International Journal of Analysis and Applications

 ImternationalJouraal of natysis
and Applications

A Hoeffding-Azuma Type Inequality for Random Processes

Mahir Hasanov*
Department of Mathematics, Istanbul Beykent University, Türkiye
* Corresponding author: hasanov61@yahoo.com

Abstract

The subject of this paper is a Hoeffding-Azuma type estimation for the difference between an adapted random process and its conditional expectation given a related filtration.

1. Introduction

Hoeffding-Azuma type inequalities have very important applications in probability theory, statistics and different branches of science. In this section we give a brief history of Hoeffding-Azuma type inequalities.
1.1. Classical Hoeffding-Azuma type inequalities. Let (Ω, \mathcal{F}, P) be a probability triple, where Ω is a sample space, \mathcal{F} is a σ-algebra on Ω and P is a σ-additive probability measure on \mathcal{F}. Let us denote by \mathcal{B} the Borel algebra on \mathbb{R}. Note that $\mathcal{B}=\sigma\left(\tau_{|x-y|}\right)$, the minimal σ-algebra containing the natural topology $\tau_{|x-y|}$ on \mathbb{R}.

Definition 1.1. A function $X: \Omega \rightarrow \mathbb{R}$ is called a random variable if X is \mathcal{F}-measurable function, i.e. $X^{-1}(\mathcal{B}) \subset \mathcal{F}$.

For definitions from the probability theory, used in this article see ([5], Sections 2.1, 6.1, 12.1 and 12.2).

The classical Hoeffding inequality is about finding upper bounds for the probability that the sum of n independent random variables exceeds its mean by a positive number $n t$. The pioneering work was by Hoeffding ([6], Theorem 2) who proved the following theorem.

Received: Aug. 2, 2023.
2020 Mathematics Subject Classification. 60G07, 60G46 .
Key words and phrases. conditional expectation; random process; martingale.

Theorem 1.1. (Hoeffding Inequality) If $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables and $a_{i} \leq$ $X_{i} \leq b_{i}, i=1,2, . ., n$. Then,

$$
P(\bar{X}-\mu \geq t) \leq e^{-2 n^{2} t^{2} / \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}
$$

where,

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}, \quad \mu=E(\bar{X}) .
$$

Besides Hoeffding inequality there are two more classical fundamental results. These are Azuma inequality and Chernoff inequality. Let us give both inequalities in the form expressed by T. Tao ([9], Theorem 2.1.3 and Theorem 2.1.5).

Theorem 1.2. (Chernoff Inequality) Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent scalar random variables with $\left|X_{i}\right| \leq K$ almost surely, with mean μ_{i} and variance σ_{i}^{2}. Then for any $\lambda>0$, one has

$$
P\left(\left|S_{n}-\mu\right| \geq \lambda \sigma\right) \leq C \max \left(\exp \left(-c \lambda^{2}\right), \exp (-c \lambda \sigma / K)\right),
$$

for some constants $C, c>0$, where $\mu=\sum_{i=1}^{n} \mu_{i}, \sigma^{2}=\sum_{i=1}^{n} \sigma_{i}^{2}$ and $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$.
Theorem 1.3. (Azuma Inequality) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of scalar random variables with $\left|X_{i}\right| \leq 1$ almost surely. Assume also that we have martingale difference property

$$
E\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=0
$$

almost surely, for all $i=1, \ldots, n$. Then for any $\lambda>0$ the sum $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$ obey the large deviation inequality

$$
P\left(\left|S_{n}\right| \geq \lambda \sqrt{n}\right) \leq C \exp \left(-c \lambda^{2}\right)
$$

for some constants $C, c>0$.
1.2. Hoeffding-Azuma type inequalities for Martingale differences. Martingales and Markov chains are known to be widely used areas of Hoeffding-Azuma type inequalities.

Definition 1.2. (see [5], Section 12.1) A sequence of random variables $Y=\left\{Y_{n}: n \geq 0\right\}$ is martingale with respect to the sequence $X=\left\{X_{n}: n \geq 0\right\}$ if, for all $n \geq 0$
a) $E\left(\left|Y_{n}\right|\right)<\infty$,
b) $E\left(Y_{n+1} \mid X_{0}, X_{1}, \ldots, X_{n}\right)=Y_{n}$

The Hoeffding inequality for martingale differences is of supreme importance in the theory of martingales (see [5], Section 12.2.)

Theorem 1.4. (Hoeffding inequality for martingale differences) Let $Y=\left\{Y_{n}: n \geq 0\right\}$ be a martingale, and suppose that there exists a sequence K_{1}, K_{2}, \ldots, of real numbers such that $P\left(\left|Y_{n}-Y_{n-1}\right| \leq K_{n}\right)=1$ for all n. Then

$$
\begin{equation*}
P\left(\left|Y_{n}-Y_{0}\right| \geq x\right) \leq 2 \exp \left(-\frac{1}{2} x^{2} / \sum_{i=1}^{n} K_{i}^{2}\right) x>0 . \tag{1.1}
\end{equation*}
$$

Inequality (1.1) means that if the martingale differences are bounded then the large deviation of Y_{n} from its initial value Y_{0} is small.

There are many new results and their applications in the literature on these issues.
A generalization of Hoeffding inequality for dependent random variables was given in [10]. Optimal bounds for Hoeffding's inequalities were found in [8]. In [4] it was proved a Hoeffding type inequality to partial sums that are derived from a uniformly ergodic Markov chain. New type of inequalities were introduced in [2] (see also references therein). In [3] some inequalities were obtained for unbounded random variables.
[7] Significantly improved the well-known Bennett-Hoeffding bound for sums of independent random variables by using, instead of the class of all increasing exponential functions, a much larger class of generalized moment functions. The resulting bounds have certain optimality properties.

2. Inequalities for Adopted Random Precesses

A random process is a collection of random variables $\{X(t), t \in T\}$. Particularly, a sequence
$X_{0}, X_{1}, X_{2}, \ldots, X_{n} \ldots$ of random variables defined on the same probability triple (Ω, \mathcal{F}, P) is a random process.

Definition 2.1. Let $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$ be a sequence of σ-sub-algebras of \mathcal{F}, such that $\mathcal{F}_{0} \subseteq \mathcal{F}_{1} \subseteq \ldots \subseteq \mathcal{F}_{n} \subseteq$ $\ldots . \subseteq \mathcal{F}$. Then $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$ is called a filtration of (Ω, \mathcal{F}, P) and a sequence $\left\{X_{n}: n \geq 0\right\}$ of random variables is said to be adapted to the filtration $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$ if X_{n} is \mathcal{F}_{n} measurable for all n.

We denote by $E\left(X_{n} \mid \mathcal{F}_{n-1}\right)$ the condition expectation of X_{n} given \mathcal{F}_{n-1} for all $n \geq 1$.
As pointed out in the introduction the classical Hoeffding inequality is about finding upper bounds for the probability that the sum of n independent random variables exceeds its mean by $n t$.

Finding upper bounds for the probability that the sum of n terms of an adapted random process exceeds its conditional mean by x is also among the topics of interest.

As far as we know, no previous research has investigated $P\left(\mid \sum_{i=1}^{n}\left(X_{i}-E\left(X_{i} \mid \mathcal{F}_{i-1}\right) \mid \geq x\right)\right.$ for general adopted random processes, which is the main subject of this paper.

The basic result is the following theorem.

Theorem 2.1. Let $\left\{X_{n}: n \geq 0\right\}$ be a sequence of random variables which is adapted to a filtration $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$. If $\left|X_{n}-E\left(X_{n} \mid \mathcal{F}_{n-1}\right)\right| \leq C_{n}$ almost surely, for $n \geq 0$ then

$$
\begin{equation*}
P\left(\left|\sum_{i=1}^{n}\left(X_{i}-E\left(X_{i} \mid \mathcal{F}_{i-1}\right)\right)\right| \geq x\right) \leq 2 e^{\left(-\frac{x^{2}}{2} / \sum_{i=1}^{n} C_{i}^{2}\right)} \tag{2.1}
\end{equation*}
$$

Proof. Let us define the following sequence:

$$
\begin{aligned}
& Y_{0}=X_{0} \\
& Y_{1}=X_{0}+\left(X_{1}-E\left(X_{1} \mid \mathcal{F}_{0}\right)\right) \\
& \vdots \\
& Y_{n}=X_{0}+\left(X_{1}-E\left(X_{1} \mid \mathcal{F}_{0}\right)\right)+\ldots+\left(X_{n}-E\left(X_{n} \mid \mathcal{F}_{n-1}\right)\right) .
\end{aligned}
$$

We have

$$
\begin{equation*}
Y_{n}=Y_{n-1}+\left(X_{n}-E\left(X_{n} \mid \mathcal{F}_{n-1}\right)\right) \tag{2.2}
\end{equation*}
$$

Evidently, Y_{n} is \mathcal{F}_{n} measurable for all n and $E\left(\left(X_{n}-E\left(X_{n} \mid \mathcal{F}_{n-1}\right)\right) \mid \mathcal{F}_{n-1}\right)=0$. Then it follows form (2.2) that $E\left(Y_{n} \mid \mathcal{F}_{n-1}\right)=Y_{n-1}$, i.e. $\left\{Y_{n} ; n \geq 0\right\}$ is a martingale sequence. Note that,

$$
\begin{equation*}
\sum_{i=1}^{n}\left(X_{i}-E\left(X_{i} \mid \mathcal{F}_{i-1}\right)\right)=Y_{n}-Y_{0} . \tag{2.3}
\end{equation*}
$$

By (2.3)

$$
\begin{equation*}
P\left(\sum_{i=1}^{n}\left(X_{i}-E\left(X_{i} \mid \mathcal{F}_{i-1}\right)\right) \geq x\right)=P\left(Y_{n}-Y_{0} \geq x\right) \tag{2.4}
\end{equation*}
$$

Let $\theta>0$, then

$$
E\left(e^{\theta\left(Y_{n}-Y_{0}\right)}\right)=\int_{\Omega} e^{\theta\left(Y_{n}-Y_{0}\right)} d P \geq \int_{Y_{n}-Y_{0} \geq x} e^{\theta\left(Y_{n}-Y_{0}\right)} d P \geq e^{\theta x} \int_{Y_{n}-Y_{0} \geq x} d P .
$$

Hence,

$$
E\left(e^{\theta\left(Y_{n}-Y_{0}\right)}\right) \geq e^{\theta x} \int_{Y_{n}-Y_{0} \geq x} d P=e^{\theta x} P\left(Y_{n}-Y_{0} \geq x\right)
$$

and

$$
\begin{equation*}
P\left(Y_{n}-Y_{0} \geq x\right) \leq e^{-\theta x} E\left(e^{\theta\left(Y_{n}-Y_{0}\right)}\right) \tag{2.5}
\end{equation*}
$$

Next, we estimate $E\left(e^{\theta\left(Y_{n}-Y_{0}\right)}\right)$. By the tower property we obtain that

$$
\begin{gather*}
E\left(e^{\theta\left(Y_{n}-Y_{0}\right)}\right)=E\left(E\left(e^{\theta\left(Y_{n}-Y_{0}\right)} \mid \mathcal{F}_{n-1}\right)\right) . \tag{2.6}\\
\left.E\left(e^{\theta\left(Y_{n}-Y_{0}\right)} \mid \mathcal{F}_{n-1}\right)=e^{\theta\left(Y_{n-1}-Y_{0}\right)} E\left(e^{\theta\left(Y_{n}-Y_{n-1}\right)} \mid \mathcal{F}_{n-1}\right)\right) .
\end{gather*}
$$

We set $f(y)=e^{\theta y},|y| \leq C_{n}$. The function $f(y)=e^{\theta y}$ is convex, whence it follows that

$$
e^{\theta y} \leq \frac{1}{2}\left(1-\frac{y}{C_{n}}\right) e^{-\theta C_{n}}+\frac{1}{2}\left(1+\frac{y}{C_{n}}\right) e^{\theta C_{n}}=\left(\frac{1}{2} e^{-\theta C_{n}}+\frac{1}{2} e^{\theta C_{n}}\right)+\frac{y}{2 C_{n}}\left(e^{\theta C_{n}}-e^{-\theta C_{n}}\right) .
$$

Thus,

$$
\begin{equation*}
e^{\theta y} \leq e^{\frac{1}{2} \theta^{2} C_{n}^{2}}+\frac{y}{2 C_{n}}\left(e^{\theta C_{n}}-e^{-\theta C_{n}}\right),|y| \leq C_{n} . \tag{2.7}
\end{equation*}
$$

$Y_{n}-Y_{n-1}=X_{n}-E\left(X_{n} \mid \mathcal{F}_{n-1}\right)$ and by the condition of the theorem $\left|Y_{n}-Y_{n-1}\right| \leq C_{n}$. Then setting $y=Y_{n}-Y_{n-1}$ in (2.7) we obtain

$$
\begin{equation*}
e^{\theta\left(Y_{n}-Y_{n-1}\right)} \leq e^{\frac{1}{2} \theta^{2} C_{n}^{2}}+\frac{Y_{n}-Y_{n-1}}{2 C_{n}}\left(e^{\theta C_{n}}-e^{-\theta C_{n}}\right),|y| \leq C_{n} . \tag{2.8}
\end{equation*}
$$

Taking the conditional expectation of (2.8) and using the fact that
$E\left(Y_{n}-Y_{n-1} \mid \mathcal{F}_{n-1}\right)=0$ we get

$$
E\left(e^{\theta\left(Y_{n}-Y_{n-1}\right)} \mid \mathcal{F}_{n-1}\right) \leq e^{\frac{1}{2} \theta^{2} C_{n}^{2}}
$$

Therefore,

$$
E\left(e^{\theta\left(Y_{n}-Y_{0}\right)} \mid \mathcal{F}_{n-1}\right) \leq e^{\theta\left(Y_{n-1}-Y_{0}\right)} e^{\frac{1}{2} \theta^{2} C_{n}^{2}} .
$$

By using this inequality, (2.6) and iterations we get

$$
E\left(e^{\theta\left(Y_{n}-Y_{0}\right)}\right)=E\left(E\left(e^{\theta\left(Y_{n}-Y_{0}\right)} \mid \mathcal{F}_{n-1}\right)\right) \leq E\left(e^{\theta\left(Y_{n-1}-Y_{0}\right)}\right) e^{\frac{1}{2} \theta^{2} C_{n}^{2}} \leq e^{\frac{1}{2} \theta^{2} \sum_{i=1}^{n} C_{i}^{2}} .
$$

It follows from (2.5) that

$$
P\left(\sum_{i=1}^{n}\left(X_{i}-E\left(X_{i} \mid \mathcal{F}_{i-1}\right) \geq x\right) \leq e^{-\theta x+\frac{1}{2} \theta^{2} \sum_{i=1}^{n} C_{i}^{2}}\right.
$$

Finally, minimizing the right side of this inequality in θ and replacing the terms under the sum we obtain the needed inequality (2.1).

$$
P\left(\left\lvert\, \sum_{i=1}^{n}\left(X_{i}-E\left(X_{i} \mid \mathcal{F}_{i-1}\right) \mid \geq x\right) \leq 2 e^{\left(-\frac{x^{2}}{2} / \sum_{i=1}^{n} C_{i}^{2}\right)}\right.\right.
$$

Note. If $\left\{X_{n}: n \geq 0\right\}$ is a martingale sequence, then $\sum_{i=1}^{n}\left(X_{i}-E\left(X_{i} \mid \mathcal{F}_{i-1}\right)\right)=X_{n}-X_{0}$ and in this case we get the martingale difference inequality (1.1).

3. Random Precesses in the Hilbert Space $L^{2}(\Omega, \mathcal{F}, P)$

Let $X=\left\{X_{i}: i \geq 0\right\}$ be an adopted random process and $X_{i} \in L^{2}\left(\Omega, \mathcal{F}_{i}, P\right)$ for all i. As can be seen from the following theorem that if $X_{i} \in L^{2}\left(\Omega, \mathcal{F}_{i}, P\right)$ then the conditional expectation $E\left(X_{i} \mid \mathcal{F}_{i-1}\right)$ is a version of orthogonal projection of X_{i} onto the subspace $L^{2}\left(\Omega, \mathcal{F}_{i-1}, P\right)$.

Theorem 3.1. (see [1]) Let (X, Z) be a bivariate random vector and $L_{z}=\{g(Z) \mid g(Z) \in$ $L_{2}(\Omega), g$ is a Borel function $\}$. Let $E\left[X^{2}\right]<\infty$. Then there exists a Borel function $g_{0}: \mathbb{R} \rightarrow \mathbb{R}$ with $E\left[\left(g_{0}(Z)^{2}\right]<\infty\right.$, such that $E\left[\left(X-g_{0}(Z)\right)^{2}\right]=\inf \left\{E\left[(X-g(Z))^{2} \mid g(Z) \in L_{z}\right\}\right.$. Moreover, $g_{0}(Z)=E[X \mid Z]$.

By a using a Hilbert space property we can write

$$
\begin{equation*}
X_{i}=E\left(X_{i} \mid \mathcal{F}_{i-1}\right)+Y_{i}, \tag{3.1}
\end{equation*}
$$

where $Y_{i} \in\left(L^{2}\left(\Omega, \mathcal{F}_{i-1}, P\right)\right)^{\perp}$ - the orthogonal complement of the subspace $L^{2}\left(\Omega, \mathcal{F}_{i-1}, P\right)$. By (3.1) we have Y_{i} is \mathcal{F}_{i} measurable and

$$
\begin{equation*}
Y_{i}=X_{i}-E\left(X_{i} \mid \mathcal{F}_{i-1}\right) \tag{3.2}
\end{equation*}
$$

An immediate consequence of (3.2) is
Corollary 1. $E\left(Y_{i} \mid \mathcal{F}_{i-1}\right)=0$.
The main conclusion of the above given arguments is given in the following theorem.

Theorem 2. Let Y_{n} be a version of orthogonal projection of X_{n} onto the subspace $L^{2}\left(\Omega, \mathcal{F}_{n-1}, P\right)^{\perp}, \quad n \geq 0$.

If $\left|Y_{n}\right| \leq C_{n}$ almost surely, for $n \geq 0$ then

$$
P\left(\left|\sum_{i=1}^{n} Y_{i}\right| \geq x\right) \leq 2 e^{\left(-\frac{x^{2}}{2} / \sum_{i=1}^{n} C_{i}^{2}\right)}
$$

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the publication of this paper.

References

[1] K.B. Athreya, S.N. Lahiri, Measure theory and probability theory, Springer New York, 2006. https://doi. org/10. 1007/978-0-387-35434-7.
[2] V. Bentkus, On Hoeffding's inequalities, Ann. Probab. 32 (2004), 1650-1673. https://doi.org/10.1214/ 009117904000000360.
[3] V. Bentkus, An extension of the Hoeffding inequality to unbounded random variables, Lith Math. J. 48 (2008), 137-157. https://doi.org/10.1007/s10986-008-9007-7.
[4] P.W. Glynn, D. Ormoneit, Hoeffding's inequality for uniformly ergodic Markov chains, Stat. Probab. Lett. 56 (2002), 143-146. https://doi.org/10.1016/s0167-7152(01)00158-4.
[5] G.R. Grimmett, D.R. Stirzaker, Probability and random processes, Oxford University Press, Oxford, New York, 2004.
[6] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Stat. Assoc. 58 (1963), 13-30. https://doi.org/10.1080/01621459.1963.10500830.
[7] I. Pinelis, On the Bennett-Hoeffding inequality, Ann. Inst. H. Poinc. Probab. Stat. 50 (2014), 123-145. https: //doi.org/10.1214/12-aihp495.
[8] M. Talagrand, The missing factor in Hoeffding's inequalities, Ann. Inst. Henri Poinc. 31 (1995), 689-702.
[9] T. Tao, Topics in Random Matrix Theory, Graduate Studies in Mathematics, Vol. 132, American Mathematical Society, 2012.
[10] S.A. Van De Geer, On Hoeffding's inequality for dependent random variables, in: H. Dehling, T. Mikosch, M. Sørensen (Eds.), Empirical Process Techniques for Dependent Data, Birkhäuser, Boston, 2002: pp. 161-169. https://doi.org/10.1007/978-1-4612-0099-4_4.

