̀) , for all `, ˜̀∈ J. In

addition, the Picard iteration (PI) `n = <n`0, for all {`n} ⊂ J and `0 ∈ J converges to a unique FP

of <.

2. Assumptions and Main Results

Let J ∈ [0, 1] and Θ be a family of all real-valued continuous functions < : J → R with

sup 6̀=˜̀ |<`−<˜̀||`−˜̀| <∞ and <(0) = 0. Clearly, (Θ, ‖.‖) is a BS under the norm

‖<‖ = sup
6̀=˜̀
∣∣∣<`−<˜̀∣∣∣∣∣∣`− ˜̀∣∣∣ , < ∈ Θ. (2.1)

To reach our purpose in this study, we impose the following hypotheses:

(H1) There is ψ 6=∅ ⊂ Υ = {< ∈ Θ : <(1) ≤ 1} so that (ψ, ‖.‖) is a BS, where ‖.‖ is described as

(2.1).

(H2) The maps θi : J → J with θ1(0) = 0 = θ2(0), for i = 1, 2, ..., n, fulfill the inequalities below:

d
(
θi`, θi ˜̀) ≤ d (`, ˜̀) , for all `, ˜̀∈ J,
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and

|θi (κ)| ≤ νi , for all κ ∈ J and νi ≥ 0.

(H3) The maps =i : J → J with =3(0) = =4(0) = ... = =n(0) = 0, for i = 1, 2, ..., n, fulfill the

inequalities shown below:

d
(
=i`,=i ˜̀) ≤ σid (`, ˜̀) , for all `, ˜̀∈ J, and σi < 1,

and

|=i (κ)| ≤ ηi , for all κ ∈ J and ηi ≥ 0.

(H4) (HUR-stability [30]) For < ∈ ψ and for a function $ : ψ → [0,∞) with d (Z<,<) ≤ $ (<) ,

there is a unique <∗ ∈ ψ so that Z<∗ = <∗ and d (<,<∗) ≤ ∆$ (<) , where ∆ > 0.

(H5) (HU-stability [31]) For < ∈ ψ and for ρ > 0 with d (Z<,<) ≤ ρ, there is a unique <∗ ∈ ψ so

that Z<∗ = <∗ and d (<,<∗) ≤ ∆ρ, where µ > 0.

Now, we present the first main result in this part.

Theorem 2.1. Assume that the hypotheses (H1)− (H3) hold, then the general FE (1.8) possesses a

US provided that f < 1, where

f =

n∑
i=1

σiνi +

n∑
i=1

ηi , i ∈ N. (2.2)

Moreover, for all k ∈ N, the sequence {<k} in ψ converges to the US of (1.8) with

<k(κ) = θ1(κ)<k−1 (=1κ)+θ2(κ)<k−1 (=2κ)+θ3(κ)<k−1 (=3κ)+· · ·+θn(κ)<k−1 (=nκ) . (2.3)

Proof. Define the operator Z : ψ → ψ as

(Z<) (κ) = θ1(κ)< (=1κ) + θ2(κ)< (=2κ) + θ3(κ)< (=3κ) + · · ·+ θn(κ)< (=nκ) , (2.4)

for all κ ∈ J and < ∈ ψ. For all < ∈ J, we get (Z<) (0) = 0. As Z : ψ → ψ is continuous, then

‖Z<‖ ≤ ∞, for all < ∈ ψ. There is no doubt that the unique FP of the operator Z is equivalent to

the US to Equation (1.8).

Since Z is linear, one has

‖Z<1 − Z<2‖ = ‖Z (<1 −<2)‖ , for all <1,<2 ∈ ψ.

Finally, we develop the following framework for examining the expression ‖Z<1 − Z<2‖ : for all

<1,<2 ∈ ψ,

℘λ,χ =
Z (<1 −<2) (λ)− Z (<1 −<2) (χ)

λ− χ , λ, χ ∈ J, λ 6= χ.
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For all λ,χ ∈ J withλ 6= χ, one has

℘λ,χ =
1

λ− χ (θ1(λ)< (=1λ) + θ2(λ)< (=2λ) + θ3(λ)< (=3λ) + · · ·+ θn(λ)< (=nλ)

− θ1(χ)< (=1χ)− θ2(χ)< (=2χ)− θ3(χ)< (=3χ)− · · · − θn(χ)< (=nχ))

=
1

λ− χ ([θ1(λ)< (=1λ)− θ1(λ)< (=1χ)] + [θ2(λ)< (=2λ)− θ2(λ)< (=2χ)]

[θ3(λ)< (=3λ)− θ3(λ)< (=3χ)] + · · ·+ [θn(λ)< (=nλ)− θn(λ)< (=nχ)]

+ [θ1(λ)< (=1χ)− θ1(χ)< (=1χ)] + [θ2(λ)< (=2χ)− θ2(χ)< (=2χ)]

+ [θ3(λ)< (=3χ)− θ3(χ)< (=3χ)] + · · ·+ [θn(λ)< (=nχ)− θn(χ)< (=nχ)]) ,

which yields,∣∣℘λ,χ∣∣ ≤ ∣∣∣∣ 1

λ− χ

∣∣∣∣ (|θ1(λ)< (=1λ)− θ1(λ)< (=1χ)|+ |θ2(λ)< (=2λ)− θ2(λ)< (=2χ)|

+ |θ3(λ)< (=3λ)− θ3(λ)< (=3χ)|+ · · ·+ |θn(λ)< (=nλ)− θn(λ)< (=nχ)|

+ |θ1(λ)< (=1χ)− θ1(χ)< (=1χ)|+ |θ2(λ)< (=2χ)− θ2(χ)< (=2χ)|

+ |θ3(λ)< (=3χ)− θ3(χ)< (=3χ)|+ · · ·+ |θn(λ)< (=nχ)− θn(χ)< (=nχ)|) .

Our goal in this situation is to benefit from the norm specification that is given in Equation (2.1). As
a result, we can write

|℘λ,χ| ≤
|θ1(λ)< (=1λ)− θ1(λ)< (=1χ)|

|=1λ−=1χ|
× |=1λ−=1χ||λ− χ| +

|θ2(λ)< (=2λ)− θ2(λ)< (=2χ)|
|=2λ−=2χ|

× |=2λ−=2χ||λ− χ|

+
|θ3(λ)< (=3λ)− θ3(λ)< (=3χ)|

|=3λ−=3χ|
× |=3λ−=3χ||λ− χ| + · · ·

+
|θn(λ)< (=nλ)− θn(λ)< (=nχ)|

|=nλ−=nχ|
× |=nλ−=nχ||λ− χ|

+
|θ1(λ)− θ1(χ)|

λ− χ × |< (=1χ)−<(0)||=1χ− 0|
× |=1χ|+

|θ2(λ)− θ2(χ)|
λ− χ × |< (=2χ)−<(0)||=2χ− 0|

× |=2χ|

+
|θ3(λ)− θ3(χ)|

λ− χ × |< (=3χ)−<(0)||=3χ− 0|
× |=3χ|+ · · ·

+
|θn(λ)− θn(χ)|

λ− χ × |< (=nχ)−<(0)||=nχ− 0|
× |=nχ| .

It follows from (H2), (H3) and (2.1) that∣∣℘λ,χ∣∣ ≤ σ1ν1 ‖<1 −<2‖+ σ2ν2 ‖<1 −<2‖+ σ3ν3 ‖<1 −<2‖+ · · ·+ σnνn ‖<1 −<2‖

+η1 ‖<1 −<2‖+ η2 ‖<1 −<2‖+ η3 ‖<1 −<2‖+ · · ·+ ηn ‖<1 −<2‖

=

(
n∑
i=1

σiνi +

n∑
i=1

ηi

)
‖<1 −<2‖

= f ‖<1 −<2‖ ,

where f is defined by (2.2). Hence

d (Z<1, Z<2) = ‖Z<1 − Z<2‖ ≤ f ‖<1 −<2‖ = fd (<1,<2) ,



Int. J. Anal. Appl. (2023), 21:112 7

where d : ψ × ψ → R is induced metric on ψ. As f < 1, then Z is a contraction. We infer that the

PI defined in (2.3) converges to the US of Equation (1.8) on J because of the important FP finding

assumed by Theorem 1.1. �

Here, we present the following more relaxed conditions as opposed to the original circumstances

(H2) and (H3):

(H̃2) The maps θi : J → J with θ1(0) = 0 = θ2(0), for i = 1, 2, ..., n, satisfy the following:

d
(
θi`, θi ˜̀) ≤ µid (`, ˜̀) , for all `, ˜̀∈ J,

and

|θi (κ)| ≤ ν̂, for all κ ∈ J and ν̂ ≥ 0.

(H̃3) The maps =i : J → J with =3(0) = =4(0) = ... = =n(0) = 0, for i = 1, 2, ..., n, fulfill the

inequalities shown below:

d
(
=i`,=i ˜̀) ≤ σ̂id (`, ˜̀) , for all `, ˜̀∈ J, and σ̂i < 1,

with σ̂1 ≤ σ̂2 ≤ σ̂3 ≤ ... ≤ σ̂n and

|=i (κ)| ≤ η̂, for all κ ∈ J and η ≥ 0.

We can draw the following conclusion from the aforementioned findings:

Corollary 2.1. In the light of assumptions (H1), (H̃2), (H3), the general FE (1.8) owns a US, if f̃ < 1,

where

f̃ = ν̂

n∑
i=1

σi +

n∑
i=1

µiηi , i ∈ N.

Moreover, for all k ∈ N, the sequence {<k} in ψ converges to the US of (1.8) with

<k(κ) = θ1(κ)<k−1 (=1κ) + θ2(κ)<k−1 (=2κ) + θ3(κ)<k−1 (=3κ) + · · ·+ θn(κ)<k−1 (=nκ) .

Corollary 2.2. Under the hypotheses (H1), (H2) and
(
H̃3

)
, the general FE (1.8) has a US, if f̂ < 1,

where

f̂ = σ̂n

n∑
i=1

νi + η̂, i ∈ N.

Moreover, for all k ∈ N, the sequence {<k} in ψ converges to the US of (1.8) with

<k(κ) = θ1(κ)<k−1 (=1κ) + θ2(κ)<k−1 (=2κ) + θ3(κ)<k−1 (=3κ) + · · ·+ θn(κ)<k−1 (=nκ) .

After that, we’ll talk about a less stringent criterion than (H̃2) that can be used to prove that there

is only one possible solution to equation (1.8).
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Ĥ2

)
The maps θi : J → J with θ1(0) = 0 = θ2(0), for i = 1, 2, ..., n, satisfy the following:

d
(
θi`, θi ˜̀) ≤ µid (`, ˜̀) , for all `, ˜̀∈ J,

with µ1 ≤ µ1 ≤ ... ≤ µ2, and

|θi (κ)| ≤ ν̂, for all κ ∈ J and ν̂ ≥ 0.

The previous conclusion directly leads to the next corollary.

Corollary 2.3. Assume that (H1), (Ĥ2) and
(
H̃3

)
are true, then the general FE (1.8) has a US, if

f < 1, where

f = σ̂nν̂ + µnη̂ n ∈ N.

Moreover, for all k ∈ N, the sequence {<k} in ψ converges to the US of (1.8) with

<k(κ) = θ1(κ)<k−1 (=1κ) + θ2(κ)<k−1 (=2κ) + θ3(κ)<k−1 (=3κ) + · · ·+ θn(κ)<k−1 (=nκ) .

Remark 2.1. Using the suggested iteration strategy, we cannot anticipate rapid convergence because

the PI converges linearly. We might overcome this barrier with the appropriate accelerative method,

for additional study in this area, we refer to [32–34].

Remark 2.2. The proposed equation (1.8) generalizes a wide range of FEs that are already present

in the literature as follows:

(i) If we take θ1(κ) = κ , =1κ = ξ1 + (1 − ξ1)κ , θ2(κ) = (1 − κ), =2κ = (1− ξ2)κ , and
θ3(κ) = θ4(κ) = ... = θn(κ) = 0, for 0 < ξ1 ≤ ξ2 < 1 and for n ∈ N in (1.8), we have the

FE (1.1), where < : J → R, <(0) = 0 and <(1) = 1.

(ii) Putting θ1(κ) = κ , =1κ = ξ1κ + (1 − ξ1), θ2(κ) = (1 − κ), =2κ = ξ2κ and θ3(κ) =

θ4(κ) = ... = θn(κ) = 0, for 0 < ξ1 ≤ ξ2 < 1 and for n ∈ N in (1.8), we get the FE (1.2),

where < : J → R, <(0) = 0 and <(1) = 1.

(iii) Setting θ1(κ) = κ , =1κ = ξ1κ + (1 − ξ1)β1, θ2(κ) = (1 − κ), =2κ = ξ2κ + (1 − ξ2)β2
and θ3(κ) = θ4(κ) = ... = θn(κ) = 0, for 0 < ξ1 ≤ ξ2 < 1, β1, β2 ∈ J and for n ∈ N in

(1.8), we obtain the FE (1.3), where < : J → R.
(iv) Letting θ1(κ) = κ , θ2(κ) = (1 − κ) and θ3(κ) = θ4(κ) = ... = θn(κ) = 0, for n ∈ N in

(1.8), one has the FE (1.4), where < : J → R and =1,=2 : J → J are given CMs.

(v) If we set θ1(κ) = κ−%1
%2−%1 , θ2(κ) = (1 − κ−%1

%2−%1 ) and θ3(κ) = θ4(κ) = ... = θn(κ) = 0, for

n ∈ N in (1.8), we have the FE (1.5), where < : [%1, %2] → R and = : [%1, %2] → [%1, %2] are

CMs, for arbitrary interval [%1, %2].

(vi) If we let θ1(κ) = τϑ (κ) , θ2(κ) = (1 − τ)ϑ (κ) , θ3(κ) = τ(1 − ϑ (κ)), θ4(κ) = (1 −
τ)(1 − ϑ (κ)) and θ5(κ) = θ6(κ) = ... = θn(κ) = 0, for n ∈ N in (1.8), we obtain the FE

(1.6), where =i : J → J, (i = 1, 2, 3, 4) are given maps and ϑ : J → J is the proportional

event probability for each τ,κ ∈ J.
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(vi) If we put θ1(κ) =
(
κ−%1
%2−%1

)(
τ−%1
%2−%1

)
, θ2(κ) =

(
κ−%1
%2−%1

)(
1− τ−%1

%2−%1

)
, θ3(κ) =(

1− κ−%1
%2−%1

)(
τ−%1
%2−%1

)
, θ4(κ) =

(
1− κ−%1

%2−%1

)(
1− τ−%1

%2−%1

)
and θ5(κ) = θ6(κ) = ... =

θn(κ) = 0, for n ∈ N in (1.8), we obtain the FE (1.7), where < : [%1, %2] → R,
=i : [%1, %2]→ [%1, %2], (i = 1, 2, 3, 4) are given mappings and κ ∈ [%1, %2].

3. Stability Analysis

Almost all disciplines of mathematical computing should be concerned with the following main issue:

Is there ever an equivalency between a mathematical entity that approximates a criteria and one that

clearly meets that attribute? When we turn our attention to FEs, we could run into the problem of

determining whether an equation’s solution that deviates only slightly from an equation is close to

the supplied equation’s solution. Therefore, it is necessary to discuss the stability of the suggested

equation (1.8) below; for more information, see [35–44].

Theorem 3.1. Assume that all requirements of Theorem 2.1 are verified. Then Z< = < fulfills (H4),

where Z is described as (2.4).

Proof. Consider < ∈ ψ with d (Z<,<) ≤ $ (<) . Thank to Theorem 2.1, there exists a US <∗ ∈ ψ
with Z<∗ = <∗. Therefore, we can write

d (<,<∗) ≤ d (<, Z<) + d (Z<,<∗) ≤ $ (<) + d (Z<, Z<∗) ≤ $ (<) +fd (<,<∗) ,

where $ : ψ → [0,∞) and f is given by (2.2). As a result,

d (<,<∗) ≤ ∆$ (<) ,

where ∆ = 1
1−f . �

Also, we can draw this conclusion about the stability of the HU type from this analysis.

Corollary 3.1. Assume that all hypotheses of Theorem 2.1 are satisfied. Then Z< = < fulfills (H5),

where Z is described as (2.4).

4. Supportive Applications

To support and strengthen the theoretical results, we present the two examples below:

Example 4.1. Consider the following FE:

<(κ) =

(
δ1(κ)

3

)
<
(
φ1
8

+
(1− φ1)κ

8

)
+

(
δ2(κ)

3

)
<
(
φ2
6

+
(1− φ2)κ

6

)
+

(
δ3(κ)

3

)
<
(
φ3
4

+
(1− φ3)κ

4

)
+

(
(1− δ1)κ

3

)
<
(
φ4κ

7

)
+

(
(1− δ2)κ

3

)
<
(
φ5κ
10

)
+

(
(1− δ3)κ

3

)
<
(
φ6κ
13

)
+ (1− κ)<

(
φ7
15

)
, (4.1)
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where < : J → R. Equation (4.1) is a special case of Equation (1.8) with θi ,=i : J → J, (i = 1, 2, ..., 7),

and 

θ1(κ) = δ1(κ)
3 ,

θ2(κ) = δ2(κ)
3 ,

θ3(κ) = δ3(κ)
3 ,

θ4(κ) = (1−δ1)κ
3 ,

θ5(κ) = (1−δ2)κ
3 ,

θ6(κ) = (1−δ3)κ
3 ,

θ7(κ) = 1− κ ,

and



=1(κ) = φ1
8 + (1−φ1)κ

8 ,

=2(κ) = φ2
6 + (1−φ2)κ

6 ,

=3(κ) = φ3
4 + (1−φ3)κ

4 ,

=4(κ) = φ4κ
7 ,

=5(κ) = φ5κ
10 ,

=6(κ) = φ6κ
13 ,

=7(κ) = φ7κ
15 ,

(4.2)

θ8(κ) = θ9(κ) = ... = θn(κ) = 0, for each κ ∈ J, where φi ∈ (0, 1), (i = 1, 2, ..., 7).

The use of the FE (4.1) to analyze a paradise fish’s behavior (Figure 1) in a three-choice scenario

(A, C, or B) has many implications for PLT. In this context, =i represent the seven occurrences,

depending on the chosen side and reward, whereas θi denote their respective probability (Table 2),

where i = 1, 2, ..., 7.
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To demonstrate that the suggested equation (4.1) possesses a US, we will use Theorem 2.1.

Obviously, the maps θi and =i , i = 1, 2, ..., 7, defined in (4.2) verify hypotheses (H2) and (H3)

respectively, with coefficients

|θ1(κ)| ≤ ν1 = δ1
3 ,

|θ2(κ)| ≤ ν2 = δ2
3 ,

|θ3(κ)| ≤ ν3 = δ3
3 ,

|θ4(κ)| ≤ ν4 = 1−δ1
3 ,

|θ5(κ)| ≤ ν5 = 1−δ2
3 ,

|θ6(κ)| ≤ ν6 = 1−δ3
3 ,

|θ7(κ)| ≤ ν7 = 1,



σ1 = (1−φ1)
8 ,

σ2 = (1−φ2)
6 ,

σ3 = (1−φ3)
4 ,

σ4 = φ4
7 ,

σ5 = φ5
10 ,

σ6 = φ6
13 ,

σ7 = φ7
15 ,

and



|=1(κ)| ≤ η1 = 1
8 ,

|=2(κ)| ≤ η2 = 1
6 ,

|=3(κ)| ≤ η3 = 1
4 ,

|=4(κ)| ≤ η4 = 1
7 ,

|=5(κ)| ≤ η5 = 1
10 ,

|=6(κ)| ≤ η6 = 1
13 ,

|=7(κ)| ≤ η7 = 1
15 ,

for all κ , δ1, δ2, δ3 ∈ J. If

f =

7∑
i=1

σiνi +

n∑
i=1

ηi =
(1− φ1)δ1

24
+

(1− φ2)δ2
18

+
(1− φ3)δ3

12
+

(1− δ1)φ4
21

+
(1− δ2)φ5

30
+

(1− δ3)φ5
39

+
φ7
15

+
2027

2184

< 1,

then all requirements of Theorem 2.1 are fulfilled. Hence, the FE (4.1) has at least one solution.

Furthermore, imagine that we make an estimate computation, say <0 (κ) = κ , for all κ ∈ J, the
solution to equation (4.1) will be reached in the following iteration, for each n ∈ N,

<1(κ) =

(
δ1(κ)

3

)
<0
(
φ1
8

+
(1− φ1)κ

8

)
+

(
δ2(κ)

3

)
<0
(
φ2
6

+
(1− φ2)κ

6

)
+

(
δ3(κ)

3

)
<0
(
φ3
4

+
(1− φ3)κ

4

)
+

(
(1− δ1)κ

3

)
<0
(
φ4κ

7

)
+

(
(1− δ2)κ

3

)
<0
(
φ5κ
10

)
+

(
(1− δ3)κ

3

)
<0
(
φ6κ
13

)
+ (1− κ)<0

(
φ7
15

)
,

<2(κ) =

(
δ1(κ)

3

)
<1
(
φ1
8

+
(1− φ1)κ

8

)
+

(
δ2(κ)

3

)
<1
(
φ2
6

+
(1− φ2)κ

6

)
+

(
δ3(κ)

3

)
<1
(
φ3
4

+
(1− φ3)κ

4

)
+

(
(1− δ1)κ

3

)
<1
(
φ4κ

7

)
+

(
(1− δ2)κ

3

)
<1
(
φ5κ
10

)
+

(
(1− δ3)κ

3

)
<1
(
φ6κ
13

)
+ (1− κ)<1

(
φ7
15

)
,

...

<n(κ) =

(
δ1(κ)

3

)
<n−1

(
φ1
8

+
(1− φ1)κ

8

)
+

(
δ2(κ)

3

)
<n−1

(
φ2
6

+
(1− φ2)κ

6

)
+

(
δ3(κ)

3

)
<n−1

(
φ3
4

+
(1− φ3)κ

4

)
+

(
(1− δ1)κ

3

)
<n−1

(
φ4κ

7

)
+

(
(1− δ2)κ

3

)
<n−1

(
φ5κ
10

)
+

(
(1− δ3)κ

3

)
<n−1

(
φ6κ
13

)
+ (1− κ)<n−1

(
φ7
15

)
.
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Further, we get

∆ =
1

1−f

=
1

1−
[
(1−φ1)δ1
24 + (1−φ2)δ2

18 + (1−φ3)δ3
12 + (1−δ1)φ4

21 + (1−δ2)φ5
30 + (1−δ3)φ5

39 + φ7
15 + 2027

2184

] > 0.

Now, assume that the function < ∈ J fulfills

d (Z<,<) ≤ $ (<) .

Hence, using Theorem 3.1, we deduce that the US <∗ ∈ J of the FE (4.1) is HUR with

Z<∗ = <∗ and d (<,<∗) ≤ ∆$ (<) .

Example 4.2. Consider the following FE:

<(κ) = κ<
(

6κ + 7

41

)
+ (1− κ)<

( κ
23

)
+ κ<

(
5 + κ

35

)
. (4.3)

Equation (4.3) is a special form of Equation (1.8) with θj ,=i : J → J, (i = 1, 2, 3), and
θ1(κ) = κ ,
θ2(κ) = (1− κ) ,

θ3(κ) = κ ,

and


=1(κ) = 6κ+7

41 ,

=2(κ) = κ
23 ,

=3(κ) = 5+κ
35 ,

(4.4)

θ4(κ) = θ5(κ) = ... = θn(κ) = 0, for each κ ∈ J. In order to prove that the FE (4.4) has a US, we

apply Theorem 2.1. Clearly, the maps θi and =i , i = 1, 2, 3 defined in (4.4) satisfy the assumptions

(H2) and (H3) respectively, with coefficients
|θ1(κ)| ≤ ν1 = 1,

|θ2(κ)| ≤ ν2 = 1,

|θ3(κ)| ≤ ν3 = 1,


σ1 = 6

41 ,

σ2 = 1
23 ,

σ3 = 1
35 ,

and


|=1(κ)| ≤ η1 = 13

41 ,

|=2(κ)| ≤ η2 = 1
23 ,

|=3(κ)| ≤ η3 = 6
35 ,

for all κ ∈ J. Further, f = 3538
4715 < 1. Hence, all axioms of Theorem 2.1 are fulfilled. Thus, the FE

(4.3) has at least one solution.

In addition, imagine that we make an estimate computation, say <0 (κ) = κ , for all κ ∈ J, the
solution to equation (4.3) will converge in the following iteration for each n ∈ N,

<1(κ) = κ<0
(

6κ + 7

41

)
+ (1− κ)<0

( κ
23

)
+ κ<0

(
5 + κ

35

)
,

<2(κ) = κ<1
(

6κ + 7

41

)
+ (1− κ)<1

( κ
23

)
+ κ<1

(
5 + κ

35

)
,

...

<n(κ) = κ<n−1
(

6κ + 7

41

)
+ (1− κ)<n−1

( κ
23

)
+ κ<n−1

(
5 + κ

35

)
.
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Also, we get

∆ =
1

1−f =
1

1− 35384715

=
4715

1177
> 0.

Now, assume that the function < ∈ J fulfills

d (Z<,<) ≤ $ (<) .

Hence, using Theorem 3.1, we deduce that the US <∗ ∈ J of the FE (4.3) is HUR with

Z<∗ = <∗ and d (<,<∗) ≤ ∆$ (<) .

5. Conclusion

The goal of mathematical psychology, a branch of psychology, is to use mathematics to illustrate

difficulties in PLT. From this point, the bulk of learning research tries to compare outcomes across

multiple trials in order to determine the random chance that contributes to a stochastic process. In

the context of PLT, our work created a large class of FEs that may be used to analyze a variety of

studies. The Banach FP theorem has been used to determine whether the given equation (1.8) has

a US. We gave a quick stability study of the solution to the suggested FE. Ultimately, the key points

were explained with the help of two examples.
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