Int. J. Anal. Appl. (2023), 21:117

International Journal of Analysis and Applications

Generalized Hyers-Ulam Stability of Additive Functional Inequality in Modular Spaces

and 5-Homogeneous Banach Spaces

Abderrahman Bazal*, Mohamed Rossafi?

L[ aboratory of Analysis, Geometry and Application, Departement of Mathematics, Ibn Tofail
University, Kenitra, Morocco
2Departement of Mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah

University, Fes, Morocco

*Corresponding author: abderrahmane.baza@gmail.com

Abstract. In this work, we investigate the generalised Hyers-Ulam stability of additive functional in-

equality in modular spaces with As-conditions and in B-homogeneous Banach spaces.

1. Introduction and Preliminaries

Nakano established the theory of modulars on linear spaces and the related theory of modular linear
spaces in 1950 [10]. After a while, many mathematicians have worked hard to develop this theory,
for example, Amemiya [1], Yamamuro [15], Orlicz [11], Mazur [8], Musielak [9], Luxemburg [6], and
Turpin [14]. The study of interpolation theory [5, 7] and various Orlicz spaces [11] has up till now
made extensive use of the notion of modulars and modular spaces.

Now, we will define the modular space and its properties.

Definition 1.1 ( [10]). Let Y be an arbitrary vector space. A functional p 1 Y — [0,00) is called a
modular if for arbitrary x,y €Y,

(1) p(x) =0 ifand only if x = 0.
(2) p(ax) = p(x) for every scalar a with |a| = 1.
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(3) p(ax+By) < p(x)+ p(y) ifand only ifa+B =1 and o, 8 > 0.
If (3) is replaced by:
(4) plax+By) < ap(x) + Bp(y) if and only if o+ =1 and o, 3 > 0, then we say that p is a

convex modular.

A modular p defines a corresponding modular space, i.e., the vector space Y, given by:
Y, ={x€Y :p(Ax) = 0 as A — 0}.

A function modular is said to be satisfy the A>-condition if there exist T > 0 such that p(2x) < Tp(x)
for all x €'Y,.

Definition 1.2. Let {x,} and x be in Y,. Then:

(1) The sequence {x,}, with x, € Y, is p-convergent to x and write: x, — x if p(x, —x) — 0
as n — oo.
(2) The sequence {x,}, with x, € Yy, is called p-Cauchy if p(x, — Xm) = 0 as n: m — oo.

(3) Y, is called p-complete if every p-Cauchy sequence in'Y, is p-convergent.

Proposition 1.1. /n modular space,

o .
e /f x, = x and a is a constant vector, then x, + a A x+a

o Ifx, 5 x and yp ﬁ>y then axn+6ynﬁ>ax+6y, wherea+8 <1 and o, B > 1.

Remark 1.1. Note that p(x) is an increasing function, for all x € X. Suppose 0 < a < b, then
property (2.3) of Definition 1.1 with y = 0 shows that p(ax) = p (%bx) < p(bx) for all x € Y.
Morever, if p is a convexe modular on X and |a| < 1, then p(ax) < ap(x).

In general, if \j > 0, i =1,..., n and A1, Mo, ..., An < 1 then p(A1x1 + Xoxo + -+ + Apxp) <
A1p(x1) + Xop(x2) 4 -+ 4 Xpp(Xp).

If{xn} is p-convergent to x, then {cx,} is p-convergent to cx, where |c| < 1. But the p-convergent
of a sequence {x,} to x does not imply that {ax,} is p-convergent to ax, for scalars o with || > 1.

If p is a convex modular satisfying A, condition with T = 2, then p(x) < T,O(%X) < gp(x) for all x.

Hence p = 0. Consequently, we must have T > 2 if p is convex modular.

In 1940, Ulam [12] raised the first stability problem concerning the existence of an exact solution
near to the function satisfiyng the equation or inequation approximattely . He proposed a question, if
there exists an exact homomorphism near an approximate homomorphism. Hyers [3] found an answer
in Banach space and then many authors have investigated the stability problems.

This paper consist of 4 sections. In section 2, we show the stability of the following inequation in
modular space satisfying As-condition with 7 = 2.

X+y
2

o(f(x+y)—1f(x)—"~f(y)) < p<f( ) — %f(x) — éf(y)) for all x,y € X.
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In section 3, we obtain a like result in 3-homogeneous complex Banch space of the following inequation,

using the control of Gavruta

X;y> —;f(x)—;f(Y)H- (1.1)

In section 4, we show the stability of the following inequation associated with the Jordan triple deriva-

1 (x+y) — F(x) — FW)Il < Hf (

tion in fuzzy Banach algebra

NG+ 9) = 00 = F00) 2 N (FCF2) = 20 = St (12)

2. Additive Functional Inequalities in Modular Space

Throughout this section, assume that X is a linear space, and that Y, is a p-complete modular

sapace.

Lemma 2.1. Let f : X =Y, be a mapping such that

p(f(x+y)—Ff(x)—=f(y)) <p (f <X—2H/> - %f(x) — ;f(y)> for all x,y € X. (2.1)
Then f is additive.
Proof. Letting x =y =0 in (2.1), we get:
p(f(0)) <0.
So
f(0) =0.

Letting y = —x in (2.1), we get:
1
pUF)+ 7)) < o (30700 + A=)

< —p(f(x) 4+ f(—x)) for all x € X.

N~

Hence f(—x) = —f(x) for all x € X.
Letting x = y in (2.1), we get: p(f(2x) — 2f(x)) < 0, and so f(2x) = 2f(x) for all x € X. Thus

1
f (%) = Ef(x) for all x € X. It follows from (2.1) that:

PUF(x-+9) = 100 = F) < (3700 = 3760 = 370

< So(Fx+y) = 1) = F(7)
and so
f(x+y)="~f(x)+f(y) forall x,y € X.

Now, we prove the Hyers-Ulam stability of the additive functional inequality (2.1) in modular spaces.
O
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Theorem 2.1. Let X be a linear space, p be a convexe modular satisfying A>-condition with T = 2

and Y, be a p-complete modular space. Let ¢ : X?> — [0, 00) be a function with:

oo

1
Wixy) =) 50 (@ x27ly) <o, (2.2)
j=1
and
X+y
2

et = £ = F) < o (7 (557) = 5700 - 370 +otxn) @3)

for all x,y € X. Then there exists a unique additive mapping: h : X — Y, such that:

p(f(x) = h(x)) < b(x, x). (2.4)

Proof. Letting y = x in (2.3), we get: p(f(2x) — 2f(x)) < ¢(x, y) for all x € X. So

0 (;f(Zx) — f(x)) < %(p(x,x). (2.5)
Then by induction, we write:
f (2kx u
p( (; ) f(x)) g;; o (271x,271x) (2.6)

for all x € X and all positif integer k. Indeed, the case k = 1 follows from (2.5). Assume that (2.6)
holds for k € N. Then we have the following inequality

P <f(§::11x) _ f(x)) =0 <; (f(z;(QX) - f(2x)> + %f(QX) - f(X)>

k.
<o (’c(ik”) - f<2x>) +30(F(25)  2(x)
k
<325 (%2 + e

1

J

K+l g . ‘
= Z 59 (271x, 27 1x) .

Hence (2.6) holds for every k € N.

Let m and n be nonnegative integers with n > m. By (2.6), we have

p<f(§:x) - f(;:@) =P<21m <f(2 ;n_;nz x) f(2’”x)>>

p (271 2Mx, 2171 oM
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n—m

-5

Jj=1

1
2J'+m(p (

2m+j_1X, 2m+j—lX)

n
1 _ _
= Z k¥ (2k 1x, 2k 1x) . (2.7)
k=m+1
Then by (2.2) and (2.7) we conclude that {%} is a p-Cauchy sequence in Y,. The p-completeness
of Y, guarantees its p-convergence. Hence, there exists a mapping h: X — Y}, defined by:
f(2"x)

~n x € X. (2.8)

h(x) = p — limit

Moreover, letting m = 0 and passing the limit n — oo in (2.7), we get (2.4).

Now, we prove that h is additive. We note that:

p (PR B D) < e (k) — £ 20— £ (2)

oo (1 (452) e -Yren)

1
+ W(,D (2nX, 2”y)
2"(x+y)
1 f( Zy) 1 F2%) 1 F(2")
<pli|—m———~L | -ox 2 x
2P\ 2 on 4% "o T X Ton

1
t 5n2® (2"x,2"y).

(G6() -br-o)
e

2
(XYY ZZh) = Zh() ).
(57) ~3000-3n0)

Hence

And so

(G +)) = h(x) = () < 49 (G0c ) = 3160 = 54 )
h

<p ( (ng) - 2ho - éh(x>) |

Then by Lemma 2.1, h is additive.
We see that:

h(2x) — 2h(x 1 f (ont1ly 1 /f(2nt1x

<o (h (20 - W) +20((8 2 h) 9
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for all x,y € X. By (2.8), the right hand side of (2.9) tends to 0 as n — oo. Therefore, it follows
that

h(2x) = 2h(x), x € X.

Finally, to show the uniqueness of h, assume that h; and h, are additive mapping satisfying (2.4).
O

Then we write:
hi(x) — h(x)\ f(2"x)  h (2%x)
P (122) - p( 2F ok

1 1
2 2
hy (2%x) f(zkx) f 2kx _ ha(2¢%)
P ok ok
1
p

(h2 (2%x) = £ (20)) }

IN

?w (2%x,2%y) — 0 as k — .

This implies that h; = h.
Now, we have the classical Ulam stability of (2.1) by putting ¢ =€ > 0.

Corollary 2.1. Let X be a linear space, p be a convexe modular and Y, be a p-complete modular space

satisfying Ao-condition with T = 2. Assume f : X —Y, is a mapping such that f(0) = 0 and:

p(rx-+9) = 100 1) < o (7 (5X) = 300 - 110 ) 4
for all x,y € X. Then there exists a unique additive mapping h : X — Y, such that
o(f(x) — h(x)) <e, x € X.
Corollary 2.2. Let X be a normed linear space, p be a convex modular and Y, be a p-complete modular

space. Let 8 >0 and 0 < p < 1 real numbers. Assume that f : X — Y, is a mapping ratifying:

Pl 3) = 100 = 1) < o (£ (X52) = 5700 - 370 ) + 00K+ 1y1) (210

for all x,y € X. Then there exists a unique additive mapping T : X — Y, such that:
29||><||

p(f(x) = h(x)) < (2.11)
Proof. Replacing (x, y) with (x, x) in (2.10), we have:
p(f(2x) = 2f(x)) < 26][x[|.

Hence

0 (;f@x) - f(x)) < 6|1 (2.12)
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Then by induction, we write:

k
! (f - “”) <Y s (2 6P

=1

-
Il

2(P=1U=Dg)||x||P (2.13)

I
M~

1

.
Il

for all x € X, and all positive integer k.
Indeed, the case k = 1 follows from (2.12). Assume that (2.13) holds for h € N. Then we have

the following inequality

0 <f ) f(x)) - (; (f 2.2 _ f<2x>> +2r0) - f<x)>

k.
p (’f(ifx) - f<2x>) + 20(F(20) ~ 2£()

|
N

K
22(0—1)0—1)9 2P| |x|P + 6]|x]|P
j=1

|
N

k
= 2 Mg + 6]x||P
j=1
k+1
- 22(P*1)(f*1)9||x||ﬁ’

Jj=1

Hence (2.13) holds for every k € N. Let m and n be nonnegative integers with n > m. By (2.10), we

f(2"x) f(2Mx) 1 (f(2m-27x) m
p( o om >:p(2m<2n—m_f(2 X)>

n

have:

1

om
J

—m
< 2(p=1)U-1)g 127 x||P
=1

1 — 2(p—=1)(n—m)

— om(p—1) [2

(2.14)

f(2"x)
2f7

Y, is p-complete modular space, the sequence {%} converges. So one can define the mapping

h: X =Y, by:

It follows from (2.14) that the sequence { is a Cauchy sequence for all x € X. Since

[ f(2"x)
h(x):p—hmlt{ on }forallxeX.

Moreover, letting m = 0 and passing to the limit n — oo in (2.14), we get (2.11). The rest of the

proof is similar to the proof of Theorem 2.1. [l
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3. Stability of (2.1) in B-Homogeneous Spaces

In 2016, C. Park [13] proved the generalised Hyer-Ulam-Rassias stability of additive p-functional
inequalities in B-homogeneous complex Banach space.
In this section, we prove the generalised Hyers-Ulam stability of (1.1) from linear space to (3-

homogeneous complex Banach space, using the control of Gavruta.

Definition 3.1. Let X be a linear space over C. An F-norm is a function || -|| : X — [0, o0) such that

(1) |Ix|]l = 0 if and only if x =0,
(2) |IXxIl = IllIx|| for every x € X and every X with |\| =1,
(3) lIx+yll < lIxl + [lyll for every x,y € X,
(4) [[Xnx|l = O provided X, — 0,
(5) |IAxall = O provided x, — 0.
(X, d) is a metric space by letting d(x,y) = ||x — y||. It is called an F-space if d is complete.
If, in addition, ||tx|| = tP||x|| for all x € X and t € C, then || - || is called B-homogeneous (8 > 0). A

B-homogeneous F-space is called a 3-homogeneous complex Banach space.

Remark 3.1. For an s-convex modular p, if we define
. X
Ix]lp = Inf{(xs >0;p (a) < 1} X EYp.
Then || - || is an F-norm on Y, such that | Xx||, = |A|]*||x||,. Hence, || - ||, is s-homogeneous. For

s =1, this norm is called the luxemburg norm.

Now, we prove the generalised Hyers-Ulam Gavruta stability of (1.1) from linear spaces to (-

homogeneous Banach spaces.

Theorem 3.1. Let X be a linear space, Y be a 3-homogeneous complex Banach space (0 < 8 < 1),

and ¢ : X? = [0, 00) be function with
Y(x,y) = 1 En: 1 (271, 27y) < (3.1)
Y T OB 4 12(]—1)6(p ' 4 '
J:
for all x,y € X. Assume that f : X — X is a mapping satisfying f(0) = 0 and

X+Yy
2

I+ ) = 160 = £ < (252 = 3700 = 3700 + o) (32)

for all x,y € X. Then there exists a unique additive mapping h : X — Y such that:
1£(x) = h()II < (x, x) (3.3)

for all x € X.
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Proof. Letting y = x in (3.2), we get: ||[f(2x) — 2f(x)|| < (X, x) and so

1
3720 - 700 < gootx (34)
By induction on k € N, using (3.4) it is easy to see that:
f(2kX) f < 1 . 1 Jj—1 J—1 X
2k — (X) <~ 26212(J_1)ﬁ(p (2 X,2 X) X € X. (35)
J:

for all k € N. Let m and n be nonnegative integers with n > m. Then by (3.5), we have

()
1 1

n—m
1 . .
+m—1_ Hj+m—1
< gn6 98 2 5unp® (ZTTTx 2T
=1

H f(27x)  f(2Mx)
2n om

1L 1 : :
=5 Z 2(j+m—1)[3(p (21+m—1X, 21+m—1x)

1 1 k—1 k—1
=5 Z e St (27X 2 ). (3.6)
k=m+1

Since the last expression (3.6) goes to 0 by (3.1), it follows that, for every x € X, the sequence
{%} is a Cauchy sequence in X.

Since X is complete, we know that the sequence is convergent. Hence, there exists a mapping:
h: X — Y defined by

h(x) = lim 127

n—oo

x € X.

Letting m = 0 and passing the limit n — oo in (3.6), we obtain (3.3). In order to show that T is

additive, we write

[h(x +y) — h(x) = h(y)|| = lim

n—oo

H F(x+y)) f(2"%) f(2”Y)H
2 21
= lim 5 £ (2"(x+y)) — f(2"x) — £ (2"y)]

| (252) ey

IN
?
\

+ 2iﬁ(p(2’7x,2”y)
()b tu]

Then by [13, Lemma 2.1.], T is additive.
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Now, let h: X — X be another additive mapping satisfying (3.2). Then we have:

I11() = GOl = 555 I(270) — ha(2")]
< g (101(2") = £ + 12 (276) — £ (2]
< %zj} (2"x,2"x)
<Z.L f: ey

o0
1 . .
1-8 +n—1 +n—1
<2F) BT (2Hn=1x, dtn=1y)
J=1

o

1

= 2175 Z m(ﬂ (2k71X, 2k71X) —>0as k — o,
k=n+1

for all x € X, from which it follows that hy = h,. O

Letting ¢ = € > 0 in Theorem 3.1, we obtain a result on classical Ulam stability of the additive

functional inequality.

Corollary 3.1. Let X be a linear space and X be a 3-homogeneous complete Banach space with
0<pB<1.
If f : X — X is a mapping satisfying f(0) = 0 and

I+ = 160 = 1l < (B2) = 2160 - 2|+

for all x,y € X, then there exists a unique additive mapping h : X — Y such that:

€

I1£() = hOOll < 55—

4. Stability of (1.2) in Fuzzy Banach Algebras

Let X be a real algebra, and D : X — X is an additive mapping:
(1) D is called a derivation if

D(xy) = D(x)y + xD(y),  x,y € X
(2) D is called a Jordan derivation if
D(x?) = D(x)x + xD(x), xe X
(3) In addition, D is called a Jordan triple derivation in the sens from [2] if
D(xyx) = D(x)yx + xD(y)x + xyD(x), x,yeX

if an additive mapping is a derivation, so it is a Jordan derivation, and if D is a Jordan

derivation, so it is a Jordan triple derivation.
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However, the converse implication is note true in general.

Theorem 4.1. Let (X, N) be a fuzzy Banach algebra, and ¢ : X? — [0, 00) be a function such that
©(0,0) = 0 and there exists an 0 < L < 1 satisfying

X

p(x,y) <2Lyp (2 %) for all x,y € X.

Assume f : X — X is a mapping satisfies:

(&) WG 9) = £ = 7) = min {0 (FCF2) = 3100 = 70, ¢)

(b)

t
N(f(xyx) — f(x)yx — xf(y)x — xyf(x), t) > m (4.1)

forall x,y € X, t > 0.

Then there exists a unique jordan triple derivation h : X — X such that:

(2 - 2L)t
2—20)t+ o(x,x)’

N(f(x) — h(x), t) > xeX, t>0.

The mapping T is defined by
. 1 n
h(x)—N—n[)ngoﬁf(2 x), x e X.

Proof. By [4, Theorem 2.4], the mapping h is additive. Replace (x,y) with (2"x,2"y) in (4.1), we

get
N (o F(2¥xyx) — - 22T F(27)yx — = 22T F(27y)x — —= D2xyF(27x), t
ﬁ Xy X ﬁ X)yX ﬁ X y)X ﬁ Xy X),
= N(F(23"xyx) — 227 F(2"x)yx — 22"xf(2"y)x — 2%"xy f(2"x), 23"t)
230t
>
— 231t 4 @ (27x, 2My)
230t
>
— 230t 4+ (2L)p(x, y)
t
_ S
t+—<4> o(x,y)
Then
h(xyx) = h(x)yx + xh(y)x + xyh(x), x,y e X. (4.2)
Therefore, his a Jordan triple derivation. [l

Let A an algebra. If whenever aAa = {a} for a € A, implies a = 0, then A is called semiprime. All
C*-Algebra are examples of semiprime algebras. Let R be a ring. If 2r = 0 implies r = 0 for r € R,
then R is said to be 2-torsion free. Now, we show that the mapping f in Theorem 4.1 is a derivation

if the algebra is semiprime.
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Theorem 4.2. Let (X, N) be a unital 2-torsion free semiprime fuzzy Banach algebra.
Let ¢ : X?> — [0, 00) be a function such that ¢(0,0) = 0 and there exists an 0 < L < 1 satisfying:

(@) p(x,y) <2Lp (g %)

1
(b) {2ntp <x, %) \ne N} is bounded,
Assume f : X — X is a mapping such that

(©) W+ 9) = £ = £2) = min {0 (P52 = 200 = 10t

(d)

N(f(xyx) — f(x)yx — xf(y)x — xyf(x), t) >

T ol ) (4.3)

Then f is an additive derivation.

1
Proof. We know that: h(x) = N — limp—c0 yf(2”x), x € X is an additive Jordan triple derivation.
Replacing (x, y) with (2"x, y) in (4.3), we get

1 1 1 1
N (G x02) = 2 F 2Ry = g X )x = 2y 27 )

= N(f(2%"xyx) — 2"F(2"x)yx — 22"xf(y)x — 2"xyf(2"x), 2°"t)
22Nt
>
T 227t 4+ (27X, y)
22n¢
= y
220t 4+ (2L)"p(x, 5)
t

t+ (é)n (X, %)

h(xyx) = h(x)yx + xf(y)x + xyh(x) (4.4)

from wich we have:

for all x,y € X. Comparing (4.4) and (4.2), we get:
xh(y)x = xf(y)x for all x € X.

Letting x = 1, we conclude thqt T = f. Then f is a Jordan triple derivation. By [2, Theorem 4.3], we
conclude that f is an additive derivation (Every Jordan triple derivation on a 2-torsion free semiprime

ring is a derivation.) O

5. Conclution

In this work, we have proved the Hyers-Ulam stability of additive functional inequality, using the
direct method, ftrom linear spaces to modular spaces satisfuing As-condition with 7 = 2.

We have also proved the same result for 3-homogeneous Banach spaces.
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Finally, we have shown the stability of the functional equation associated with the Jordan triple

derivation in fuzzy Banach algebra by a fixed point method.
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