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A Hoeffding-Azuma Type Inequality for Random Processes
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Abstract. The subject of this paper is a Hoeffding-Azuma type estimation for the difference between

an adapted random process and its conditional expectation given a related filtration.

1. Introduction

Hoeffding-Azuma type inequalities have very important applications in probability theory, statistics

and different branches of science. In this section we give a brief history of Hoeffding-Azuma type

inequalities.

1.1. Classical Hoeffding-Azuma type inequalities. Let (Ω,F , P ) be a probability triple, where Ω

is a sample space, F is a σ-algebra on Ω and P is a σ−additive probability measure on F . Let us

denote by B the Borel algebra on R. Note that B = σ(τ|x−y |), the minimal σ−algebra containing the

natural topology τ|x−y | on R.

Definition 1.1. A function X : Ω→ R is called a random variable if X is F-measurable function, i.e.

X−1(B) ⊂ F .

For definitions from the probability theory, used in this article see ( [5], Sections 2.1, 6.1, 12.1 and

12.2).

The classical Hoeffding inequality is about finding upper bounds for the probability that the sum of

n independent random variables exceeds its mean by a positive number nt. The pioneering work was

by Hoeffding ( [6], Theorem 2) who proved the following theorem.
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Theorem 1.1. (Hoeffding Inequality) If X1, X2, ..., Xn are independent random variables and ai ≤
Xi ≤ bi , i = 1, 2, .., n. Then,

P (X − µ ≥ t) ≤ e−2n2t2/
∑n

i=1(bi−ai )2

where,

X =
X1 +X2 + ...+Xn

n
, µ = E(X).

Besides Hoeffding inequality there are two more classical fundamental results. These are Azuma

inequality and Chernoff inequality. Let us give both inequalities in the form expressed by T. Tao ( [9],

Theorem 2.1.3 and Theorem 2.1.5).

Theorem 1.2. (Chernoff Inequality) Let X1, X2, ..., Xn be independent scalar random variables with

|Xi | ≤ K almost surely, with mean µi and variance σ2
i . Then for any λ > 0, one has

P (|Sn − µ| ≥ λσ) ≤ Cmax(exp(−cλ2), exp(−cλσ/K)),

for some constants C, c > 0, where µ =
∑n
i=1 µi , σ

2 =
∑n
i=1 σ

2
i and Sn = X1 +X2 + ...+Xn.

Theorem 1.3. (Azuma Inequality) Let X1, X2, ..., Xn be a sequence of scalar random variables with

|Xi | ≤ 1 almost surely. Assume also that we have martingale difference property

E(Xi |X1, ..., Xi−1) = 0

almost surely, for all i = 1, ..., n. Then for any λ > 0 the sum Sn = X1 +X2 + ...+Xn obey the large

deviation inequality

P (|Sn| ≥ λ
√
n) ≤ Cexp(−cλ2)

for some constants C, c > 0.

1.2. Hoeffding-Azuma type inequalities for Martingale differences. Martingales and Markov

chains are known to be widely used areas of Hoeffding-Azuma type inequalities.

Definition 1.2. (see [5], Section 12.1) A sequence of random variables Y = {Yn : n ≥ 0} is martingale

with respect to the sequence X = {Xn : n ≥ 0} if, for all n ≥ 0

a) E(|Yn|) <∞,
b) E(Yn+1|X0, X1, ..., , Xn) = Yn

The Hoeffding inequality for martingale differences is of supreme importance in the theory of mar-

tingales (see [5], Section 12.2. )

Theorem 1.4. (Hoeffding inequality for martingale differences) Let Y = {Yn : n ≥ 0} be a martingale,

and suppose that there exists a sequence K1, K2, ..., of real numbers such that P (|Yn−Yn−1| ≤ Kn) = 1

for all n. Then

P (|Yn − Y0| ≥ x) ≤ 2 exp
(
−

1

2
x2/

n∑
i=1

K2
i ,
)
x > 0. (1.1)
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Inequality (1.1) means that if the martingale differences are bounded then the large deviation of Yn

from its initial value Y0 is small.

There are many new results and their applications in the literature on these issues.

A generalization of Hoeffding inequality for dependent random variables was given in [10]. Optimal

bounds for Hoeffding’s inequalities were found in [8]. In [4] it was proved a Hoeffding type inequality

to partial sums that are derived from a uniformly ergodic Markov chain. New type of inequalities were

introduced in [2] (see also references therein). In [3] some inequalities were obtained for unbounded

random variables.

[7] Significantly improved the well-known Bennett-Hoeffding bound for sums of independent random

variables by using, instead of the class of all increasing exponential functions, a much larger class of

generalized moment functions. The resulting bounds have certain optimality properties.

2. Inequalities for Adopted Random Precesses

A random process is a collection of random variables {X(t), t ∈ T}. Particularly, a sequence

X0, X1, X2, ..., Xn.... of random variables defined on the same probability triple (Ω,F , P ) is a random

process.

Definition 2.1. Let {Fn}∞n=0 be a sequence of σ-sub-algebras of F , such that F0 ⊆ F1 ⊆ .... ⊆ Fn ⊆
..... ⊆ F . Then {Fn}∞n=0 is called a filtration of (Ω,F , P ) and a sequence {Xn : n ≥ 0} of random
variables is said to be adapted to the filtration {Fn}∞n=0 if Xn is Fn measurable for all n.

We denote by E(Xn|Fn−1) the condition expectation of Xn given Fn−1 for all n ≥ 1.

As pointed out in the introduction the classical Hoeffding inequality is about finding upper bounds

for the probability that the sum of n independent random variables exceeds its mean by nt.

Finding upper bounds for the probability that the sum of n terms of an adapted random process

exceeds its conditional mean by x is also among the topics of interest.

As far as we know, no previous research has investigated P
(∣∣∣∑n

i=1

(
Xi − E(Xi |Fi−1

)∣∣∣ ≥ x
)
for

general adopted random processes, which is the main subject of this paper.

The basic result is the following theorem.

Theorem 2.1. Let {Xn : n ≥ 0} be a sequence of random variables which is adapted to a filtration

{Fn}∞n=0. If |Xn − E(Xn|Fn−1)| ≤ Cn almost surely, for n ≥ 0 then

P
(∣∣∣ n∑
i=1

(
Xi − E(Xi |Fi−1)

)∣∣∣ ≥ x) ≤ 2e

(
− x2

2

/∑n
i=1 C

2
i

)
(2.1)

Proof. Let us define the following sequence:
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Y0 = X0;

Y1 = X0 +
(
X1 − E(X1|F0)

)
;

...

Yn = X0 +
(
X1 − E(X1|F0)

)
+ ...+

(
Xn − E(Xn|Fn−1)

)
.

We have

Yn = Yn−1 +
(
Xn − E(Xn|Fn−1)

)
. (2.2)

Evidently, Yn is Fn measurable for all n and E
((
Xn − E(Xn|Fn−1))|Fn−1

)
= 0. Then it follows form

(2.2) that E(Yn|Fn−1) = Yn−1, i.e. {Yn; n ≥ 0} is a martingale sequence. Note that,

n∑
i=1

(
Xi − E(Xi |Fi−1)

)
= Yn − Y0 . (2.3)

By (2.3)

P
( n∑
i=1

(
Xi − E(Xi |Fi−1

))
≥ x

)
= P

(
Yn − Y0 ≥ x

)
. (2.4)

Let θ > 0, then

E
(
eθ(Yn−Y0)

)
=

∫
Ω

eθ(Yn−Y0) dP ≥
∫
Yn−Y0≥x

eθ(Yn−Y0) dP ≥ eθx
∫
Yn−Y0≥x

dP.

Hence,

E
(
eθ(Yn−Y0)

)
≥ eθx

∫
Yn−Y0≥x

dP = eθxP
(
Yn − Y0 ≥ x

)
and

P
(
Yn − Y0 ≥ x

)
≤ e−θxE

(
eθ(Yn−Y0)

)
. (2.5)

Next, we estimate E
(
eθ(Yn−Y0)

)
. By the tower property we obtain that

E
(
eθ(Yn−Y0)

)
= E

(
E
(
eθ(Yn−Y0)|Fn−1

))
. (2.6)

E
(
eθ(Yn−Y0)|Fn−1

)
= eθ(Yn−1−Y0)E

(
eθ(Yn−Yn−1)|Fn−1

))
.

We set f (y) = eθy , |y | ≤ Cn. The function f (y) = eθy is convex, whence it follows that

eθy ≤
1

2
(1−

y

Cn
)e−θCn +

1

2
(1 +

y

Cn
)eθCn =

(1

2
e−θCn +

1

2
eθCn

)
+

y

2Cn

(
eθCn − e−θCn

)
.

Thus,

eθy ≤ e
1
2
θ2C2

n +
y

2Cn

(
eθCn − e−θCn

)
, |y | ≤ Cn. (2.7)

Yn− Yn−1 = Xn−E(Xn|Fn−1) and by the condition of the theorem |Yn− Yn−1| ≤ Cn. Then setting

y = Yn − Yn−1 in (2.7) we obtain

eθ(Yn−Yn−1) ≤ e
1
2
θ2C2

n +
Yn − Yn−1

2Cn

(
eθCn − e−θCn

)
, |y | ≤ Cn. (2.8)

Taking the conditional expectation of (2.8) and using the fact that

E(Yn − Yn−1|Fn−1) = 0 we get
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E
(
eθ(Yn−Yn−1)|Fn−1

)
≤ e

1
2
θ2C2

n .

Therefore,

E
(
eθ(Yn−Y0)|Fn−1

)
≤ eθ(Yn−1−Y0)e

1
2
θ2C2

n .

By using this inequality, (2.6) and iterations we get

E
(
eθ(Yn−Y0)

)
= E

(
E
(
eθ(Yn−Y0)|Fn−1

))
≤ E

(
eθ(Yn−1−Y0))e

1
2
θ2C2

n ≤ e
1
2
θ2

∑n
i=1 C

2
i .

It follows from (2.5) that

P
( n∑
i=1

(
Xi − E(Xi |Fi−1

)
≥ x

)
≤ e−θx+ 1

2
θ2

∑n
i=1 C

2
i

Finally, minimizing the right side of this inequality in θ and replacing the terms under the sum we

obtain the needed inequality (2.1).

P
(∣∣∣ n∑
i=1

(
Xi − E(Xi |Fi−1

)∣∣∣ ≥ x) ≤ 2e

(
− x2

2

/∑n
i=1 C

2
i

)
.

Note. If {Xn : n ≥ 0} is a martingale sequence, then
∑n
i=1

(
Xi −E(Xi |Fi−1)

)
= Xn −X0 and in this

case we get the martingale difference inequality (1.1).

3. Random Precesses in the Hilbert Space L2(Ω,F , P )

Let X = {Xi : i ≥ 0} be an adopted random process and Xi ∈ L2(Ω,Fi , P ) for all i . As can be seen

from the following theorem that if Xi ∈ L2(Ω,Fi , P ) then the conditional expectation E(Xi |Fi−1) is

a version of orthogonal projection of Xi onto the subspace L2(Ω,Fi−1, P ).

Theorem 3.1. (see [1]) Let (X,Z) be a bivariate random vector and LZ = {g(Z)|g(Z) ∈
L2(Ω), g is a Borel function}. Let E[X2] < ∞. Then there exists a Borel function g0 : R → R
with E[(g0(Z)2] < ∞, such that E[(X − g0(Z))2] = inf {E[(X − g(Z))2

∣∣ g(Z) ∈ LZ}. Moreover,

g0(Z) = E[X|Z].

By a using a Hilbert space property we can write

Xi = E(Xi |Fi−1) + Yi , (3.1)

where Yi ∈
(
L2(Ω,Fi−1, P )

)⊥- the orthogonal complement of the subspace L2(Ω,Fi−1, P ). By (3.1)

we have Yi is Fi measurable and

Yi = Xi − E(Xi |Fi−1). (3.2)

An immediate consequence of (3.2) is

Corollary 1. E(Yi |Fi−1) = 0.

The main conclusion of the above given arguments is given in the following theorem.
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Theorem 2. Let Yn be a version of orthogonal projection of Xn onto the subspace

L2(Ω,Fn−1, P )⊥, n ≥ 0.

If |Yn| ≤ Cn almost surely, for n ≥ 0 then

P
(∣∣ n∑
i=1

Yi
∣∣ ≥ x) ≤ 2e

(
− x2

2

/∑n
i=1 C

2
i

)
.
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