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Abstract. In this paper, we introduce and develop a new definitions for Katugampola derivative and

Katugampola integral. In particular, we defined a (left) fractional derivative starting from a of a

function f of order α ∈ (m − 1, m] and a (right) fractional derivative terminating at b, where m ∈ N.
Then, we give some proprieties in relation to these operators such as linearity, product rule, quotient

rule, power rule, chain rule, and vanishing derivatives for constant functions.

1. Introduction

The fractional calculus [1–3] attracted many researches in the last and present centuries. The

impact of this fractional calculus in both pure and applied branches of science and engineering started

to increase substantially during the last two decades apparently [4–9]. Most of the fractional derivatives

are defined via fractional integral, see [10–13]. Two of which are the most popular ones, that is,

(1) Riemann-Liouville definition [3, 14]. For α ∈ [n − 1, n) such that n ∈ N, the derivative of the

function f is given by

RLDαa (f ) (t) =
1

Γ (n − α)

dn

dtn

∫ t

a

f (x) (t − x)n−α−1 dx.
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(2) Caputo definition [3,14]. For α ∈ [n − 1, n) such that n ∈ N, the derivative of the function f
is given by

CDαa (f ) (t) =
1

Γ (n − α)

∫ t

a

f (n) (x) (t − x)n−α−1 dx.

Recently, the authors in [15,16] defined a new well-behaved simple fractional derivative called “the

conformable fractional derivative” and “the Katugampola fractional derivative” depending just on the

basic limit definition of the derivative. They then defined the fractional derivative of higher order

(i.e. of order α > 1) as we will see below in next sections. They also defined the fractional integral

of order 0 < α ≤ 1 only. The authors in [17, 18] introduced Katugampola Fourier and Laplace

transforms by using these definitions, and they used these transforms to solve some fractional partial

differential equations as in [19]. In [20], Abedaljwad proceed on to develop the definitions of left

and right conformable fractional derivatives, and also Left and right conformable fractional integrals,

see the references [21–25] to get a further overview about some schemes related to the fractional

integro-differential operators.

In this paper, we have organized and generalized the basic definition and concepts of the Katugam-

pola fractional derivatives and integrals. We define the left fractional derivative starting from a of a

function f of order α ∈ (m − 1, m], and the right fractional derivative terminating at b, where m ∈ N.
As a consequence, we give then some new results. This article is organized as follows: In Section 2,

necessary preliminaries of the Katugampola fractional calculus are recalled. In Section 3 and Section

4, the left and right Katugampola fractional derivatives and fractional integrals of higher orders are

defined, the fractional chain rule and some proprieties are obtained, and the action of fractional deriva-

tives and integrals to each other are discussed. Finally, Section 5 summarizes the whole contributions

of this work.

2. Preliminaries

In this section, we review some necessary definitions and essential results in relation to the Katugam-

pola fractional calculus theory.

Definition 2.1. Let f : [0,∞)→ R and t > 0. Then the "Katugampola fractional derivative" of the

function f of order α is defined by

Dt
α(f )(t) = lim

ε→0

f (t eεt
−α

)− f (t)

ε
, (2.1)

for t > 0 and α ∈ (0, 1]. If f is an α-differentiable in some (0, a), a > 0 and lim
t→0+

Dαf (t) exists, then

Dt
αf (0) = lim

t→0+
Dt

αf (t).

Definition 2.2. If α ∈ (n, n + 1] and f is an n-differentiable at t > 0, for some n ∈ N. Then, the

α-fractional derivative of f is defined by

Dαf (t) = lim
ε→0

f (n)
(
t.eε.t

n−α
)
−f (n) (t)

ε
, (2.2)
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if the limit exists.

Lemma 2.1. If α ∈ (n, n + 1] and f is an (n + 1)-differentiable at t > 0, for some n ∈ N. Then, we
have

Dαf (t) = tn+1−αf (n+1) (t) . (2.3)

Also, for α ∈ (0, 1] and t > 0, we have

Dαf (t) = t1−α
df

dt
(t).

Lemma 2.2. Let α ∈ (0, 1] and f , g be two α-differentiable functions at a point t > 0. Then, we

have

(1) Dα(af (t) + bg(t)) = aDαf (t) + bDαg(t), for all a, b ∈ R,
(2) Dα(f g) = f Dαg + gDαf ,

(3) Dα
(
f
g

)
= gDαf+f Dαg

g2
,

(4) Dα (f ◦ g) (t) = f ′ (g (t)) .Dαg (t) for f differentiable at g (t).

Definition 2.3. Let f be a function defined on (s, t] such that s ≥ 0 and t ≥ s. Then, the α-fractional
integral of the function f is defined by

Iα
s (f ) (t) =

∫ t

s

f (x). (x)α−1 dx, (2.4)

if the Riemann improper integral exists.

Lemma 2.3. Let s ≥ 0 and α ∈ (0, 1). Let f be a continuous function such that Isαf exists. Then

DαIα
s (f ) (t) = f (t). (2.5)

3. Left and right Katugampola derivatives

In this section, we define left and right Katugampola fractional derivatives for α ∈ (0, 1], and in

general for α ∈ (m − 1, m], where m ∈ N. Consequently, we obtain several results. We prove that

the left and right fractional derivatives satisfy the product rule, quotient rule and chain rule. Also, we

give the relation between them and the usual derivative.

Definition 3.1. The left Katugampola fractional derivative starting from a of the function f : [a,∞)→
R of order α ∈ (0, 1] is defined by

(Dα
af )(t) = lim

ε→0

f (t eε(t−a)
−α

)− f (t)

ε
. (3.1)

When a = 0, we write (Dαf )(t). If (Daαf )(t) exists on (a, b), then

(Daαf )(a) = lim
t→a+

(Daαf )(t). (3.2)
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The right Katugampola fractional derivative of order α ∈ (0, 1] terminating at b is defined by

(α
bDf )(t) = − lim

ε→0

f (t eε(b−t)
−α

)− f (t)

ε
. (3.3)

If (bαDf )(t) exists on (a, b), then

( b
αDf )(b) = lim

t→b−
(bαDf )(t). (3.4)

The following lemma gives some properties for the left and the right fractional derivative such as

the product rule, quotient rule, and also gives the relation between them and the usual derivative.

Lemma 3.1. Let α ∈ (0, 1] and f , g are defined on [a,∞). Then, we have

(1) Daα(f g) = f Daαg + gDaαf ,

(2) a
αD(f g) = f aαDg + gaαDf .

(3) Daα
(
f
g

)
=

gDaαf+f D
a
αg

g2
,

(4) a
αD
(
f
g

)
=

gaαDf+f
a
αDg

g2
,

(5) Daαf (t) = t (t − a)−α f ′ (t),

(6) b
αDf (t) = −t (b − t)−α f ′ (t).

Theorem 3.1. Assume f : [a,∞) → R is the left α-differentiable function, where 0 < α ≤ 1. Let

h (t) = f (g (t)). Then, h (t) is the left α-differentiable and for all t with t 6= a and g (t) 6= 0, we

have

Daα (f ◦ g) (t) = (Daαf ) (g (t)) . (Daαg) (t) .
(g (t)− a)α

g (t)
. (3.5)

Proof. By setting u = t + εt (t − a)−α + ε2t2

2! (t − a)−2α + . . . in (3.1) and using the continuity of g,

we can have

(Daαf )(t) = lim
u→t

f (g (u))− f (g (t))

u − t . t (t − a)−α

= lim
u→t

f (g (u))− f (g (t))

g (u)− g (t)
. lim
u→t

g (u)− g (t)

u − t . t (t − a)−α .

This consequently implies

(Daαf )(t) = (Dα
af ) (g (t)) .

(g (t)− a)α

g (t)
(Dα

ag) (t)

= (Dα
af ) (g (t)) . (Dα

ag) (t) .
(g (t)− a)α

g (t)
.

�

In a similar manner, we can prove the following theorem for the right α-differentiable functions.
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Theorem 3.2. Assume f : (−∞, a] → R is a right α-differentiable function, where 0 < α ≤ 1. Let

h (t) = f (g (t)). Then, h (t) is a right α-up differentiable and for all t with t 6= a and g (t) 6= 0, we

have
a
αD (f ◦ g) (t) = (α

aDf ) (g (t)) . (α
aDg) (t) .

(g (t)− a)α

g (t)
. (3.6)

Next, we consider the possibility of α ∈ (m − 1, m], where m ∈ N. We have the following definition.

Definition 3.2. A left fractional derivative starting from a of a function f : [a,∞) → R of order

α ∈ (m − 1, m], m ∈ N, is defined by

(Dα
af )(t) = lim

ε→0

f (m−1)
(
t eε(t−a)

m−α− 1
)
− f (m−1)(t)

ε
, t > a, (3.7)

(Dα
af )(a) = lim

t→a+
(Dα

af )(t). (3.8)

provided the limits exist and f (t) is (m − 1)-differentiable at t > a.

The right fractional derivative starting from a of a function f : (−∞, b] → R of order α ∈
(m − 1, m], where m ∈ N, is defined by

(α
bDf )(t) = (−1)m lim

ε→0

f (m−1)
(
t eε(b − t)

m−α− 1
)
− f (m−1)(t)

ε
, b > t, (3.9)

(α
bDf )(b) = lim

t→b−
α
aDf (t). (3.10)

provided the limits exist and f (t) is (m − 1)-differentiable at b > t.

Note that if α = m, then the fractional derivative of f becomes f (m)(t). Also, when m = 1, then

α ∈ (0, 1] and the definition coincides with those in Definition 3.1.

Lemma 3.2. Let α ∈ (m − 1, m] such that f (t) and g(t) are (m)-differentiable at t > a and b > t.

Then, we have

(1) Dαa(f (t) + g(t)) = Dα
af (t) +Dα

ag(t).

(2) α
bD(f (t) + g(t)) = α

bDf (t) +α
bDg(t).

(3) Dαa(λf (t)) = λDα
af (t), where λ is a constant.

(4) α
bD(λf (t)) = λ α

bDf (t), where λ is a constant.

(5) Dαaf (t) = t (t − a)m−α−1 f (m) (t).

(6) α
bDf (t) = (−1)m t (b − t)m−α−1 f (m) (t).

(7) Daα(t − a)γ =
{∏m−1

k=0 t (γ − k) (t − a)γ−α−1 , γ /∈ {0, 1, 2, · · · , m − 1}
}
.

(8) b
αD(t − b)γ =

{∏m−1
k=0 t (γ − k) (b − t)γ−α−1 , γ /∈ {0, 1, 2, · · · , m − 1}

}
.

Proof. • By Definition 3.2, we can proof parts (1) to (4).
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• To prove part (5), wa have

Daαf (t) = lim
ε→0

f (m−1)
(
t eε(t−a)

m−α−1
)
− f (m−1)(t)

ε

= lim
ε→0

f (m−1)
[
t
(

1 + ε (t − a)m−α−1 + o
(
ε2
))]
− f (m−1)(t)

ε

= lim
ε→0

f (m−1) [t + h]− f (m−1)(t)
h

t (t−a)m−α−1[1+o(ε)]

= t (t − a)m−α−1 f (m) (t) .

• Part (6) is similar to part (5).

• We can use parts (5) and (6) to prove parts (7) and (8).

�

Lemma 3.3. Let f : [a,∞)→ R be twice differentiable function on (a,∞) and 0 < α, β ≤ 1 be such

that 1 < α+ β ≤ 2. Then(
Dα

aDβ
af
)

(t) =
t

t − a D
a
α+βf (t) + (t − a)−β−1 (t (1− β)− a)Daαf (t) . (3.11)

Proof. Since 1 < α+ β ≤ 2 and 0 < α, β ≤ 1, we have

(DaαDβ
af ) (t) = t (t − a)−α

d

dt

[
t (t − a)−β

df

dt

]
= t (t − a)−α

[
t (t − a)−β

d2f

dt2
+
(

(t − a)−β − βt (t − a)−β−1
) df
dt

]
= t2 (t − a)−α−β

d2f

dt2
+
(
t (t − a)−α−β − βt2 (t − a)−α−β−1

) df
dt

=
t2

(t − a)
(t − a)−α−β+1

d2f

dt2
+
[

(t − a)−β − βt (t − a)−β−1
]
t (t − a)−α

df

dt

=
t

t − a D
a
α+βf (t) + (t − a)−β−1 (t (1− β)− a)Daαf (t) ,

which completes the proof. �

It should be mentioned here that due to we have

Dα
af (t) = t (t − a)m−α−1 f (m) (t) , α ∈ (m − 1, m] ,

then we can observe regarding (3.11) that when a = 0 and α, β → 1, we obtain(
Dα

aDβ
af
)

(t) = D02f (t) = f ′′ (t) .

Also, it must be noted regarding the same equation that when α ∈
(

0, 12
]
and a < t, we have(

Dα
aDβ

af
)

(t) =
t

t − a D
a
2αf (t) + (t − a)−α−1 (t (1− α)− a)Daαf (t) . (3.12)
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4. Left and right Katugampola integrals

In this section, we define the left and right Katugampola fractional integral for α ∈ (0, 1] and for

α ∈ (m − 1, m], where m ∈ N. As a consequence, we obtain several results.

Definition 4.1. (Left fractional integral) Let a ≥ 0, α ∈ (0, 1] and t ≥ a. Let f be a function defined

on (a, t] such that a ∈ R. Then, the α-fractional integral of the function f is defined by

Iα
a (f ) (t) =

∫ t

a

f (x). (x − a)α

x
dx. (4.1)

Definition 4.2. (Right Fractional Integral) Let b ≥ t and α ∈ (0, 1]. Also, let f be a function defined

on (t, b] and b ∈ R. Then, the α-fractional integral of the function f is defined by

α
bI (f ) (t) =

∫ b

t

f (x). (b − x)α

x
dx. (4.2)

Lemma 4.1. Assume that f : [a,∞)→ R is continuous and 0 < α ≤ 1. Then, for all t > a, we have

Dα
aIα

a (f ) (t) = f (t). (4.3)

Proof.

Dα
aIα

a (f ) (t) = Dα
a

[∫ t

a

f (x). (x − a)α

x
dx

]
= t (t − a)−α

d

dt

[∫ t

a

f (x). (x − a)α

x
dx

]
= t (t − a)−α .

f (t). (t − a)α

t

= f (t).

�

In a similar manner, we can prove the following lemma in the right case.

Lemma 4.2. Assume that f : (−∞, b] → R is continuous and 0 < α ≤ 1. Then, for all t < b, we

have

α
bDα

bI (f ) (t) = f (t). (4.4)

In what follows, we state a certain that could work as a generalization for definitions 4.1 and 4.2.

Definition 4.3. A left fractional integral starting from a of a function f : [a,∞) → R of order

α ∈ (m − 1, m], m ∈ N, is defined by

Iaα (f ) (t) =
1

(m − 1)!

∫ t

a

f (x). (t − x)m−1 . (x − a)α−m+1

x
dx, α > 0 , t > a, (4.5)

with

Iα
0 (f ) (t) = f (x) . (4.6)
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In the same regard, we can define the right fractional integral terminating at b of a function f :

(−∞, b]→ R of order α ∈ (m − 1, m], m ∈ N, as follows

α
bI (f ) (t) =

1

(m − 1)!

∫ b

t

f (x). (x − t)m−1 . (b − x)α−m+1

x
dx, α > 0 , b > t, (4.7)

with

α
0I (f ) (t) = f (x) . (4.8)

Lemma 4.3. If α ∈ (m − 1, m], m ∈ N, and f : [a,∞) → R is (m − 1)-differentiable. Then for all

t > a, we have
(1) Dα

aIα
a (f ) (t) = f (t),

(2) Iα
aDα

a (f ) (t) = f (t)−
∑m−1
k=0 f

(k) (a) . (t−a)
k

k! .

Proof. (1) Herein, we can have

DaαI
a
α (f ) (t) = Dα

a

[
1

(m − 1)!

∫ t

a

f (x). (t − x)m−1 . (x − a)α−m+1

x
dx

]

= t (t − a)m−α−1
dm

dtm

[
1

(m − 1)!

∫ t

a

f (x). (t − x)m−1 (x − a)α−m+1

x
dx

]

= t (t − a)m−α−1
d

dt

[∫ t

a

f (x). (x − a)α−m+1

x
dx

]

= t (t − a)m−α−1 .
f (t). (t − a)α−m+1

t
= f (t).

(2) To prove this result, we obtain

IaαD
b
α (f ) (t) =

1

(m − 1)!

∫ t

a

(t − x)m−1 . (x − a)α−m+1

x
Dα

b (f ) (x) . dx

=
1

(m − 1)!

∫ t

a

(t − x)m−1 . (x − a)α−m+1

x
.x. (x − a)m−α−1

dmf

dxm
. dx

=
1

(m − 1)!

∫ t

a

(t − x)m−1
dmf

dxm
. dx.

Now, by integral by parts, we have

IaαD
b
α (f ) (t) = f (t)−

m−1∑
k=0

f (k) (a) .
(t − a)k

k!
.

�

Similarly, we can proof the following lemma in the right case.

Lemma 4.4. If α ∈ (m − 1, m], m ∈ N, and f : (−∞, b]→ R is (m − 1)-differentiable. Then, for all

b > t, we have
(1) α

bDα
bIf (t) = f (t)

(2) α
bIα

bDf (t) = f (t)−
∑m−1
k=0 (−1)k f (k) (b) . (b−t)

k

k!
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Lemma 4.5. Let f : [0,∞)→ R be a function and 0 < α,µ ≤ 1 be such that 1 < α+ µ ≤ 2. Then

(IαIµf ) (t) =
tµ

µ
(Iαf ) (t) +

1

µ
(Iα+µf ) (t)−

t

µ

∫ t

0

sα+µ−2f (s) ds.

Proof. Since 0 < α+ µ− 1 ≤ 1 and 0 < α,µ ≤ 1, we have

(Iα+µf ) (t) =

∫ t

0

f (x).xα+β−2 dx.

In addition, we can observe

(IαIµf ) (t) =

∫ t

0

(∫ x

0

f (s)sα−1ds

)
xµ−1dx

=

∫ t

0

f (s)sα−1
(∫ t

s

xµ−1dx

)
ds

=

∫ t

0

f (s)sα−1
(
tµ

µ
−
sµ

µ

)
ds

=
tµ

µ

∫ t

0

f (s)sα−1ds −
1

µ

[
t

∫ t

0

sµ+α−2f (s)ds −
∫ t

0

sµ+α−2f (s)

]
=
tµ

µ
(Iαf ) (t) +

1

µ
(Iα+µf ) (t)−

t

µ

∫ t

0

sα+µ−2f (s) ds.

�

5. Conclusion

In this paper, we have organized and generalized the basic definition and concepts of the Katugam-

pola fractional derivatives and integrals. We have defined the left fractional derivatives starting from

a of a function f of orderα ∈ (m − 1, m], the right fractional derivatives terminating at b, and conse-

quently we have provided some useful results in relation to these operators.
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