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Abstract. In this paper, we solve the general solution in vector space and prove the Hyers-Ulam stability of the following

additive functional equation
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
in paranormed spaces by using the direct and fixed point methods. Also we present its pertinent counter examples for

instabilities.

1. Introduction

A classical question in the theory of functional equations is the following “Whether it is true that

a function which approximately satisfies a functional equation εmust be close to an exact solution

ε? If the problem accepts a solution, can we say that the equation ε is stable". The concept of

stability for a functional equation arises when we replace the functional equation by an inequality

which acts as a perturbation of the equation. The stability question is: How do the solutions of the

inequality differ from those of the given functional equation?

Received: Aug. 6, 2023.

2010 Mathematics Subject Classification. 39B52, 39B72, 39B82.

Key words and phrases. Hyers-Ulam stability; additive functional equation; paranormed spaces.

https://doi.org/10.28924/2291-8639-22-2024-3
ISSN: 2291-8639

© 2024 the author(s).

https://doi.org/10.28924/2291-8639-22-2024-3


2 Int. J. Anal. Appl. (2024), 22:3

In the fall of 1940, Stanislaw M. Ulam [36] gave a wide-ranging talk before a Mathematical

Colloquium at the University of Wisconsin in which he discussed a number of important unsolved

problems. Among those was the following question concerning the stability of homomorphisms:

Let (G1, ∗) be a group and let (G2, �, d) be a metric group with the metric d(., .). Given ε > 0, does

there exists δ(ε) > 0 such that if h : G1 → G2 satisfies the inequality

d (h(x ∗ y), h(x) � h(y)) < δ ∀ x, y ∈ G1,

then there is a homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1.

If the answer is affirmative, we say that the functional equation for homomorphisms is stable. In

the next year, D.H. Hyers [12] gave a affirmative answer to this question for additive groups under

the assumption that groups are Banach spaces. He brilliantly answered the question of Ulam for

the case where G1 and G2 are assumed to be Banach spaces. The result of Hyers is stated as follows:

Theorem 1.1. Let f : E1 → E2 be a function between Banach spaces such that∥∥∥ f (x + y) − f (x) − f (y)
∥∥∥ ≤ ε (1.1)

for all x, y ∈ E1 and ε > 0 is a constant. Then the limit

A(x) = lim
n→∞

2−n f (2nx) (1.2)

exists for each x ∈ E1 and A : E1 → E2 is unique additive mapping satisfying∥∥∥ f (x) −A(x)
∥∥∥ ≤ ε (1.3)

for all x ∈ E1. Moreover, if f (tx) is continuous in t for each fixed x ∈ E1, then the function A is linear.

Taking this famous result into consideration, the additive Cauchy functional equation f (x+ y) =
f (x) + f (y) is said to have the Hyers-Ulam stability on (E1, E2) if for every function f : E1 → E2

satisfying the inequality (1.1) for some ε ≥ 0 and for all x, y ∈ E1, there exists an additive function

A : E1 → E2 such that f − A is bounded on E1.The method in (1.2) provided by Hyers which

produces the additive function A will be called a direct method. This method is the most important

and powerful tool to study the stability of various functional equations.

It is possible to prove a stability result similar to Hyers functions that do not have bounded

Cauchy difference. T. Aoki (1950) [2] first generalized the Hyers theorem for unbounded Cauchy

difference having sum of norms
(
‖x‖p +

∥∥∥y
∥∥∥p)

.

The same result was rediscovered by Th. M. Rassias [30] in 1978 and proved a generalization of

Hyers theorem for additive mappings. This stability result is named Hyers-Ulam-Rassias stability

or Hyers-Ulam-Aoki-Rassias stability for the functional equation.In 1982 J.M. Rassias [28], followed

the innovative approach of Rassias theorem in which he replaced the factor ‖x‖p +
∥∥∥y

∥∥∥p
by ‖x‖p

∥∥∥y
∥∥∥q

with p + q , 1. Later this stability result was called Ulam-Gavruta-Rassias stability of functional

equation.
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In 1990, Th.M. Rassias during the 27th International Symposium on Functional Equations asked

the question whether such a theorem in [31] can also be proved for value of p greater or equal to 1.

In 1991, Gajda [10] provided an affirmative solution to Th.M. Rassias’ question for p strictly greater

than one. In 1994, P. Găvruţa [11] provided a further generalization of Th.M. Rassias [30] theorem

in which he replaced the bound ε
(
‖x‖p +

∥∥∥y
∥∥∥p)

by a general control function φ(x, y). This stability

result is called Generalized Hyers-Ulam-Rassias stability of functional equation. In 2008, a special

case of Găvruţa’s theorem for the unbounded Cauchy difference was obtained by K. Ravi, M.

Arunkumar and J.M. Rassias [32] by considering the summation of both the sum and the product

of two p-norms in the sprit of Rassias approach and is named J. M. Rassias Stability of functional

equation. Later authors used many spaces to stabilize the equations of additive functions, giving

flexible results [1, 3, 6, 13, 19, 25].

Functional equations can be used to study a wide range of problems, such as describing the

behavior of physical systems, solving mathematical puzzles, and understanding data.

The equation of the additive function is

f (x + y) = f (x) + f (y) . (1.4)

Since f (x) = kx is a solution of the functional equation (1.4), each solution of the additive functional

equation is called an additive map.

In this article, we propose the stability of n variable additive functional equation

f

(x1 + x2

2
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−
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i=3

xi

+ f
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2
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2

)
− x2

)

= f (x1 − x2) + f

x2 −

n∑
i=3

xi

+ f

 n∑
i=3

xi − x1

 (1.5)

using direct and fixed-point methods in paranormed spaces.

2. Solution of the Functional Equation (1.5)

In this section, we give the general solution of the functional equation (1.5) in vector spaces.

Theorem 2.1. Let X and Y be real vector spaces. A mapping f : X → Y satisfies the functional equation
(1.4) if and only if f : X→ Y satisfies the functional equation (1.5) for all x1, x2, · · · , xn ∈ X.

Proof. Assume that f : X→ Y satisfies the functional equation (1.4).

Setting x = y = 0 in (1.4), we get f (0) = 0. Letting y = −x in (1.4), we obtain f (−x) = − f (x)
for all x ∈ X. Therefore f is an odd mapping. Replacing y by x in (1.4), we get f (2x) = 2 f (x) for

all x ∈ X.

Replacing (x, y) by
(x1 + x3

2
, x2

)
in (1.4) and using oddness, we get

f
(x1 + x3

2
− x2

)
=

1
2

f (x1) +
1
2

f (x3) − f (x2) (2.1)
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for all x1, x2, x3 ∈ X. Replacing (x, y) by
(x2 + x3

2
, x1

)
in (1.4), we get

f
(x2 + x3

2
− x1

)
=

1
2

f (x2) +
1
2

f (x3) − f (x1) (2.2)

for all x1, x2, x3 ∈ X. Replacing (x, y) by
(x1 + x2

2
, x3

)
in (1.4), we get

f
(x1 + x2

2
− x3

)
=

1
2

f (x1) +
1
2

f (x2) − f (x3) (2.3)

for all x1, x2, x3 ∈ X. Adding (2.1), (2.2), (2.3) and using oddness, we obtain

f
((x1 + x2

2

)
− x3

)
+ f

((x2 + x3

2

)
− x1

)
+ f

((x3 + x1

2

)
− x2

)
= f (x1 − x2) + f (x2 − x3) + f (x3 − x1) (2.4)

for all x1, x2, x3 ∈ X. Finally, replacing x3 by x3 + x4 + · · ·+ xn, we have (1.5) for all x1, x2, · · · , xn ∈ X.

Conversely, assume that f : X → Y satisfies the functional equation (1.5). Setting x4 = x5 =

· · · = xn = 0 in (1.5), we get

f
(x1 + x2

2
− x3

)
+ f

(x2 + x3

2
− x1

)
+ f

(x3 + x1

2
− x2

)
= f (x1 − x2) + f (x2 − x3) + f (x3 − x1) (2.5)

for all x1, x2, x3 ∈ X. Setting x2 = x1, x3 = −x1 in (2.5) and finally replacing x1 by −x, we obtain

2 f (x) = f (2x) (2.6)

for all x ∈ X. Replacing x by x
2 in (2.6) , we get

f
(x
2

)
=

1
2

f (x) (2.7)

for all x ∈ X. Replacing (x1, x2, x3) by (x,−x, 0) in (2.5) and using (2.6) and (2.7), we get

f (−x) = − f (x) (2.8)

for all x ∈ X. Hence f is an odd mapping. Letting x1 = x, x2 = y, x3 = 0 in (2.5) and using the

oddness, we obtain

f (x + y) + f (y− 2x) + f (x− 2y) = 2 f (x− y) + 2 f (y) − 2 f (x) (2.9)

for all x, y ∈ X. Interchanging x and y in (2.9) and using the oddness, we obtain

f (x + y) + f (x− 2y) + f (−2x + y) = −2 f (x− y) + 2 f (x) − 2 f (y) (2.10)

for all x, y ∈ X. Subtracting (2.10) from (2.9), we get

f (x− y) = f (x) − f (y) (2.11)

for all x, y ∈ X. Replacing y by −y and using the oddness, we have (1.4) for all x, y ∈ X. �
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3. Basic Concepts on Paranormed Spaces

We recall some basic facts concerning Fréchet spaces.

Definition 3.1. [37] Let X be a vector space. A paranorm P : X→ [0,∞) is a function on X such that

(P1) P(0) = 0;
(P2) P(−x) = P(x);
(P3) P(x + y) ≤ P(x) + P(y) (triangle inequality);
(P4) If {tn} is a sequence of scalars with tn → t and {xn} ⊂ X with

P(xn − x)→ 0, then P(tn xn − tx)→ 0 (continuity of multiplication).

The pair (X, P) is called a paranormed space if P is a paranorm on X.

Definition 3.2. [37] The paranorm is called total if, in addition, we have

(P5) P(x) = 0 implies x = 0.

Definition 3.3. [37] A Fréchet space is a total and complete paranormed space.

4. Stability Results: Hyers’ DirectMethod

In this section, we investigate the Hyers-Ulam stability of the functional equation (1.5) in para-

normed spaces using direct method.

Throughout this section, let (U, P) be a Fréchet space and (V, || · ||) be a Banach space.

For the convenience, we define a mapping F : Un
→ V by

F(x1, x2, · · · , xn) = f

(x1 + x2

2

)
−

n∑
i=3

xi


+ f

((∑n
i=2 xi

2

)
− x1

)
+ f

((
x1 +

∑n
i=3 xi

2

)
− x2

)
− f (x1 − x2) − f

x2 −

n∑
i=3

xi

− f

 n∑
i=3

xi − x1


for all x1, x2, · · · , xn ∈ U.

Theorem 4.1. Let j ∈ {−1, 1} be fixed and α : Un
→ [0,∞) be a function with the condition

∞∑
n=0

2njξ
( x1

2nj ,
x2

2nj , · · · ,
xn

2nj

)
< +∞ (4.1)

for all x1, x2, · · · , xn ∈ U. Suppose that a mapping f : Un
→ V satisfies the following inequality

P (F(x1, x2, · · · , xn)) ≤ ξ(x1, x2, · · · , xn) (4.2)

for all x1, x2, · · · , xn ∈ U. Then there exists a unique additive mappingA : Un
→ V such that

P ( f (x) −A(x)) ≤
∞∑

k= 1− j
2

2kjξ
( x
2kj

,
x

2kj
, 0, · · · , 0

)
(4.3)
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for all x ∈ U. The mappingA(x) is defined by

P
(

lim
n→∞

2nj f
( x
2nj

)
−A(x)

)
→ 0 (4.4)

for all x ∈ U.

Proof. Replacing (x1, x2, · · · , xn) by (x, x, 0, · · · , 0) in (4.2), we get

P
(
2 f

(x
2

)
− f (x)

)
≤ ξ(x, x, 0, · · · , 0) (4.5)

for all x ∈ U. For any m, n > 0, we simplify

P
(
2m f

( x
2m

)
− 2n f

( x
2n

))
≤

n−1∑
k=m

2kξ
( x
2k

,
x
2k

, 0, · · · , 0
)

(4.6)

for all x ∈ U and all m, n ≥ 0. It follows from (4.6) that the sequence
{
2n f

( x
2n

)}
is Cauchy sequence.

Since V is complete, there exists a mappingA : Un
→ V by

P
(

lim
n→∞

2n f
( x
2n

)
−A(x)

)
→ 0

for all x ∈ U. By continuity of multiplication, we have

P
(

lim
n→∞

tn 2n f
( x
2n

)
− tA(x)

)
→ 0

Letting m = 0 and n → ∞ in (4.6), we see that (4.3) holds for all x ∈ U. To show that A satisfies

(1.5), replacing (x1, x2, · · · , xn) by
(

x1
2n , x2

2n , · · · , xn
2n

)
in (4.2), we get

P
(
2n F

(x1

2n ,
x2

2n , · · · ,
xn

2n

))
≤ 2nξ

(x1

2n ,
x2

2n , · · · ,
xn

2n

)
for all x1, x2, · · · , xn ∈ U. Letting n → ∞ in the above inequality and using the definition ofA(x),
we see that

P (A (x1, x2, · · · , xn)) = 0 (4.7)

for all x1, x2, · · · , xn ∈ U. Using condition (P5) in (4.7), we obtain

A

(x1 + x2

2

)
−

n∑
i=3

xi

+A ((∑n
i=2 xi

2

)
− x1

)
+A

((
x1 +

∑n
i=3 xi

2

)
− x2

)

= A (x1 − x2) +A

x2 −

n∑
i=3

xi

+A
 n∑

i=3

xi − x1


for all x1, x2, · · · , xn ∈ U. Hence A satisfies (1.5) for all x1, x2, · · · , xn ∈ U. In order to prove that

A(x) is unique, letA′(x) be another additive mapping satisfying (1.5) and (4.3). Then

P(A(x) −A′(x)) = 2m
{
P
(
A

( x
2m

)
−A

′

( x
2m

))}
≤ 2m

{
P
(
A

( x
2m

)
− f

( x
2m

))
+ P

(
f
( x
2m

)
−A

′

( x
2m

))}
≤

∞∑
k=0

2k+mξ
( x
2k+m

,
x

2k+m
, 0, · · · , 0

)
→ 0 as m→∞
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for all x ∈ U. Thus P(A(x) −A′(x)) = 0 for all x ∈ U. Hence, we have A(x) = A′(x). Therefore

A(x) is unique. Thus the mappingA : Un
→ V is a unique additive mapping. Thus the theorem

holds for j = 1

For j = −1, we can prove the result by a similar method. This completes the proof. �

From Theorem 4.1, we obtain the following corollary concerning the Hyers-Ulam stability for

the functional equation (1.5).

Corollary 4.1. Let F : Un
→ V be a mapping and assume that there exist real numbers σ and s such that

P (F(x1, x2, · · · , xn))

≤


σ,

σ
{
P(x1)

s + P(x2)s + · · ·+ P(xn)s} , s , 1

σ
{
P(x1)

sP(x2)s
· · ·P(xn)s +

{
P(x1)

ns + · · ·+ P(xn)ns}} , s , 1
n

(4.8)

for all x1, x2, · · · , xn ∈ U. Then there exists a unique additive mappingA : Un
→ V such that

P ( f (x) −A(x)) ≤



σ

|1|
2σP(x)s

|2− 2s|
2σP(x)ns

|2− 2ns|

(4.9)

for all x ∈ U.

5. Alternative Stability Results: Fixed PointMethod

In this section, we prove the Hyers-Ulam stability of the functional equation (1.5) in paranormed

spaces by using the fixed point method.

Now, we will recall the fundamental results in fixed point theory.

Theorem 5.1. [20] Suppose that for a complete generalized metric space (X, d) and a strictly contractive
mapping T : X→ X with Lipschitz constant L. Then, for each given element x ∈ X, either
(B1) d(Tnx, Tn+1x) = ∞ ∀ n ≥ 0,

or
(B2) there exists a natural number n0 such that:
(i) d(Tnx, Tn+1x) < ∞ for all n ≥ n0 ;
(ii)The sequence (Tnx) is convergent to a fixed point y∗ of T
(iii) y∗ is the unique fixed point of T in the set Y = {y ∈ X : d(Tn0x, y) < ∞};
(iv) d(y∗, y) ≤ 1

1−L d(y, Ty) for all y ∈ Y.

Many researchers have applied the fixed point alternative method to prove the Hyers-Ulam

stability of functional equations (see [4, 5, 7, 26]).
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Theorem 5.2. Let F : Un
→ V be a mapping for which there exists a function ξ : Un

→ [0,∞) with the
condition

lim
n→∞

µn
i ξ

(
x1

µn
i

,
x2

µn
i

, · · · ,
xn

µn
i

)
= 0 (5.1)

where µ0 = 1
2 and µ1 = 2 such that the functional inequality

P (F(x1, x2, · · · , xn)) ≤ ξ(x1, x2, · · · , xn) (5.2)

for all x1, x2, · · · , xn ∈ U. If there exists L = L(i) < 1 such that the function

x→ γ(x) = ξ (x, x, 0, · · · , 0)

has the property

γ(x) = L µi γ

(
x
µi

)
, (5.3)

then there exists a unique additive mappingA : Un
→ V satisfying the functional equation (1.5) and

P ( f (x) −A(x)) ≤
L1−i

1− L
γ(x) =

L1−i

1− L
ξ (2x, 2x, 0, · · · , 0) (5.4)

for all x ∈ U.

Proof. Consider the set Ω = {p/p : Un
→ V, p(0, 0) = 0} and introduce the generalized metric on

Ω, d(p, q) = dγ(p, q) = inf{K ∈ (0,∞) : P (p(x) − q(x)) ≤ Kγ(x), x ∈ U}. It is easy to see that (Ω, d)
is complete.

Define T : Ωn
→ Ω by Tp(x, x) = µip

(
x
µi

)
for all x ∈ U. Now p, q ∈ Ω imply that d(Tp, Tq) ≤

Ld(p, q) for all p, q ∈ Ω, i.e., T is a strictly contractive mapping on Ω with Lipschitz constant L.

Replacing (x1, x2, · · · , xn) by (x, x, 0, · · · , 0) in (5.2), we get

P
(
2 f

(x
2

)
− f (x)

)
≤ ξ(x, x, 0, · · · , 0) (5.5)

for all x ∈ U. By using (5.3) for the case i = 1, it reduces to

P
(
2 f

(x
2

)
− f (x)

)
≤ ξ(x, x, 0, · · · , 0) ≤ γ(x)

for all x ∈ U,

i.e., dγ(T f , f ) ≤ 1⇒ d(T f , f ) ≤ L0 < ∞.

Again replacing x = 2x in (5.5), we get

P (2 f (x) − f (2x)) ≤ ξ (2x, 2x, 0, · · · , 0) . (5.6)

By using (5.3) for the case i = 0, it reduces to

P (2 f (x) − f (2x)) ≤ ξ (2x, 2x, 0, · · · , 0) ≤ Lγ(x)

for all x ∈ U,

i.e., dγ( f , T f ) ≤ L⇒ d( f , T f ) ≤ L1 < ∞.
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In both cases, we obtain d(g, Tg) ≤ L1−i. Therefore (A1) holds. By (A2), it follows that there

exists a fixed pointA of T in Ω such that

P

 lim
n→∞

µn
i

 f

 x
µn+1

i

− f
(

x
µn

i

)−A(x)

→ 0 (5.7)

for all x ∈ U. To proveA : Un
→ V is additive. Replacing (x1, x2, · · · , xn) by

(
x1
µn

i
, x2
µn

i
, · · · , xn

µn
i

)
in (5.2)

and multiply by µn
i , it follows from (5.1) that

P (A(x1, x2, · · · , xn)) = lim
n→∞

P
(
µn

i F
(

x1

µn
i

,
x2

µn
i

, · · · ,
xn

µn
i

))
≤ lim

n→∞
µn

i ξ

(
x1

µn
i

,
x2

µn
i

, · · · ,
xn

µn
i

)
= 0

for all x1, x2, · · · , xn ∈ U, i.e.,A satisfies the functional equation (1.5).

By (A3), A is the unique fixed point of T in the set ∆ = {A ∈ Ω : d( f ,A) < ∞}, i.e., A is the

unique mapping such that P ( f (x) −A(x)) ≤ Kγ(x) for all x ∈ U and K > 0. Finally by (A4), we

obtain d( f ,A) ≤ 1
1−L d( f , T f ) which implies d( f ,A) ≤ L1−i

1−L which yields P ( f (x) −A(x)) ≤ L1−i

1−Lγ(x).
This completes the proof of the theorem. �

The following corollary is an immediate consequence of Theorem 5.2 concerning the stability of

(1.5).

Corollary 5.1. Let F : Un
→ V be a mapping and assume that there exist real numbers σ and s such that

the inequality (4.8). Then there exists a unique additive mapping A : Un
→ V such that the inequality

(4.9) holds for all x ∈ U.

Proof. Set

ξ(x1, x2, · · · , xn) =


σ

σ
{
P(x1)

s + P(x2)
s + · · ·+ P(xn)

s}
σ
{
P(x1)

sP(x2)
s
· · ·P(xn)

s +
{
P(x1)

ns + P(x2)
ns + · · ·+ P(xn)

ns}}
for all x1, x2, · · · , xn ∈ U. Now

µn
i ξ

(
x1

µn
i

,
x2

µn
i

, · · · ,
xn

µn
i

)
=



µn
i σ,

µn
i σ

{
P
(

x1

µn
i

)s

+ P
(

x2

µn
i

)s

+ · · ·+ P
(

xn

µn
i

)s}
µn

i σ

 n∏
i=1

P
(

xi

µn
i

)s

+
n∑

i=1

P
(

xi

µn
i

)ns


=


→ 0 as n→∞
→ 0 as n→∞
→ 0 as n→∞.

Then (5.1) holds.
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But we have γ(x) = ξ (2x, 2x, 0, · · · , 0) has the property L γ(x) = 1
µi
γ (µix) for all x ∈ U. Hence

γ(x) = ξ (2x, 2x, 0, · · · , 0) =


σ,

2σ2sP(x)s,

2σ2nsP(x)ns.

Now,

µiγ

(
x
µi

)
=


µiσ

2µ1−s
i σP(x)s

2µ1−ns
i σP(x)ns

=


µiγ(x)
µ1−s

i

2s γ(x)

µ1−ns
i

2ns γ(x)

for all x ∈ U. Hence the inequality (5.3). Now from (5.4), we prove the following cases.

Case 1: L = 2−1 for s = 0 if i = 0

P ( f (x) −A(x)) ≤ P
(

2−1

1− 2−1
γ(x)

)
≤ P

(
σ
1

)
.

Case 2: L = 2 for s = 0 if i = 1

P ( f (x) −A(x)) ≤ P
( 1
1− 2

γ(x)
)
≤ P

(
σ
−1

)
.

Case:3 L = 2s−1 for s < 4 if i = 0

P ( f (x) −A(x)) ≤ P


(
2s−1

)1−0

1− 2s−1

γ(x) ≤ 2σP(x)s

2− 2s .

Case:4 L = 1
2s−1 for s > 4 if i = 1

P ( f (x) −A(x)) ≤ P


(
21−s

)0

1− 21−s

γ(x) ≤ 2σP(x)s

2s − 2
.

Case:5 L = 2ns−1 for s < 1
n if i = 0

P ( f (x) −A(x)) ≤ P


(
2ns−1

)1−0

1− 2ns−1

γ(x) ≤ 2σP(x)ns

2− 2ns .

Case:6 L = 1
2ns−1 for s > 1

n if i = 1

P ( f (x) −A(x)) ≤ P


(
21−ns

)0

1− 21−ns

γ(x) ≤ 2σP(x)ns

2ns − 2
.

�
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6. Counter Examples for Non Stability Cases

In this section, authors discussed the counter examples for non stable cases for the Corollaries

4.1, and 5.1.

Now we will provide an example to illustrate that the functional equation (1.5) is not stable for

s = 1 in Condition (ii) of Corollary 4.1.

Example 6.1. Let ρ : R→ R be a function defined by

ρ(x) =

 µx, if |x| <1
µ, otherwise

where µ > 0 is a constant, and define a function f : R→ R by

f (x) =
∞∑

n=0

ρ(2kx)
2k

f or all x ∈ R.

Then f satisfies the functional inequality∣∣∣F(x1, x2, · · · , xn)
∣∣∣ ≤ 12µ (|x1|+ |x2|+ · · ·+ |xn|) (6.1)

for all x1, x2, · · · , xn ∈ R. Then there do not exists a mappingA : R→ R and a constant β > 0 such that

| f (x) −A(x)| ≤ β|x| f or all x ∈ R. (6.2)

Proof. Now

| f (x)| ≤
∞∑

n=0

|ρ(2kx)|
|2k|

=
∞∑

k=0

µ

2k
= 2µ.

Therefore we see that f is bounded. We are going to prove that f satisfies (6.1).
If x1 = x2 = · · · = xn = 0 then (6.1) is trivial. If |x1|+ |x2|+ · · ·+ |xn| ≥

1
2 then the left hand side of

(6.1) is less than 12µ. Now suppose that 0 < |x1|+ |x2|+ · · ·+ |xn| < 1
2 . Then there exists a positive integer

` such that
1
2`
≤ |x1|+ |x2|+ · · ·+ |xn| <

1
2`−1

, (6.3)

so that 2`−1
|x1| < 1, 2`−1

|x2| < 1, · · · , 2`−1
|xn| < 1 and consequently

2`−1
(x1 + x2

2
− x3 − x4 + · · · − xn

)
, 2`−1

(x2 + x3 + x4 + · · ·+ xn

2
− x1

)
,

2`−1
(x1 + x3 + x4 + · · ·+ xn

2
− x2

)
,−2`−1(x1 − x2),−2`−1(x2 − x3 − · · · − xn),

− 2`−1(x3 + x4 + · · ·+ xn − x1) ∈ (−1, 1).

Therefore for each k = 0, 1, . . . , ` − 1, we have

2k
(x1 + x2

2
− x3 − x4 + · · · − xn

)
, 2k

(x2 + x3 + x4 + · · ·+ xn

2
− x1

)
,

2k
(x1 + x3 + x4 + · · ·+ xn

2
− x2

)
,−2k(x1 − x2),−2k(x2 − x3 − · · · − xn),

− 2k(x3 + x4 + · · ·+ xn − x1) ∈ (−1, 1).
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and

ρ
(
2k

(x1 + x2

2
− x3 − x4 + · · · − xn

))
+ ρ

(
2k

(x2 + x3 + x4 + · · ·+ xn

2
− x1

))
+ ρ

(
2k

(x1 + x3 + x4 + · · ·+ xn

2
− x2

))
− ρ

(
2k(x1 − x2)

)
− ρ

(
2k(x2 − x3 − · · · − xn)

)
− ρ

(
2k(x3 + x4 + · · ·+ xn − x1)

)
= 0

for k = 0, 1, . . . , ` − 1. From the definition of f and (6.3), we obtain that∣∣∣∣F(x1, x2, · · · , xn)
∣∣∣∣ ≤ ∞∑

k=0

1
2k

∣∣∣∣ρ (
2k

(x1 + x2

2
− x3 − x4 + · · · − xn

))
+

ρ
(
2k

(x2 + x3 + x4 + · · ·+ xn

2
− x1

))
+ ρ

(
2k

(x1 + x3 + x4 + · · ·+ xn

2
− x2

))
− ρ

(
2k(x1 − x2)

)
− ρ

(
2k(x2 − x3 − · · · − xn)

)
− ρ

(
2k(x3 + x4 + · · ·+ xn − x1)

) ∣∣∣∣
≤

∞∑
k=`

1
2k

∣∣∣∣ρ (
2k

(x1 + x2

2
− x3 − x4 + · · · − xn

))
+

ρ
(
2k

(x2 + x3 + x4 + · · ·+ xn

2
− x1

))
+ ρ

(
2k

(x1 + x3 + x4 + · · ·+ xn

2
− x2

))
− ρ

(
2k(x1 − x2)

)
− ρ

(
2k(x2 − x3 − · · · − xn)

)
− ρ

(
2k(x3 + x4 + · · ·+ xn − x1)

) ∣∣∣∣
≤

∞∑
k=`

6
2k
µ ≤ 12µ (|x1|+ |x2|+ · · ·+ |xn|) .

Thus f satisfies (6.1) for all x1, x2, · · · , xn ∈ R with 0 < |x1|+ |x2|+ · · ·+ |xn| < 1.
We claim that the additive functional equation (1.5) is not stable for s = 1 in condition (ii) of Corollary

4.1. Suppose on the contrary that there exist a mappingA : R→ R and a constant β > 0 satisfying (6.2).
Since f is bounded and continuous for all x ∈ R,A is bounded on any open interval containing the origin
and continuous at the origin. In view of Theorem 4.1, A must have the form A(x) = cx for any x in R.
Thus we obtain that

| f (x)| ≤ (β+ |c|) |x|. (6.4)

But we can choose a positive integer m with mµ > β+ |c|.

If x ∈
(
0,

1
2m−1

)
, then 2kx ∈ (0, 1) for all k = 0, 1, . . . , m− 1. For this x, we get

f (x) =
∞∑

n=0

ρ(2kx)
2k

≥

m−1∑
n=0

µ(2kx)
2k

= mµx > (β+ |c|) x

which contradicts (6.4). Therefore the additive functional equation (1.5) is not stable in sense of Ulam,
Hyers and Rassias if s = 1, assumed in the inequality (4.9).

Now we will provide an example to illustrate that the functional equation (1.5) is not stable for

s = 1
n in Condition (iii) of Corollary 4.1.



Int. J. Anal. Appl. (2024), 22:3 13

Example 6.2. Let ρ : R→ R be a function defined by

ρ(x) =

 µx, if |x| < 1
n

µ
n , otherwise

where µ > 0 is a constant, and define a function f : R→ R by

f (x) =
∞∑

n=0

ρ(2kx)
2k

f or all x ∈ R.

Then f satisfies the functional inequality∣∣∣F(x1, · · · , xn)
∣∣∣ ≤ 12µ

(
|x1|

1
n · · · |xn|

1
n + |x1|+ · · ·+ |xn|

)
(6.5)

for all x1, x2, · · · , xn ∈ R. Then there do not exists a mappingA : R→ R and a constant β > 0 such that

| f (x) −A(x)| ≤ β|x| f or all x ∈ R. (6.6)

Proof. Now

| f (x)| ≤
∞∑

n=0

|ρ(2kx)|
|2k|

=
∞∑

k=0

µ

2k
= 2µ.

Therefore we see that f is bounded. We are going to prove that f satisfies (6.5).
If x1 = x2 = · · · = xn = 0 then (6.5) is trivial. If |x1|

1
n |x2|

1
n · · · |xn|

1
n + |x1|+ |x2|+ · · ·+ |xn| ≥

1
n then the

left hand side of (6.5) is less than 12µ. Now suppose that 0 < |x1|
1
n |x2|

1
n · · · |xn|

1
n + |x1|+ |x2|+ · · ·+ |xn| < 1

n .
The rest of the proof is similar to the proof of Example 6.1. Therefore the additive functional equation

(1.5) is not stable in sense of Ulam, Hyers and Rassias if s = 1
n , assumed in the inequality (4.9).

7. Conclusion

This article has proved the Hyers-Ulam, Hyers-Ulam-Rassias and Rassias stability results of the

n-dimensional additive functional equation in paranormed spaces by using the direct and fixed

point methods with suitable counterexamples.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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