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Abstract. In this paper, we consider a ring R and a monoid M equipped with a twisting map f :

M×M → U(R) and an action map ω : M → Aut(R). The main objective of our study is to investigate

the conditions under which the crossed product structure R oM is p.q.-Baer and quasi-Baer rings,

and how this property relates to the p.q.-Baer property of R and the existence of a generalized join

in I(R) for M-indexed subsets, where I(R) denotes the set of ideals of R. Additionally, we prove a

connection between R being a left p.q.-Baer ring and the CM-quasi-Armendariz property. Moreover,

we prove that for any element φ2 = φ, there exist an idempotent element e2 = e such that φ = ce .

We then prove that R is quasi-Baer if and only if the crossed product structure R oM is quasi-Baer.

Finally, we present novel results regarding various constructions for crossed products.

1. Introduction

Throughout this paper, R denotes a ring with unity. Recall that a ring R is considered (quasi-)

Baer if, for every nonempty subset (or every right ideal) of R, the right annihilator of that subset (or

right ideal) can be generated by an idempotent element from R. In the publication [1], Kaplansky

introduced the concept of Baer rings as a means to abstract properties displayed by AW ∗-algebras

and von Neumann algebras.

This paper focuses on discussing several results related to the crossed product structure R o M
under specific additional conditions. To prove these results, we consider a ring R and a monoid M

with a twisting map f : M×M → U(R) and an action map ω : M → Aut(R). Our main objective is to

investigate the conditions under which the crossed product structure RoM becomes a right p.q.-Baer

ring. We also explore the relationship between this property and the right p.q.-Baer property of R,
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as well as the existence of a generalized join in I(R) for M-indexed subsets (where I(R) represents

the set of ideals of R). Additionally, we prove a connection between R being a left p.q.-Baer ring

and the CM-quasi-Armendariz property. We prove that for any element φ2 = φ in R, there exist an

idempotent element e2 = e such that φ = ce . Furthermore, we prove that R is quasi-Baer if and only

if the crossed product structure RoM also possesses the quasi-Baer property. Moreover, if R satisfies

both the M-compatibility condition and the CM-quasi-Armendariz property, we show that (R oM)

is a left p.q.-Baer ring if and only if, for any M-indexed subset H of R, there exist an idempotent

e ∈ lR(Σs∈MRωs(H)) such that lR(ωu(Σs∈MRωs(H))) = Rωu(e) for any u ∈ M. Finally, we present

novel results regarding various constructions for crossed products.

In [2], Clark provided a definition for quasi-Baer rings and employed these rings to prove a criterion

for determining the isomorphism between a finite-dimensional algebra with unity over an algebraically

closed field and a semigroup algebra of twisted matrix units. In [3], the notion of principally quasi-Baer

rings was introduced as a generalization of quasi-Baer rings. A ring R is said to be left principally quasi-

Baer, or simply left p.q.-Baer, if the left annihilator of any principal left ideal of R can be generated

by an idempotent element. Similarly, we can define right p.q.-Baer rings. A ring is considered to be a

p.q.-Baer ring if it satisfies the property of being both a right p.q.-Baer ring and a left p.q.-Baer ring.

In other words, a ring is labeled as p.q.-Baer if it possesses the property that the left annihilator of

any principal left ideal can be generated by an idempotent, and at the same time, the right annihilator

of any principal right ideal can also be generated by an idempotent. Observe that biregular rings and

quasi-Baer rings are p.q.-Baer. For more comprehensive information and specific examples of left

p.q.-Baer rings, I recommend referring to the following sources [3], [4], [5], [6], [7] and [8]. A ring R

is classified as a left APP -ring if, for any element b in R, the left annihilator lR(Rb) is a right s-unital

ideal of R. This concept serves as a generalization that encompasses both left p.q.-Baer rings and

right PP -rings. It is evident that every left p.q.-Baer ring falls within the category of left APP -rings.

Consequently, the class of left APP -rings encompasses all biregular rings and all quasi-Baer rings.

A ring R is referred to as a right PP -ring (or left PP -ring) if the right (or left) annihilator of any

element in R can be generated by an idempotent element. If a ring satisfies both the right and left

PP conditions, it is termed a PP -ring. It is evident that every Baer ring falls under the category of

PP -ring.

Let Y be a nonempty subset of the ring R. The left annihilator of Y in R is denoted as lR(Y ), while

the right annihilator of Y in R is denoted as rR(Y ).

2. Crossed Products Type Construction

According to [9], a ring R is said to beM-Armendariz of crossed product type (M-quasi Armendariz,

respectively), or simply CM-Armendariz (CM-quasi Armendariz, respectively), if satisfies the following

condition, for any elements φ =
∑n
i=1 aigi and ψ =

∑m
j=1 bjhj ∈ RoM, where ai , bj are elements of R

and gi , hj are elements ofM, if the product φψ = 0 (φ(RoM)ψ = 0, respectively), then aiωgi (bj) = 0
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(aiRωgi s(bj) = 0) for all i and j. Ali’s work [10], a ring R is said to be strongly M-reflexive of crossed

product type with respect to the given twisting map f and action map ω (or simply, strongly CM-

reflexive) if for any φ = c1l1+ c2l2+ · · ·+ cnln and ψ = a1h1+ a2h2+ · · ·+ amhm ∈ RoM satisfying

that φ(R oM)ψ = 0 implies that ciωli (ωg(Raj)) = 0, then ψ(R oM)φ = 0 for each i , j and for all

g, li , hj ∈ M. Consider a monoid M and a monoid homomorphism ω : M → Aut(R), where Aut(R)

represents the group of automorphisms of the ring R. For any g ∈ M, we denote the automorphism

ω(g) as ωg. The crossed product RoM over the ring R is defined as the set of all finite sums of the

form RoM = {xgg|xg ∈ R, g ∈ M}. The addition in this crossed product is defined component-wise,

and the multiplication is determined using two rules: the action rule and the twisting rule. Specifically,

for any h, g ∈ M and x ∈ R, we have the following definitions, gx = ωg(x)h, which means that

multiplying an element x of R by g and in the crossed product yields the result hg = f (h, g)hg, where

f : M ×M → U(R) is a twisted function and U(R) denotes the set of units (invertible elements) of

R. This rule implies that multiplying two elements h and g in the crossed product results in f (h, g)hg.

The twisted function f and the action ω of M on R satisfy the following conditions:

ωh(ωg(x)) = f (h, g)ωh(ωg(x)f (h, g)−1) and ωh(f (g, k))f (h, gk) = f (h, g)f (h, gk), f (1, h) =

f (h, 1) = 1. It is important to note that the crossed product construction is a general way of con-

structing a ring using a monoid and a ring. If the twisting function f in the crossed product R oM
is trivial, meaning that f (a, b) = 1 for all a, b ∈ M, then the resulting structure is known as the skew

monoid ring. In this case, R oM coincides with the skew monoid ring construction.

On the other hand, if both the twisting function f and the action ω are trivial, then the resulting

structure is a monoid ring denoted by R[M]. This monoid ring construction is obtained when both

the twisting function and the action are trivial, and it is referred to as R[M] in literature references

such as [11] and [12]. An ordered monoid is a monoid M in which its elements are linearly ordered

with respect to the relation <, satisfying the following conditions, for all a, b, z ∈ M, if a < b, then

za < zb and az < bz . In other words, the order on M is compatible with the monoid multiplication. It

is a well-known fact, as stated in [12], that torsion-free nilpotent groups and free groups are examples

of ordered groups. Therefore, any submonoid of a torsion-free nilpotent group or a free group is also

an ordered monoid. This means that if we consider a subset of elements from a torsion-free nilpotent

group or a free group and restrict the operation to form a monoid, the resulting structure will still

be an ordered monoid. A monoid M is referred to as a unique product monoid, or u.p.-monoid, if it

satisfies the following property: for any two nonempty finite subsets X and Y of M, there exists a

unique element h ∈ M that can be expressed in the form h = uv with u ∈ X and v ∈ Y . According

to Hirano’s work [13], it has been shown that if a ring R is quasi-Baer (or left principally quasi-Baer),

and M is an ordered monoid, then the monoid ring RM also possesses the quasi-Baer property (or left

principally quasi-Baer property). In their work [14], Nasr-Isfahani and Moussavi introduced a ring R

with an endomorphism ω and defined it as ω-weakly rigid if the condition cRt = 0 holds if and only if
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c ω(Rt) = 0 for any c, t ∈ R. It is worth noting that the category of ω-rigid rings and ω-compatible

rings is a limited one, and it is evident that every ω-compatible ring falls under the category of ω-

weakly rigid rings. However, there exist several classes of ω-weakly rigid rings that do not belong to

the category of ω-compatible rings. By [15], R is α-rigid if and only if R is α-compatible and reduced.

According to [14], any prime ring that has an automorphism ω is considered to be ω-weakly rigid.

If a monoid homomorphism ω : M → Aut(R) is weakly-rigid (compatible), it means that the ring R

is also weakly rigid (compatible) with respect to each g ∈ M under the automorphism ωg.

3. p.q.-Baer and Quasi-Baer Rings of Crossed Product Type

In this section, we discuss various constructions and extensions under which the class of quasi-Baer

and p.q.-Baer is closed over crossed product R o M, where R is a ring and M is a monoid with a

twisting map f : M × M → U(R) and an action map ω : M → Aut(R). The following theorem

characterizes left p.q.-Baer is closed over crossed product R oM in terms of M-indexed subsets of

the coefficient ring R. An ideal I of a ring R is considered to be right s-unital if there exists an element

e ∈ I for every t ∈ I such that te = t. A ring is referred to as a left APP -ring if the left annihilator

lR(Rt) is right s-unital as an ideal of R for any element t ∈ R.

Lemma 3.1. [16, Lemma 1.1]. If M is a u.p.-monoid, then M is cancellative (i .e., for λ, k, µ ∈ M,
if µλ = kλ or λµ = λk, then µ = k).

Lemma 3.2. Let R be a ring, M be a strictly totally ordered monoid, with twisting f : M×M → U(R)

and with action ω : M → Aut(R) and R is M-compatible, then for any b ∈ R,

rR(bR oM) = r(RoM)(cb(R oM)).

Proof. Let φ = Σn
i=1aiki and ψ = Σm

j=1bjhj ∈ RoM for ai , bj ∈ R, ki , hj ∈ M satisfying φ(RoM)ψ =

0 which implies that aiωki (ωgs (Rbj))f (ki , hj)(kihj) = 0. In the following,we freely use the fact that

ωki (R)f (ki , hj) = Rf (ki , hj) = R for any ki , hj ∈ M and any ai , bj ∈ R. Let ψ ∈ r(RoM)(cb(R oM)).

Then for every r ∈ R,

(cbφcrψ)(s) =
∑

(ai ,bj )∈Xs(ki ,hj )

baiωki (ωgs (Rbj))f (ki , hj)(kihj) = baiωgi (ωgs (Rbj)) = 0.

By Lemma 3.1, M is cancellative. Thus aiRbj = 0 for every s ∈ M and ω is an automorphism. Hence

ψ ∈ rR(bR oM).

Conversely, let φ ∈ rR(bRoM). Since ω is a map from M to Aut(R), there exist c1, c2, . . . , cn ∈ R
such that bj = ωhj (cj) for j = 1, 2, . . . , n. So cj ∈ rR(ωc(aiR)) for every c ∈ M. Thus byM-compatible

of R for every φ ∈ (R oM),

aiωki (ωgs (Rbj))f (ki , hj)(kihj) = aiωki (ωgs (Rbj)) = 0.



Int. J. Anal. Appl. (2023), 21:108 5

For any s ∈ M, t ∈ R, (cbφψ)(s) = cbasωks (R)f (ks , c)ωgs (bt)f (ksc, ht)(kshs) = 0 and hence

cbasωks (R)f (ks , c)ωgsc (bt)f (ksc, ht) = 0. Thus, cbasωks (R)ωgsc (bt) = 0 since ωgs (R)f (gs , c) =

R. This shows that cbasωks (Rωgc(bt)) = 0 and so ωks (csRωc(bt)) = 0, which implies that

cb(csRωc(bt)) = 0 since ωks is a ring automorphism. Therefore, φ ∈ r(RoM)(cb(R o M)) and

the result follows. �

The following result appeared in Lemma 2 [17].

Lemma 3.3. Let R be a ring and (S,≤) a strictly totally ordered monoid satisfying that 0 ≤ s for all
s ∈ S. If φ ∈ [[RS,≤]] is a left semicemtral idempotent, then φ(0) ∈ R is a left semicentral idempotent

and φ[[RS,≤]] = cφ(0)[[R
S,≤]].

Let I(R) be the set of all idempotents of R. G be a subset of I(R). We say that G is S-indexed if

there exists an artinian and narrow subset I of S such that G is indexed by I (see [18]).

Definition 3.1. [19] Let G be an S-indexed subset of I(R). We say that G has a generalized join in

I(R) if there exists an idempotent e ∈ I(R) such that

(1) gR(1− e) = 0 for any g ∈ G, and
(2) If f ∈ I(R) is such that gR(1− f ) = 0 for any g ∈ G, then eR(1− f ) = 0.

Theorem 3.1. Let R be a ring,M be a strictly totally ordered monoid, with twisting f : M×M → U(R)

and with action ω : M → Aut(R) and R is M-compatible satisfying the condition that 0 ≤ s for all

s ∈ M. If R oM is right p.q.Baer, then R is right p.q.Baer and any M-indexed subset of I(R) has a

generalized join in I(R).

Proof. Suppose φ = Σn
i=1ciki and ψ = Σm

j=1ajhj ∈ R oM for ci , aj ∈ R, ki , hj ∈ M. We remember

that, since M is a strictly totally ordered monoid, we have k1h1 � kihj for i 6= 1 or j 6= 1 and M is

cancellative by Lemma 3.1. Let b be an element of R. Then, by Lemma 3.2, rRoM(cbR o M) =

rR(bR)oM. Alternatively, due to the right p.q. Baer property of RoM, a left semicentral idempotent

φ ∈ RoM exists, satisfying the equation rRoM(cbRoM) = φRoM. Our aim is to demonstrate that

rR(bR) = φ(0)R, where φ(0)2 = φ(0). This result will prove that R satisfies the p.q.Baer property.

By Lemma 3.3, φ(0) is an idempotent of R and φR oM = cφ(0)R oM. Thus, by compatibility for

any r ∈ R, s, k ∈ M, cbcrcφ(0) = bωk(ωs(Rφ(0)))f (k, e)(kh) = 0 and bωk(ωs(Rφ(0))) = 0 which

implies that bRφ(0) = 0. Hence φ(0) ∈ rR(bR).

Conversely, assume that d ∈ rR(bR). Then for any g ∈ R o M and any v ∈ M, (cbgcd)(v) =

bωk(ωgv (d))f (k, e)(k`) = 0 and bωk(ωgv (d)) = 0 implies that bg(v)d = 0. Thus, cbgcd = 0. This

means that cd ∈ rRoM(cbRoM). So cd = cφ(0)h for some h ∈ RoM, which implies that d ∈ φ(0)R.

Thus, rR(bR) = φ(0)R. This means that R is right p.q.Baer.
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Suppose that G is an M-indexed subset of I(R). Then there exist an artinian and narrow subset I

of M such that G = {es ∈ I(R) | s ∈ I}. Define φ ∈ R oM via

φ(s) =


es , s ∈ I;

0, s /∈ I.

Since RoM is right p.q.Baer, there exist a left semicentral idempotent λ ∈ RoM such that rRoM(φRo
M) = λRoM. By Lemma 3.3, λ(0) is an idempotent of R and cλ(0)RoM = λRoM. Thus, rRoM(φRo
M) = cλ(0)R oM. Now for any r ∈ R, (φcrcλ(0))(s) = aiωki (ωgs (rλ(0)))f (ki , e)(kiλ(0)) = 0 and

aiωki (ωgs (rλ(0))) = 0. Therefore, φ(s)rλ(0) = 0. Thus, es rλ(0) = 0, for all s ∈ I since ω is an

automorphism. Let g = 1−λ(0). Then es r(1−φ) = 0, for all r ∈ R. Thus, esR(1−φ) = 0. Suppose

that e is an idempotent of R such that esR(1− e) = 0. Then es re = es r, for all r ∈ R. Thus, for any
b ∈ R and for any ψ ∈ R oM, any t ∈ M,

(φψcbc1−e)(t) =
∑

(ai ,bj )∈Xt(φ,ψ)

aiωki (ωgt (b(1− e)))f (ki , hj)(kihj) = aiωki (ωgt (b(1− e))) = 0.

This means that cbc1−e ∈ rRoM(φR oM) for all b ∈ R. Thus, cbc1−e = cφ(0)cbc1−e , which implies

that gb(1− e) = 0 for all b ∈ R. Hence g is a generalized join of the M-indexed subset G. �

Corollary 3.1. [8, Theorem 3] Let R be a ring such that S`(R) = B(R). Then R[[x ]] is right p.q.-

Baer if and only if R is right p.q.-Baer and any countable family of idempotents in R has a generalized

join in I(R).

Theorem 3.2. Assuming a ring R, a strictly ordered monoid M, a twisting map f : M ×M → U(R),

and an action map ω : M → Aut(R). If R is simultaneously M-compatible and CM-quasi-Armendariz,

then the following conditions are equivalent:

(1) (R oM) is left p.q.-Baer.

(2) For any M-indexed subset H of R there exist an idempotent e ∈ lR(Σs∈MRωs(H)) such that

lR(ωu(Σs∈MRωs(H))) = Rωu(e) for any u ∈ M.
(3) For any M-indexed subset H of R and for any u ∈ M there exist an idempotent e ∈
lR(Σs∈MRωs(H)) such that lR(ωu(Σs∈MRωs(H))) = Rωu(e).

Proof. Set B = R oM and φ = Σn
i=1ciki , ψ = Σm

j=1ajhj ∈ B for ci , aj ∈ R, ki , hj ∈ M.
(1) ⇒ (2) Let H be an M-indexed subset of R. By Lemma 2.5 [20] for some ϕ = Σr

q=1vqzq ∈ H
we have H ⊆ ϕ(M) ⊆ H ∪ {0}. Since H is left p.q.-Baer, lB(Bϕ) = Bθ for some θ = θ2 ∈ B by

Lemma 3.2. Since Bθ = lB(Bϕ) is an ideal of B, θB ⊆ Bθ and thus for any θ = Σq
p=1bp`p for bp ∈ R
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and `p ∈ M,

θB(1− θ) = bpω`p [ciωki (ωgs (raj))f (ki , hj)(kihj)[1− (ω`p(bp))]]

= bpω`p(ciωki (ωgs (raj))f (ki , hj)(kihj))

− bpω`p(ciωki (ωgs (raj))f (ki , hj)(kihj))(ω`p(bp))

= bpω`p(ciωki (ωgs (raj)))− bpω`p(ciωki (ωgs (raj))(ω`p(bp))

= ciωki (ωgs (raj))− ciωki (ωgs (raj)) = 0.

Since ω is an automorphism and R is CM-quasi-Armendariz, θ(1).(1 − θ)(1) = 0. Hence, it can be

deduced that e = θ(1) is an idempotent element in the ring R. Furthermore, again since θB(1−θ) = 0

and R is CM-quasi-Armendariz for any t ∈ M we have 0 = θ(t)ωt((1− θ)(1)) = θ(t)(1−ωt(e)), and

thus θ(t) = θ(t)ωt(e) = (θce)(t), which shows that θ = θce . Hence lB(Bϕ) = Bθ ⊆ Bce . On the

other hand, since θBϕ = 0 and R is CM- quasi-Armendariz, for any s, zq ∈ M, vq ∈ R,ϕ = Σr
q=1vqzq

we have 0 = bpω`p(1)(ωs(R(vq))f (`p, zq)(`pzq) = bpω`p(1)ωs(R(vq)) = eRωs(vq), which implies

ce ∈ lB(Bϕ), and lB(Bϕ) = Bce follows. Note that since e is an idempotent of R, ce is an idempotent

of B.

We can demonstrate two things: Firstly, it is shown that e belongs to the left ideal

lR(Σs∈MRωs(H)), and secondly, we prove that lR(ωu(Σs∈MRωs(H))) = Rωu(e) for any u ∈ M.

Consider any arbitrary element d ∈ H. We can express d = ϕ(x) for some x ∈ M. Since ceBϕ = 0

and R satisfies the CM-quasi-Armendariz property, we have 0 = ce(1)Rωs(ϕ(x)) = eRωs(d) for

all s ∈ M. This implies that e belongs to lR(Σs∈MRωs(H)). Furthermore, it also implies that

Rωu(e) ⊆ lR(ωu(Σs∈MRωs(H))).

To prove the reverse inclusion, consider an element y ∈ lR(ωu(Σs∈MRωs(H))). Since ϕ(M) ⊆
H ∪ {0}, we can deduce that ζuy lB(Bϕ) = Bce . Consequently, we have ζuy = ζuy ce . This implies

that y = ζuy (u) = (ζuy ce)(u) = ζuy (u)ωu(ce(1)) = yωu(e). Therefore, we conclude that y ∈ Rωu(e),

hence lR(ωu(Σs∈MRωs(H))) ⊆ Rωu(e).

(2)⇒ (3) is obvious.

(3)⇒ (1) Suppose ϕ ∈ B and H = ϕ(M). According to Lemma 2.5 [20], it can be concluded that

the set H is indexed by M.

By substituting u = 1 into (3), it becomes evident that there exists an idempotent element e ∈ R
such that lR(Σs∈MRωs(H)) = Re. It is evident that ce is an idempotent element of B. To complete

the proof, it is enough to show that lB(Bϕ) = Bce . Since e ∈ lR(Σs∈MRωs(H)), it implies that Bce

is a subset of lB(Bϕ).

On the contrary, if φ ∈ lB(Bϕ), then considering φ = Σn
i=1ciki and ϕ = Σr

q=1vqzq, where ci , ki ,

vq, zq are elements of B, and R satisfies the CM-quasi-Armendariz property, we can observe that

φBϕ = 0. Hence, for any ki , s, zq ∈ M, we obtain ciωki (Rωs(vq))f (ki , zq)(kizq) = 0. As a result,

we conclude that ciωki (Rωs(vq)) = 0.
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Consequently, it follows that ci ∈ lR(ωu(Σs∈MRωs(H))) for any u ∈ M. Thus, according to

equation (3), for each u ∈ M, there exists an idempotent element eu ∈ lR(Σs∈MRωs(H)) such that

φ(u) ∈ Rωu(eu). Since lR(Σs∈MRωs(H)) = Re, for any u ∈ M, we have eu = eue, and consequently,

φ(u) = φ(u)ωu(eu) = φ(u)ωu(eue) = φ(u)ωu(eu)ωu(e) = φ(u)ωu(e) = (φce)(u) since ω is an

automorphism. Therefore, we can conclude that φ = φce ∈ Bce , which implies that lB(Bϕ) = Bce ,

as required. �

Theorem 3.3. Assuming a ring R, a strictly totally ordered monoid M with a twisting map f :

M ×M → U(R), and an action map ω : M → Aut(R) that is compatible with the multiplication in

M. If R is a left p.q.-Baer ring, then R is CM-quasi-Armendariz.

Proof. The proof presented here is a modified version of the proof provided in Proposition 2.9 [21].

Consider the elements φ = c1k1 + c2k2 + · · · + cnkn and ψ = a1h1 + a2h2 + · · · + amhm belonging

to R oM. Assume that φ(R oM)ψ = 0. Given that M is a strictly totally ordered monoid, we can

make the assumption that ki � kj and hi � hj whenever i < j . Based on this assumption, we make

the claim that ciωki (ωg(Raj)) = 0 for all i and j .

To prove this claim, let r be an element of R. Then, we observe that φ(re)ψ = 0 since φ(RoM)ψ =

0. Thus, we have

0 = φ(re)ψ = c1r f (k1, e)a1f (k1, h1)k1h1 + · · ·+ [cnr f (kn, e)am−2f (kn, hm−2)knhm−2

+ cn−1r f (kn−1, e)am−1f (kn−1, hm−1)kn−1hm−1 + cn−2r f (kn−2, e)kmf (kn−2, hm)kn−2hm]

+ [cnr f (kn, e)am−1f (kn, hm−1)knhm−1 + an−1r f (kn−1, e)amf (kn−1, hm)kn−1hm]

+ cnr f (kn, e)amf (kn, hm)knhm. (2.2)

Consequently, we can deduce that cnr f (kn, e)amf (kn, hm) = 0 because knhm has the highest order

among all the kih′js terms. As a result, we obtain cnr f (kn, e)am = 0. This indicates that cn belongs to

`R(Rf (kn, e)am) = `R(Ram). Therefore, we can conclude that `R(Ram) = Rem for some idempotent

em as assumed

By substituting r with rem in Eq. (2.2), we arrive at the following expression.

0 = c1remf (k1, e)a1f (k1, h1)k1h1 + · · ·+ [cnremf (kn, e)am−2f (kn, hm−2)knhm−2

+ cn−1remf (kn−1, e)am−1f (kn−1, hm−1)kn−1hm−1]

+ cnremf (kn, e)am−1f (kn, hm−1)knhm−1. (2.3)

So cnremf (kn, e)am−1f (kn, hm−1) = 0, because knhm−1 is of highest order in {kihj |1 ≤ i ≤ n, 1 ≤
j ≤ m} {kn−1hm, knhm}. Hence cnremf (kn, e)am−1 = 0. Since Rem is an ideal of R and em ∈ Rem, we
have emr ∈ Rem and thus emr = emrem for all r ∈ R. Furthermore, we can also observe that cn = cnem

since cn ∈ `R(Ram) = Rem. So cnr f (kn, e)am−1 = cnemr f (kn, e)am−1 = cnemremf (kn, e)am−1 =

cnremf (kn, e)am−1

= 0. This implies that cn ∈ `R(Ram + Ram−1). Consequently, we can conclude that `R(Ram +

Ram−1) = Rem−1 for a certain idempotent em−1 ∈ R, as R is a left p.q.-Baer. By substituting r with
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rem−1 in Eq. (2.3), we obtain the equation cnrem−1f (kn, e)am−2f (kn, hm−2) = 0 using the same

reasoning as before. This demonstrates that cn ∈ `R(Ram + Ram−1 + Ram−2). By continuing this

process, we can deduce that cnRat = 0 for all t = 1, 2, . . . , m. Therefore, we have (c1k1 + c2k2 +

· · · + cn−1kn−1)(R oM)(a1h1 + a2h2 + · · · + amhm) = 0. By utilizing induction on m + n, we can

prove that ciωki (ωg(Raj)) = 0. As a result, we can conclude that R is CM-quasi-Armendariz. �

Corollary 3.2. [22, Corollary 2.4] Let M be a u.p.-monoid and R a right PP -ring or a left p.q.-Baer

ring. Then R is M-quasi-Armendariz.

In [23], it was proven that a ring R is quasi-Baer if and only if R[[S,ω]] is quasi-Baer. Based on

this result, we can conclude the following.

Theorem 3.4. Assuming a ring R and a strictly ordered monoid M with a twisting map f : M×M →
U(R) and an action map ω : M → Aut(R), we consider the case where R is both M-compatible

and CM-quasi-Armendariz. Additionally, given any element φ2 = φ in R, there exist an idempotent

element e2 = e such that φ = ce . Then R is quasi-Baer if and only if R oM is a quasi-Baer.

Proof. (⇒) Let U ∈ R o M is a subset, since R is quasi-Baer, there exist e2 = e ∈ R such that

rR(CU) = eR, where CUR denotes generated by CU subset of R. We want to show that rRoM(U) =

CeR o M. For any φ = Σn
i=1ciki , ψ = Σm

j=1ajhj ∈ R o M for ci , aj ∈ R, s, ki , hj ∈ M and ϕ =

Σp
r=1brgr ∈ U for ρ ∈ M

(ϕψCeφ)(s)
∑

(br ,aj ,ci )∈Xs(ϕ,ψ,φ)

brωgr (ajωρs (eci))f (gr , eki)(egrki).

Because braj ∈ CUR and eci ∈ eR, so (ϕψCeφ)(s) = brωgr (ajωρs (eci)) = 0 since ω is an auto-

morphism and M is cancellative by Lemma 3.1, therefore ϕψCeφ = 0. This means that rRoM(U) ⊇
CeR oM. Conversely, let φ ∈ rRoM(U), ϕ ∈ U, then ϕ(R oM)φ = 0. Because R is S-compatible

CM-quasi-Armendariz, we have brωgr (Rωρs (ci))f (gr , ki)(grki) = 0 so, brωgr (Rωρs (ci)) = 0. This

means ci ∈ rR(CUR). Therefore, there exist rs ∈ R such that φ(s) = ers . We have map θ : M → R

as follows

θ(s) =


rs , s ∈ supp(φ);

0, s ∈ M − supp(φ),

so because supp(θ) = supp(φ) we have θ ∈ R o M. Easy to show φ = Ceθ ∈ CeR o M, So
rRoM(U) ⊆ CeR oM. Thus, rRoM(U) = CeR oM. Therefore, R oM is quasi-Baer.

(⇐) For any subset Q ∈ R, let V = {φ ∈ RoM | ci ∈ Q} and let V RoM denotes the subsets of

R oM, which is generated by V. Therefore, there exist e2 = e ∈ R such that

rRoM(V R oM) = CeR oM.

We can show that rR(Q) = eR. For any ci ∈ Q, br ∈ R, we have (CciCeCbr )(0) =

ciωki (eωρs (br ))f (ki , gr )(kigr ) = ciωki (eωρs (br )) = ciebr = 0. So eR ⊆ rR(Q), and let a ∈ rR(Q),
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because Ca ∈ rRoM(V RoM), there exist ψ ∈ RoM such that Ca = Ceψ. So a = Ceψ(0) = eψ(0) ∈
eR, this means that rR(Q) ⊆ eR, so rR(Q) = eR. Therefore, R is quasi-Baer. �

Corollary 3.3. Assuming a ring R and a strictly ordered monoid M with a twisting map f : M×M →
U(R) and an action map ω : M → Aut(R). If R is M-compatible quasi-Baer, then R is CM-quasi-

Armendariz.

Proof. If R is a quasi-Baer ring, then it is a left p.q.-Baer ring, as shown in [24]. Therefore, the result

can be deduced from Theorem 3.3. �

Corollary 3.4. Assuming a ring R and a strictly ordered monoid M with a twisting map f : M×M →
U(R) and an action map ω : M → Aut(R). If R is M-compatible quasi-Baer, then R is strongly

CM-reflexive.

Proof. If R is a quasi-Baer ring, it is a left p.q.-Baer ring, as stated in [24]. Consequently, R is

strongly CM-reflexive by [10]. �

Corollary 3.5. [24, Proposition 2.3] For any ring, we have the following implications:

(1) right PP ⇒ left APP.

(2) quasi-Baer ⇒ p.q.-Baer ⇒ left APP ⇒ quasi-Armendariz.
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