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Abstract. We consider a stochastic partial differential equation driven by a Lévy type noise (SPDE).

Particular attention is given to the correlation function which measures the moments of the solution.

Using the Feynman graph formalism, the solution of the SPDE as well as its truncated moments are

given as a sum over specific graphs that are evaluated according to some rules. A remark on some

applications will be given at the end of this work.

1. Introduction

The dynamics of many phenomena studied in sciences, engineering and economy are described in

many cases by stochastic differential equations (SDEs), see for example [1, 2, 6]. Stochastic partial

differential equations (SPDE) is an interesting class of SDEs with numerous applications in different

fields, which received a lot of attention during the last 50 years. SPDEs driven by Gaussian noise are

intensively studied and they have found many applications in different areas from physics to biology

and mathematical finance, see e.g. [4, 17].

The extensions to Lévy type noise (in the sense that random variables with Lévy distribution ex-

tended Gaussian random variable) are less studied, particularly when we consider nonlinear SPDEs

driven by a Lévy noise, since the complex behaviour of their solutions is behind any further study com-

pared to SPDEs driven by Gaussian noise. Moreover, in many cases there is no explicit distribution of

the Lévy process.
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In [4], the authors have studied the asymptotic expansion for SPDEs driven by Lévy noise, and as

a particular case, they considered Fitz-Hugh-Nagumo equations due to their impact in neurobiology,

see e.g. [3]. Asymptotic expansions of the solution of a class of SDEs or SPDEs are also studied

in [4, 6, 7, 25].

Another important class of SPDEs driven by Gaussian noise are the Kardar-Parisi-Zhang equations

which describe physical and probabilistic models (interacting particle systems, polymers in random

environments, etc.), see e.g. [19]. An extension of the KPZ equation to SPDEs driven by Lévy noise

is studied in [17], where the authors have adopted a new approach of the solution using the Feynman

graphs and rules, see also [25].

A suitable way to take care of stochastic influence, complexity and randomness is to generalize such

class of SPDEs by adding more factors that describe models in financial market, weather forecast,

climatic changes, neurobiological process. It is therefore the aim of this paper to study a class of

nonlinear SPDEs driven by Lévy noise, which is more general than the previous studied models in [17]

and [25, 26]. We shall adopt methods based on Feynman graphs and rules to represent the solution

of a given class of a nonlinear SPDE, as well as its truncated moments.

Before describing the contents of the different sections of the present paper, let us mention that

to the best of our knowledge the current results seem to be new and not studied before.

The contents of this paper are described as follows:

Section 2 will be reserved to the motivation and description of the problem.In section 3, the analytic

solution of the SPDE will be given. Section 4 will be dedicated to the main results of this paper, where

we will define new type of Feynman graphs and rules to simplify the analytic solution provided in the

previous section. In Section 5, the truncated moments of the solution will be graphically represented.

Section 6 is reserved to a remark on some applications.

2. Preliminaries

Consider the stochastic partial differential equation (SPDE):
∂X

∂t
(t, x) = ∆pX(t, x)− µX(t, x)− λ|∇X(t, x)|2 + η(t, x),

X(0, x) = f (x) ; (t, x) ∈ Λ =]0,+∞[×Lδ, µ, λ > 0
(2.1)

where Lδ =
{
δz , z ∈ Zd

}
is the lattice on Zd , η is a general space-time white noise of Lévy type

and f is a given initial function. ∇X is the discrete gradiant defined by

∇X(x) = δ−1
(
X(x + δe1)−X(x), . . . , X(x + δed)−X(x)

)
, (2.2)

while the p-discrete Laplacian ∆pX is defined as ∆p = ∆(∆p−1X) and

∆X(x) = δ−2
(
− 2dX(x) +

∑
|y−x |=δ

X(y)
)
, (2.3)

where (e1, · · · , ed) is the canonical basis of Rd .
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Note that ∇X and ∆pX can be formulated using a random walk on Lδ. Indeed, let (Zxn )n be a

random walk on Lδ starting at Zx0 = x . More precisely, we have

P
{
Zxn+1 − Zxn = −δei

}
= P

{
Zxn+1 − Zxn = δei

}
=

1

2d
, (2.4)

for i = 1, . . . , d . Then, the discrete Laplacian can be written as

∆X(x) = 2dδ−2E [X (Zx1 )−X (Zx0 )] , (2.5)

where E is the expectation with respect to the distribution of (Zxn )n≥0. By induction on p, we have

∆pX(x) =
(

2dδ−2
)p E[ p∑

n=0

(
p

n

)
(−1)nX(Zxn )

]
. (2.6)

Let Y be a random variable given by the distribution

P (Y = δei) =
1

d
, (2.7)

for i = 1, . . . , d . Then, |∇X(t, x)|2 can be written as

|∇X(t, x)|2 = δ−2
d∑
i=1

(X(t, x + δei)−X(t, x))2

= dδ−2E
[

(X(t, x + Y )−X(t, x))2
]
,

(2.8)

where E is the expectation with respect to the distribution of Y .

The main idea is to solve perturbatively the SDPE (2.1) by letting the solution X having the

following form:

X(t, x) =

∞∑
l=0

(−λ)lXl(t, x). (2.9)

3. Analytic Solution of the SPDEs

In this section, we will first introduce Green’s functions associated to the linear operators of equation

(2.1). Such class of Green functions will be used to determine the form of the solution.

Denote by S(Λ) the Schwartz space of all rapidly decreasing functions on Λ occupied with the

Schwartz topology and define the Fourier transform F : S(Λ) −→ R×
[
0, 2π

δ

]d
by

F(f )(t, x) =

∫
R×Lδ

e itse iy .x f (s, y)dsdy , (3.1)

where ∫
R×Lδ

g(s, y)dyds =
∑
y∈Lδ

δd
∫
R
g(s, y)ds. (3.2)

The inverse Fourier transform of F denoted by F−1 is given by

F−1(f )(t, x) =
1

(2π)d+1

∫
R

∫
[0, 2π

δ ]
d
e−itse−iy .x f (s, y)dsdy . (3.3)
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Similarly, we define the Fourier transform on S(Lδ) as

F̂(f )(x) =

∫
Lδ

e iy .x f (y)dy , (3.4)

where
∫
Lδ
f (y)dy =

∑
y∈Lδ δ

d f (y).

Note that its inverse Fourier transform is

F̂−1(f )(x) =
1

(2π)d

∫
[0, 2π

δ ]
d
e−iy .x f (y)dy . (3.5)

Finally, we define the convolution products on S(Λ) and S(Lδ) by

f ? g(t, x) =

∫
Λ

f (s, x)g(t − s, x − y)dsdy , for f , g ∈ S(Λ) (3.6)

and

f ∗ g(x) =

∫
Lδ

f (x)g(x − y)dy , for f , g ∈ S(Lδ). (3.7)

Using the definitions of the p-Laplacian and the Fourier transform given by Equations (2.6) and

(3.1) respectively, we have

F (∆pX) (t, x) =

∫
R×Lδ

e itse iy .x∆pX(s, y)dyds

=
(

2dδ−2
)p p∑

n=0

(
p

n

)
(−1)p−nE

[∫
R×Lδ

e itse iy .xX(s, Zyn )dyds

]

=
(

2dδ−2
)p p∑

n=0

(
p

n

)
(−1)p−nE

[
e−iZ

000
n .x
]
F (X) (t, x)

= (2δ−2)p

[
d∑
n=1

cos (δen.x)− d

]p
F (X) (t, x).

(3.8)

Here, we have used the characteristic function of Z000
n given by

E
[
e−iZ

000
n .x
]

=

(
1

d

d∑
k=1

cos (δek .x)

)n
. (3.9)

Consider the Green’s function G, which is nothing else than the kernel of the linear part of the

SPDE (2.1), { (
∂
∂t − ∆p + µ

)
G(t, x) = δ(t, x),

G(t, x) = 0, for t < 0,
(3.10)

Here, δ(t, x) is the Dirac distribution defined by δ(t, x) = δ(t)δ−dδ000,x , where δ(t) is the Dirac

distribution on R, δx ,y =
∏d
l=1 δxl ,yl and δa,b is the Kronecker symbol.

Applying the Fourier transform to equation (3.10) and using equation (3.8), we obtain

F (G) (t, x) =
1

−i t + Γδ,µ(x)
, (3.11)
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where

Γδ,µ(x) = µ− (2δ−2)p

[
d∑
n=1

cos (δen.x)− d

]p
. (3.12)

Lemma 3.1. For m > 0, we have ∫ ∞
−∞

e its

m + i s
ds = 2πθ(t)e−tm, (3.13)

where θ(t) = 1 if t > 0 and θ(t) = 0 if t < 0.

Proof. For t > 0 and C−R = {m + i s : −R ≤ s ≤ R} ∪ {m + Re is : π
2 ≤ s ≤ 3π

2 } oriented on the

counter-clockwise direction, applying Residue theorem yields∫
C−R

etz

z
dz = 2iπ. (3.14)

This is equivalent to

2iπ = i

∫ R

−R

et(m+is)

m + i s
ds +

∫ 3π
2

π
2

iRe iset(m+Re is)

m + Re is
ds. (3.15)

Since ∣∣∣∣∣ iRe iset(m+Re is)

m + Re is

∣∣∣∣∣ =
Ret(m+R cos s)

√
m2 + R2

≤ etm,

and lim
R→∞

Ret(m+R cos s)

√
m2 + R2

= 0, Lebesgue’s dominated convergence theorem gives

lim
R→∞

∫ 3π
2

π
2

iRe iset(m+Re is)

m + Re is
ds = 0.

Thus, the limit of equation (3.15) is ∫ ∞
−∞

e its

m + i s
ds = 2πe−tm. (3.16)

For t < 0, following the previous steps with C+
R = {m + i s : −R ≤ s ≤ R} ∪ {m + Re is : −π2 ≤

s ≤ π
2 } oriented on the clockwise direction, we have∫ ∞

−∞

e its

m + i s
ds = 0. (3.17)

�

By Equation (3.11) and lemma 3.1, we get

G(t, x) =
1

(2π)d+1

∫
[0, 2π

δ ]
d

(∫ ∞
−∞

e its

i s + Γδ,µ(y)
ds

)
e ix .ydy

=
θ(t)

(2π)d

∫
[0, 2π

δ ]
d
e iy .xe−tΓδ,µ(y)dy .

(3.18)
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Lemma 3.2. For any integer N, there exists a constant CN such that

|G(t, x)| ≤ CN
e−t

µ
2

(1 + |x |2)N
, (3.19)

for any (t, x) ∈ Λ =]0,+∞[×Lδ.

Proof. Let ∆1 be the Laplacian on
[
0, 2π

δ

]d
. Then, we have

G(t, x) =
θ(t)

(2π)d

∫
[0, 2π

δ ]
d
e iy .xe−tΓδ,µ(y)dy .

=
θ(t)

(2π)d(1 + |x |2)N

∫
[0, 2π

δ ]
d

[
(1− ∆1)Ne iy .x

]
e−tΓδ,µ(y)dy

=
θ(t)

(2π)d(1 + |x |2)N

∫
[0, 2π

δ ]
d
e iy .x

[
(1− ∆1)Ne−tΓδ,µ(y)

]
dy

=
θ(t)e−

tµ
2

(2π)d(1 + |x |2)N

∫
[0, 2π

δ ]
d
e iy .x

[
(1− ∆1)Ne

−tΓ
δ,
µ
2

(y)
]
dy .

(3.20)

Note that

(1− ∆1)Ne
−tΓ

δ,
µ
2

(y)
= PN(t, δ, y)e

−tΓ
δ,
µ
2

(y)
(3.21)

where PN(t, δ, y) is a polynomial function with respect to t. Thus, we obtain

CN :=
1

δd
sup

t∈(0,∞),y∈[0, 2π
δ ]

d

∣∣∣(1− ∆1)Ne
−tΓ

δ,
µ
2

(y)
∣∣∣ <∞. (3.22)

This means that

|G(t, x)| ≤
e−

tµ
2

(2π)d(1 + |x |2)N

∫
[0, 2π

δ ]
d
δdCNdy = CN

e−t
µ
2

(1 + |x |2)N
. (3.23)

�

Lemma 3.3. Let C be the set of all measurable functions f : Λ→ R such that for any k ∈ N,∃N ∈ N
and ∫

Λ

|f (x)|k

(1 + |x |2)N
dx <∞.

Then, C is an algebra under multiplication. In addition, if f ∈ C, then G ∗ f ∈ C.

Proof. Cauchy Schwartz inequality∫
|f g|k(x)

(1 + |x |2)N
dx ≤

√∫
|f |2k(x)

(1 + |x |2)N
dx

√∫
|g|2k(x)

(1 + |x |2)N
dx (3.24)

guarantees that C is an algebra under multiplication.

Moreover, suppose that f ∈ C. For any k ∈ N, ∃Nk ∈ N such that∫
Λ

|f (x)|
(1 + |x |2)Nk

dx <∞. (3.25)



Int. J. Anal. Appl. (2023), 21:132 7

The triangular inequality leads to

1 + |y |2 ≤ 1 + 2|y − x |2 + 2|x |2 ≤ 2(1 + |x |2)(1 + |y − x |2). (3.26)

Using the last inequality and lemma 3.2, we have

|G ∗ f |(x) =

∣∣∣∣∫ f (y)G(x − y)dy

∣∣∣∣ ≤ CNk ∫
Λ

|f (y)|
(1 + |x − y |2)Nk

dy

≤ 2NkCNk (1 + |x |2)Nk
∫

Λ

|f (y)|
(1 + |y |2)Nk

dy

≤ ANk (1 + |x |2)Nk ,

(3.27)

where ANk = 2NkCNk
∫ |f (y)|

(1+|y |2)Nk
dy <∞. Then,∫

|G ∗ f |k(x)

(1 + |x |2)kNk+2
dx ≤ AkNk

∫
1

(1 + |x |2)2
dx <∞, (3.28)

which shows that G ∗ f ∈ C. �

Similarly, let Ĝt be the Green’s function satisfying the equation{
∂Ĝt(x)
∂t = ∆pĜt(x)− µĜt(x),

Ĝ0(x) = δ(x).
(3.29)

Applying the Fourier transform to the last equation, we obtain{
∂F̂(Ĝt)
∂t = −Γδ,µ(x)F̂(Ĝt),

F̂(Ĝ0)(x) = 1,
(3.30)

which has

F̂(Ĝt)(x) = e−tΓδ,µ(x) (3.31)

as a solution. Equivalently we get

Ĝt(x) =
1

(2π)d

∫
[0, 2π

δ ]
d
e iy .xe−tΓδ,µ(y)dy . (3.32)

Equation (3.32) is nothing else than

G(t, x) = θ(t)Ĝt(x), (3.33)

for (t, x) ∈ Λ =]0,+∞[×Lδ.

Proposition 3.1. Let X =
∑∞
l=0(−λ)lXl(t, x). Assume that G ? η ∈ C. The perturbative solution of

the SPDE (2.1) is given by: {
X0(t, x) = G ? η(t, x) + Ĝt ∗ f (x),

Xl(t, x) = G ? Fl−1(t, x), l ≥ 1,
(3.34)
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where

Fl(t, x) =dδ−2
l∑
j=0

[
Xj(t, x)Xl−j(t, x) + E

[
Xj(t, x + Y )Xl−j(t, x + Y )

]
− 2Xj(t, x)E

[
Xl−j(t, x + Y )

] ] (3.35)

and Y is the random variable given in Equation (2.7).

Proof. Let X =
∑∞
l=0(−λ)lXl(t, x). Substituting it into equation (2.8), we get

|∇X(t, x)|2 =dδ−2
∞∑

l1,l2=0

(−λ)l1+l2
[
Xl1 (t, x)Xl2 (t, x) + E [Xl1 (t, x + Y )Xl2 (t, x + Y )]

− 2Xl1 (t, x)E [Xl2 (t, x + Y )]
]

=

∞∑
l=0

(−λ)lFl(t, x). (3.36)

Hence, the solution of equation (2.1) satisfies
∞∑
l=0

(−λ)lXl(t, x) = −λG ? |∇X(t, x)|2 + G ? η(t, x) + Ĝt ∗ f (x)

=

∞∑
l=0

(−λ)l+1G ? Fl(t, x) + G ? η(t, x) + Ĝt ∗ f (x).

(3.37)

Equating the coefficients of λ in both sides of equation (3.37), we obtain:{
X0(t, x) = G ? η(t, x) + Ĝt ∗ f (x),

Xl(t, x) = G ? Fl−1(t, x), l ≥ 1.
(3.38)

Notice that Fl−1 is given in terms of X0, X1, . . . , Xl−1, which means that Xl is given recursively in

terms of X0, X1, . . . , Xl−1. �

Remark 3.1. The analytic solution of the SPDE (2.1) given by equation (3.34) remains complicated

and therefore we cannot extract information about the different coefficients of the equation, mainly

the noise η(t, x). The aim of the next section is to introduce a new approach through the Feynman

graph formalism to represent graphically the solution as well as its truncated moments.

4. Graphical Representation of the Solution

The main goal of this section is to introduce a new graph approach to represent the solution of the

SPDE (2.1). We define a tree T with root x ∈ Λ, n inner vertices and m leaves as a graph without

cycles. If we cut the tree T from any vertices (including the root of T ), the result are subtrees of T .

Let Υ(n), n ≥ 1, be the set of all rooted trees T with root x , four types of leaves and n inner vertices.

Υ(0) is defined to be the set of all rooted trees with 0 inner vertex and two type of leaves 1 and 2.

Such a graph is called a tree of order n ≥ 0.
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The following table resumes all types of edges and leaves of a tree T ∈ Υ(n):

G Leaf of type

1 η(t, x)

leaf of type

2 f (x)

Leaf of type

3 η(t, x +Y )

leaf of type

4 f (x + Y )

Root of a

tree T

Inner vertex

For the reader convenience, the representation of a tree of order 0 and 1 are given below:

Tree of order 0 Tree of order 1

Figure 1

For each tree T ∈ Υ(n), n ≥ 0, we associate an analytical value R given by the following definition:

Definition 1. For T ∈ Υ(n), n ≥ 0, the random variable R(T, η, x) is defined as follows.

(1) Assign x ∈ Λ to the root of T , where Λ is given in Equation (2.1).

(a) Assign x1, . . . , xn ∈ Λ to the inner vertices.

(b) Assign y1, . . . , yl ∈ Λ to the leaves of type 1 and z1, . . . , zk ∈ Lδ to the leaves of type 2,

where l , k ∈ N.
(c) Assign u1, . . . , uq ∈ Λ to the leaves of type 3 and v111, . . . , vm ∈ Lδ to the leaves of type

4, where q,m ∈ N.
(2) For every edge e, assign a value G(e) if e is connected to a leaf of type 1 or 3, or Ĝt(e) if

it is connected to a leaf of type 2 or 4. Here, G and Ĝt are the Green functions defined in

(3.10) and (3.29). If a vertex v0 is connected to two leaves one of type 1 or 2 and the other

of type 3 or 4, multiply the result by (−2).

(3) For the j-th leaf, multiply its corresponding value by η(yj), f (zj), η(uj) or f (vj) if this leaf is

of type 1, 2, 3 or 4, respectively.

(4) Multiply the result by a constant dδ−2.

(5) Integrate with respect to the Lebesgue measure dx1 · · · dxndy1 · · · dyldz1 · · · dzk .

The following examples clarify to the reader, how we get the analytic value of a given graph using

Definition 1. For instance, the analytic values of the graphs given in Figure 1 for the tree of order 0

and order 1 are respectively given by:

R(T0, η, x) =

∫
G(x1 − x)η(x1)dx1, x, x1 ∈ Λ. (4.1)
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and

R(T1, η, x) =

∫
G(x1 − x)G(x2 − x1)G(x3 − x1)η(x2)f (x3) dx1dx2dx3, x, x1, x2 ∈ Λ, x3 ∈ Lδ.

(4.2)

For T ∈ Υ(n), n ∈ N and v ∈ V (T ) be a given vertex of the tree T, let

C(T ) := {(Tv , T̃v ) : Tv ∈ Υ(j) and T̃v ∈ Υ(n − j), j = 0, 1, . . . , n}. (4.3)

Clearly there is a one-to-one correspondence between Υ(n) and C(T ). For instance, given a rooted

tree T ∈ Υ(n) with root x and let x1 be the first inner vertex of T and e1 = {x, x1} the first edge of

T . If we cut the tree T at x1, we obtain two rooted subtrees Tx1 , T̃x1 with root x1 and j and n − j
inner vertices, respectively. The converse of this process gives the tree T ∈ Υ(n).

Lemma 1. Let T ∈ Υ(n) and x1 the vertex connected to the root x . Then, we have

R(T, η, x) = G ∗

 ∏
S∈S(T )

R(S, η, .)

 , (4.4)

where S(T ) is the set of all subtrees of T .

Proof. Let E(S), L1, L2, L3, L4 be the sets of all edges, leaves of type 1, leaves of type 2, leaves of

type 3 , leaves of type 4 respectively. From Definition 1, we have

R(T, η, x) =

∫
G(x − x0)

∏
S∈S(T )

 ∏
e∈E(S)

G(e)
∏
l∈L1

η(l)
∏
l∈L2

f (l)
∏
−→
l ∈L3

η(
−→
l )

∏
−→
l ∈L4

f (
−→
l )

 dx1

= G ∗

 ∏
S∈S(T )

R(S, η, .)

 . (4.5)

�

Theorem 4.1. The solution of the SPDE (2.1) in the sense of formal power series is given by the sum

over all rooted trees T ∈ Υ(l), l ≥ 0, that are evaluated according to the rules fixed in Definition 1.

More precisely, we have

Xl(x, η) =
∑

T∈Υ(l)

R(T, x, η).

Proof. We will proceed the proof by induction on l . For l = 0, we have

X0(t, x) = G ? η(t, x) + Ĝt ∗ f (x).
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Clearly, this is a sum of the evaluation of the two trees in Υ(0). Suppose the result true for all

k = 0, . . . , l − 1 and show it for l . Using Equation (3.34), Definition 1 and Lemma 1 yield

Xl(t, x) =G ?

l−1∑
j=0

dδ−2
[
Xj(t, x)Xl−j(t, x) + E [Xj(t, x + Y )Xl−j(t, x + Y )]− 2Xj(t, x)E [Xl−j(t, x + Y )]

]

=

l−1∑
j=0

∑
T1∈Υ(j),T2∈Υ(l−j)

R(T1, T2, x, η)

=
∑

T∈Υ(l)

R(T, x, η). (4.6)

�

In the following, we give graphical representations of the solutions X0 and X1:

X0(t, x) = G ? η(t, x) + Ĝt ∗ f (x)

= +
(4.7)

and

X1(t, x) = G ? F0(t, x)

= dδ−2G ?
[
X0(t, x)2 + E

(
X0(t, x + Y )2

)
− 2X0(t, x)E (X0(t, x + Y ))

]
(4.8)

= + + 2

+ + + 2

−2 −2 −2 −2

5. Truncated Moments of the Solution

The aim of this section is to represent graphically the moments as well as the truncated moments

of the solution of the SPDE (1) given in Theorem 4.1.

Proposition 5.1. Let T1 ∈ Υ(i1), . . . , Tn ∈ Υ(in), i1, . . . , in ∈ N, be n rooted trees with roots

x1, . . . , xn, respectively. Then, in the sense of formal power series, we have〈 n∏
i=1

X(xi , η)
〉

=

∞∑
m=0

(−λ)m
∑

T1∈Υ(i1),...,Tn∈Υ(in)

i1+···+in=m

〈
R(T1, x1, η) · · ·R(Tn, xn, η)

〉
. (5.1)
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Proof. The proof is a trivial consequence of Theorem 4.1 as〈 n∏
i=1

X(xi , η)
〉

=
〈 ∞∑
l1=0

(−λ)l1Xl1 (x1, η) · · ·
∞∑
ln=0

(−λ)lnXln(xn, η)
〉

=

∞∑
m=0

(−λ)m
∑

l1,...,ln∈N
l1+···+ln=m

〈
Xl1 (x1, η) · · ·Xln(xn, η)

〉
(5.2)

=

∞∑
m=0

(−λ)m
∑

T1∈Υ(i1),...,Tn∈Υ(in)

i1+···+in=m

〈
R(T1, x1, η) · · ·R(Tn, xn, η)

〉
.

�

Definition 2. Let x1, . . . , xk ∈ Λ, k ∈ N, and I = {I1, . . . , Ik} be a partition of the set {1, . . . , n}.
The truncated moment functions 〈η(x1) · · · η(xk)〉 are recursively defined by〈

k∏
i=1

η(xi)

〉
=

∑
I={I1,...,Ik}

k∏
i=1

〈Il〉T , (5.3)

where
k∏
i=1

〈Il〉T =

〈∏
i∈Il

η(xi)

〉T
.

Now, It is natural to define a new graph G(m, n) as a combination of n rooted trees T1, . . . , Tn

with 4 types of leaves and m inner vertices, the leaves of types 1 and 3 will be connected by empty

vertices . The set of such graphs is denoted by G(m, n).

Definition 3. Let G ∈ G(m, n) and x1, . . . , xk ∈ Λ. We define the analytic value of G evaluated at

(x1, . . . , xk), denoted by A(G)(x1, . . . , xk), as follows.

(1) (a) Assign the values x1, . . . , xn ∈ Λ to the roots of the trees T1, . . . , Tn.

(b) Assign the values x̂1, . . . , x̂p ∈ Λ to the inner vertices.

(c) Assign y1, . . . , yl ∈ Λ to the leaves of type 1 and z1, . . . , zk ∈ Lδ to the leaves of type 2,

where l , k ∈ N.
(d) Assign u1, . . . , uq to the leaves of type 3 and v1, . . . , vp ∈ Lδ to the leaves of type 4, .

(2) For every edge e, assign a value G(e) to this edge if it is connected to a leaf of type 1 or 3,

or Ĝt(e) if it is connected to a leaf of type 2 or 4. Here, G and Ĝt are the Green functions

defined in (3.10) and (3.29)

(3) For each empty vertex with i legs connected to the leaves 1 and 3 with arguments r1, . . . , ri ,

multiply with 〈η(r1) · · · η(ri)〉T .
(4) For the leaves of type 2 or 4, multiply with f (yj) or f (zs), respectively, where j = 1, . . . , k

and s = 1, . . . , r .

(5) Integrate with respect to the Lebesgue measure dy1 · · · dyldz1 · · · dzk .



Int. J. Anal. Appl. (2023), 21:132 13

For the reader convenience, we represent a graph G ∈ G(2, 2)

its analytic value is

A(G) =

∫
G(x1 − x)G(x2 − x1)G(x3 − x1)G(y1 − y)G(y2 − y1)G(y3 − y1) 〈η(x3)η(y2)〉T

× f (y3) f (x2 + Y) dx1 · · · dx3dy1 · · · dy3, x1, · · · y3 ∈ Λ, y3, x2 ∈ Lδ. (5.4)

Theorem 5.1. Let T1, . . . , Tn, be n rooted trees with roots x1, . . . , xn, respectively. The moment of

the solution is given by a sum over all graphs G ∈ G(m, n) of m-th order that are evaluated according

the rule described in Definition 3, that is〈 n∏
i=1

X(xi , η)
〉

=

∞∑
m=0

(−λ)m
∑

G∈G(m,n)

A(G)(x1, . . . , xn). (5.5)

Proof. The proof is straightforward by using Proposition 5.1 and Definition 3. �

Using Lévy Khinchine theorem, we know that the characteristic function of a Lévy noise η satisfies

Cη(t) =

∫
R
e istdη(s) = eψ(t), for t ∈ R,

where ψ : R→ C is the Lévy characteristic function represented by

ψ(t) = i āt −
σ2t2

2
+

∫
R\{0}

(
e ist − 1−

i st

1 + s2

)
dM(s), (5.6)

∀t ∈ R, where ā ∈ R, σ2 ≥ 0, and M is a Lévy measure on R \ {0} satisfying∫
R\{0}

min{1, s2}dM(s) <∞. (5.7)

In addition, if all moments of M exist, we have

ψ(t) = iat −
σ2t2

2
+ z

∫
R\{0}

(
e ist − 1

)
dr(s), (5.8)

where a = ā −
∫
R\{0}

s
1+s2 dM(s), z =

∫
R\.{0} dM(s) and r = M

z .

The following theorem due to [5] gives a relationship between the truncated moments and the

moments of the noise η. This is very useful for our work since it will simplify the statement 3) in

Definition (3).

Theorem 5.2. Let x1, . . . , xn ∈ Λ and η be the general space-time Lévy noise. Then the following

holds 〈 n∏
i=1

η(xi)
〉T

= Cn

∫
δ(x − x1) · · · δ(x − x1)dx, (5.9)
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where

Cn = (−i)n
dnψ(t)

dtn

∣∣∣
t=0

= δn,1a − δn,2σ2 +

∫
R−{0}

sndr(s) (5.10)

and δn,m is the Kronecker symbol.

Using the previous theorem, the coefficient of statement 3 in Definition 3 can be replaced by

Cn
∫
δ(x − x1) · · · δ(x − x1)dx and we get new simplified values Â of the graphs G ∈ G(m, n) as it is

shown by the following theorem:

Theorem 5.3. Let T1, . . . , Tn, be n rooted trees with roots x1, . . . , xn, respectively. The moments of

the solution are given by〈 n∏
i=1

X(xi , η)
〉

=

∞∑
m=0

(−λ)m
∑

G∈G(m,n)

Â(G)(x1, . . . , xn). (5.11)

Proof. The proof is immediate from Definition (3), and Theorems (5.1) and (5.2). �

6. A Remark on Some Applications

By taking p = 1 and µ = 0, equation (1) becomes:
∂X

∂t
(t, x) = ∆X(t, x)− λ|∇X(t, x)|2 + η(t, x),

X(0, x) = f (x) ; (t, x) ∈ Λ,
(6.1)

which is nothing else then the KPZ equation studied in [19]. Using the so called Cole-Hopf transfor-

mation given by:

T λ(t, x) = exp
(
− λX(t, x)

)
, (6.2)

one can transform equation (6.1) into a linear SPDE called Burger equations. The solution as well

as the truncated moments of the solution can be graphically represented as done in this work.

Another application helds by taking p = 1, λ = 0 and d = 1. This is the first part of the

FitzHugh-Nagumo equation{
Xt(t, x) = Xxx(t, x) + X(t, x) + η1(t, x)− Y,
Yt(t, x) = σX(t, x)− γY (t, x) + η2(t, x).

(6.3)

This is a simple representation of a class of excitable-oscillatory systems (e.g. a neuron). It describes

the physiological state of a nerve which can be resting, active, refractory, enhanced, depressed etc.

For more details see FitzHugh [13]. This model deals with neural networks which can be considered as

a graph with m edges and n vertices. Again our graph formalism in the current work can be applied.
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