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Abstract. The Double Sadik Transform (DST) represents a generalized double integral transform that

has emerged as a highly effective analytical technique for solving numerous scientific problems. This

study aims to investigate the DST applied to elementary functions and explore its notable properties,

including its duality with the Double Laplace Transform and its capability to transform shifting func-

tions, periodic functions, and convolution functions. Furthermore, the DST methodology is employed

to resolve prominent linear fractional Caputo partial differential equations with known solutions com-

monly encountered in diverse mathematical models. The obtained outcomes are expressed in exact

closed form, with the most precise results articulated through the Mittag-Leffler function. These

results serve to validate the effectiveness and efficiency of the DST approach, establishing it as a

valuable tool for addressing scientific problems involving fractional calculus.

1. Introduction

In recent times, the creation of highly efficient and precise tools for handling problems related to

fractional calculus has captured the interest of numerous researchers. New analytical and approximate

techniques have been discovered, and the incorporation of existing ones has been improved, in order to

figure out a variety of mathematical models such as fractional differential and integral equations. Some

of the advancements are Adomian Decomposition Method (ADM) [1], Homotopy Perturbation Method

(HPM) [2], Fractional Differential TransformMethod (FDTM) [3], Homotopy Analysis Method (HAM)

[4], Variational Iteration Method (VIM) [5], and references therein.
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Integral transformation is a mathematically powerful tool that has been extensively developed to

address problems in the fields of science and engineering. The key advantage of this tool lies not

only in its user-friendly nature but also in its remarkable capability to transform complex functions or

equations into simpler forms. This frequently results in the derivation of closed-form solutions, thereby

highlighting its notable characteristic. Recently, several integral transformations that enjoy widespread

popularity include the Laplace transform [6], the Fourier transform [7–9] the Sumudu transform [10],

the Elzaki transform [11], the Aboodh transform [12,13], the Mellin transform [14,15], and the Sadik

transform [16,17].

Double integral transforms represent an advanced enhancement tool that extends the concept

of single integral transforms by subjecting a function to two successive transformations, each in a

different variable. These integral transformations have made significant contributions to the solution

of mathematical models involving multiple independent variables. Consequently, various double integral

transforms have been explored in the existing literature. Several notable examples include the utilization

of double Laplace transforms by Anwar et al. [19] to seek solutions for the fractional Caputo heat

equation. In 2016, Debnath formulated and applied the double Laplace transform to fractional,

integral, and partial differential equations [20]. Hassan and Elzaki [21] employed the double Elzaki

transform to solve nonlinear partial differential equations. Eltayeb and Kilicman [22] investigated the

relationship between the double Sumudu transform and the double Laplace transform while solving

the new wave equation with non-constant coefficients. Sonawane and Kiwne [23] established the

properties of the double Kamal transform, including the double Kamal-double Laplace duality and the

double Kamal-double Sumudu duality. The double Shehu transform was employed to solve integral

equations and partial differential equations, and its main properties and theorems were established [24].

Furthermore, the Laplace-ARA transform, which combines a single Laplace transform with an ARA

transform, has been extensively studied, particularly its application to partial differential equations

[25]. The recently introduced double Sadik transform has shown promise in solving fractional partial

differential equations arising in scientific models [26]. Unfortunately, certain important properties of

double integral transforms have not yet received formal acknowledgment or recognition.

This study aims to comprehensively investigate the remarkable properties of the double Sadik trans-

form, including its duality, shifting property, and transformation of elementary functions. Furthermore,

it applies the double Sadik transform methodology to solve a linear Caputo fractional partial differential

equation. The inspiration for this study arose from an analysis of Debnath’s work [20] as well as the

accomplished works by Sonawane and Kiwne [23].

The research makes two significant contributions. Firstly, it offers a formal proof of the duality of

the double Sadik transformation with the double Laplace transform. This duality plays a pivotal role in

formulating the double Sadik transform for fundamental functions. Moreover, crucial characteristics

such as convolution transformation, shifting, and translating properties are explored. Secondly, it
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demonstrates the practical application of the double Sadik transform in solving a range of fractional

partial differential equations.

The paper is organized as follows: Section 2 reviews the definition of a single Sadik transformation

and presents a table illustrating the Sadik transforms for basic functions. It also includes a brief

overview of fractional calculus. Section 3 introduces the definition of the double Sadik transform and

outlines its fundamental properties. Additionally, the existence of the Sadik transform is discussed

in this section. Section 4 details the application of the double Sadik transform (DST) method to

fractional PDEs in the Caputo sense, and several examples are presented to illustrate the validity and

effectiveness of the DST method. Finally, the conclusion and discussion are presented in the last

section.

2. Review of the Sadik Transform and Fractional Calculus

The Sadik transform is a mathematical operation that was introduced by the Indian mathematician

S.L. Shaik in 2018. This generalization of the Laplace transform has been applied in a wide range

of fields, including electrical engineering, mechanical engineering, and physics. Here, the definition of

the transform is reviewed.

Definition 2.1. [27] If f (t) is piecewise continuous function on the interval 0 ≤ t ≤ A for any A > 0

and |f (t)| ≤ KeBt when t ≥ M, for any real constant B and some positive constant K and M. Then

Sadik transform of f (t) is defined by

S [f (t)] =
1

vβ

∫ ∞
0

f (t)e−tv
α

dt = F (vα, β)

where v is complex variable, α is any non zero real number, and β is any real number. Here S is called

the Sadik transform operator.

Remark 2.1. By altering the values of α and β, the Sadik transform changes from one to the other as

follows: Laplace transform (α = 1, β = 0), Aboodh transform (α = β = 1), Laplace-Carson transform

(α = 1, β = −1), Kamal transform (α = −1, β = 0), Sumudu transform (α = −1, β = 1), Elzaki

transform (α = −1, β = −1), Sawi transform (α = −1, β = 2), Tarig transform (α = −2, β = 1).

The Sadik transform is closely related to the Laplace transform, which is a widely used tool in the

field of engineering and physics for solving differential equations. Table 1 displays a comparison of

Sadik and Laplace transforms for certain kinds of functions. Proof of these Sadik transform properties

can be found in [27].

In addition to the aforementioned Sadik transformation of elementary functions, Mittag-Leffler

function is a notable mathematical tool that commonly serves a significant role in expressing the

closed-form solution of a fractional differential equation.
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Table 1. Sadik transform and Laplace transform of some functions

f (t) S[f (t)] = F (vα, β) L[f (t)] = FL(v)

1
1

vα+β

1

v

t
1

v2α+β

1

v2

t2 2!

v3α+β

2!

v3

tn, n ∈ N
n!

v (n+1)α+β

n!

vn+1

tγ , γ > −1
Γ(γ + 1)

v (γ+1)α+β

Γ(γ + 1)

vγ+1

eat
1

vβ(vα − a)

1

v − a

sin at
a

vβ(v2α + a2)

a

v2 + a2

cos at
vα

vβ(v2α + a2)

v

v2 + a2

sinh at
a

vβ(v2α − a2)

a

v2 − a2

cosh at
vα

vβ(v2α − a2)

v

v2 − a2

Definition 2.2. [17] The Mittag-Leffler function is defined by

Ep,q(t) =

∞∑
k=0

tk

Γ(pk + q)
, t, q ∈ C, <(p) > 0, <(q) > 0.

It is to be noticed that with a value of q = 1, the particular case of the Mittag-Leffler function is

Ep,1(t) = Ep(t) =

∞∑
k=0

tk

Γ(pk + 1)
, t, p ∈ C, <(p) > 0.

Theorem 2.1. [17] Let f (t) = tpm+q−1Ep,q(±atp). The Sadik transform of f is given by:

S
[
tpm+q−1Ep,q(±atp)

]
=
m!vαp−(αq+β)

(vαp ∓ a)m+1

where p, q ∈ C, <(p) > 0,<(q) > 0,<(v) > |a|
1

<(αp) .

Definition 2.3. The Riemann-Liouville fractional integral operator of order γ ≥ 0 is defined as

Iγf (t) =


1

Γ(γ)

∫ t

0

f (τ)

(t − τ)1−γ dτ, γ > 0, t > 0,

f (t), γ = 0

Regarding the Riemann-Liouville fractional integral, it can be demonstrated that
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1.) Iγ is a linear operator

2.) Iγ1Iγ2f (t) = Iγ1+γ2f (t),

3.) Iγ1Iγ2f (t) = Iγ2Iγ1f (t).

Definition 2.4. [18] The Caputo fractional derivative operator Dγ of order γ, (n−1 < γ ≤ n, n ∈ N)

is defined in the following form,

Dγf (t) =
1

Γ(n − γ)

∫ t

0

(t − τ)−γ+n−1f (n)(τ)dτ,

α > 0, t > 0, where the function f (t) has absolutely continuous derivatives up to order n − 1.

One can note that Caputo fractional derivative operator is a linear operation

Dγ(c1f (t) + c2g(t)) = c1D
γf (t) + c2D

γg(t) (2.1)

where c1 and c2 are constants. Moreover, the following two basic properties can be proved

1.) DγIγf (t) = f (t),

2.) IγDγf (t) = f (t)−
n−1∑
k=1

f (k)(0)

k!
tk .

3. The Double Sadik Transform and its Properties

Definition 3.1. Let f (x, t) be a function of two variables x and t defined in the positive quadrant of

the xt−plane. The Sadik transform of f (x, t) with respect to x is defined by

Sx [f (x, t)] = F (w, t : α, β) =
1

wβ

∫ ∞
0

e−xw
α

f (x, t)dx

and the Sadik transform of f (x, t) with respect to t is defined by

St [f (x, t)] = F (x, v : α, β) =
1

vβ

∫ ∞
0

e−tv
α

f (x, t)dt.

Definition 3.2. A function f (x, t) is called of exponential order a and b(a > 0, b > 0) on 0 ≤
x < ∞, 0 ≤ t < ∞, if there exists a positive constant K such that for all x > X and t > T,

|f (x, t)| ≤ Keax+bt , we write f (x, t) = O(eax+bt) as x →∞, t →∞.

Definition 3.3. [28] Let f (x, t) be a function that can be expressed as a convergent infinite series

and (x, t) ∈ R2, the double Sadik transform is denoted by S2[f (x, t)] = F (v , w : α, β) and defined by

S2[f (x, t)] = F (w, v : α, β) =
1

vβwβ

∫ ∞
0

∫ ∞
0

e−(tvα+xwα)f (x, t)dxdt

where x, t > 0 and v , w are transform variables for t and x respectively, α is any non-zero real number

and β is any real number, whenever the double improper integral is convergent. Here S2 is called the

double Sadik transform operator.
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Theorem 3.1. If a function f (x, t) is continuous in every finite intervals (0, X) and (0, T ) and of

exponential order eax+bt , then the double Sadik transform of f (x, t) exists for all w, v provided

vβwβ 6= 0,<(wα) > a and <(vα) > b.

Proof. Consider∣∣F (w, v : α, β)
∣∣ =

∣∣∣ 1

vβwβ

∫ ∞
0

∫ ∞
0

e−(tvα+xwα)f (x, t)dxdt
∣∣∣

≤
1

|vβwβ|

∫ ∞
0

∫ ∞
0

∣∣e−(tvα+xwα)
∣∣ · |f (x, t)|dxdt

≤
K

|vβwβ|

∫ ∞
0

e−x(<(wα)−a)dx ·
∫ ∞

0

e−t(<(vα)−b)dt

=
K

|vβwβ|(
1

(<(wα)− a)(<(vα)− b)
) for <(wα) > a, <(vα) > b.

It follows that lim
w→∞,v→∞

∣∣F (w, v : α, β)
∣∣ = 0. So lim

w→∞,v→∞
F (w, v : α, β) = 0. �

The preceding definition implies that:

(1) S2 is a linear operation.

(2) S2[f (x, t)] = StSx [f (x, t)] = SxSt [f (x, t)].

(3) If f (x, t) = φ(x)ψ(t) then

S2[f (x, t)] = SxSt [f (x, t)] = Sx [φ(x)]St [ψ(t)].

Theorem 3.2 (Duality). If S2[f (x, t)] = F (w, v : α, β) and L2[f (x, t)] = FL(w, v) then

F (w, v : α, β) =
1

wβvβ
FL(wα, vα).

Proof. By utilizing definition 3.3, it is simple to demonstrate that

S2[f (x, t)] = F (w, v : α, β)

=
1

vβwβ

∫ ∞
0

∫ ∞
0

e−(tvα+xwα)f (x, t)dxdt

=
1

wβvβ
FL(wα, vα).

�

The duality property can be deployed for figuring out the DST of other elementary functions, as

shown below. A detailed exposition of the proofs supporting the these results is omitted here due to

their evident clarity.

(1) S2[1] =
1

wα+βvα+β

(2) S2[xγ1tγ2 ] =
Γ(γ1 + 1)Γ(γ2 + 1)

w (γ1+1)α+βv (γ2+1)α+β

(3) S2[xntm] =
n!m!

w (n+1)α+βv (m+1)α+β



Int. J. Anal. Appl. (2023), 21:118 7

(4) S2[eax+bt ] =
1

wβvβ(wα − a)(vα − b)

(5) S2[cos(ax + bt)] =
wαvα − ab

wβvβ(w2α + a2)(v2α + b2)

(6) S2[sin(ax + bt)] =
avα + bwα

wβvβ(w2α + a2)(v2α + b2)

(7) S2[cosh(ax + bt)] =
wαvα + ab

wβvβ(w2α − a2)(v2α − b2)

(8) S2[sinh(ax + bt)] =
avα + bwα

wβvβ(w2α − a2)(v2α − b2)

(9) S2[f (x ± t)] =
1

wα ∓ vα
[

1
vβ
Sx [f (x)]∓ 1

wβ
St [f (t)]

]
(10) If Sx [f (x)] = F (w : α, β) and St [g(t)] = G(v : α, β) then

S2[f (x)] =
1

vα+β
F (w : α, β) and S2[g(t)] =

1

wα+β
G(v : α, β).

Theorem 3.3. If Sx [f (x)] = F (w : α, β) and St [g(t)] = G(v : α, β) then for any constants a, b > 0

S2[f (ax)g(bt)] =
1

(ab)1+ β
α

F (
w

a
1
α

: α, β) · G(
v

b
1
α

: α, β).

Proof. Since

L2[f (ax)g(bt)] =
1

ab

[
FL(

w

a
)GL(

v

b
)
]

= HL(w, v).

Hence,

S2[f (ax)g(bt)] = H(w, v : α, β)

=
1

wβvβ
HL(wα, vα)

=
1

wβvβ
·

1

ab

[
FL(

wα

a
)GL(

vα

b
)
]

=
1

( w
a

1
α

)β( v

b
1
α

)β
·

1

(ab)1+ β
α

[
FL(

w

a
1
α

)αGL(
v

b
1
α

)α
]

=
1

(ab)1+ β
α

·
[ 1

( w
a

1
α

)β
FL(

w

a
1
α

)α ·
1

( v

b
1
α

)β
GL(

v

b
1
α

)α
]

=
1

(ab)1+ β
α

F (
w

a
1
α

: α, β) · G(
v

b
1
α

: α, β).

�

Theorem 3.4. If S2[f (x, t)] = F (w, v : α, β) then

S2[f (x − a, t − b)H(x − a, t − b)] = e−aw
α−bvαF (w, v : α, β)

here H(x − a, t − b) is a Heaviside step function.
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Proof. By definition 3.3, one can show that

S2[f (x − a, t − b)H(x − a, t − b)]

=
1

wβvβ

∫ ∞
0

∫ ∞
0

e−xw
α−tvαf (x − a, t − b)H(x − a, t − b)dxdt

=
1

wβvβ

∫ ∞
b

∫ ∞
a

e−xw
α

e−tv
α

f (x − a, t − b)dxdt.

Let u = x − a, s = t − b then

S2[f (x − a, t − b)H(x − a, t − b)] =
1

wβvβ

∫ ∞
0

∫ ∞
0

e−(u+a)wαe−(s+b)vαf (u, s)duds

=
e−aw

α−bvα

wβvβ

∫ ∞
0

∫ ∞
0

e−uw
α−svαf (u, s)duds

= e−aw
α−bvαF (w, v : α, β).

�

Theorem 3.5. If f (x, t) is a periodic function i.e. f (x, t) = f (x + T1, t + T2) then

S2[f (x, t)] = (1− e−T1w
α−T2v

α

)−1 1

wβvβ

∫ T2

0

∫ T1

0

e−w
αx−vαt f (x, t)dxdt.

Proof. According to definition (3.3), it can be shown that

S2[f (x, t)] =
1

wβvβ

∫ ∞
0

∫ ∞
0

e−xw
α−tvαf (x, t)dxdt

=
1

wβvβ

[ ∫ T1

0

∫ T2

0

e−xw
α−tvαf (x, t)dxdt +

∫ ∞
T1

∫ ∞
T2

e−xw
α−tvαf (x, t)dxdt

]
.

Let x = ξ + T1, t = η + T2 then the periodic property yields

S2[f (x, t)] =
1

wβvβ

[ ∫ T1

0

∫ T2

0

e−xw
α−yvαf (x, t)dxdt

+

∫ ∞
0

∫ ∞
0

e−(ξ+T1)wαe−(η+T2)vαf (ξ + T1, η + T2)dξdη
]

=
1

wβvβ

[ ∫ T1

0

∫ T2

0

e−ξw
α−ηvαf (ξ, η)dξdη

]
+ e−T1w

α−T2v
αS2[f (x, t)].

Hence,

S2[f (x, t)] = (1− e−T1w
α−T2v

α

)−1 1

wβvβ

∫ T2

0

∫ T1

0

e−w
αx−vαt f (x, t)dxdt.

�

Definition 3.4. The convolution of f (x, t) and g(x, t) is defined by

(f ∗ ∗g)(x, t) =

∫ t

0

∫ x

0

f (x − ξ, t − η)g(ξ, η)dξdη

Note that (f ∗ ∗g)(x, t) = (g ∗ ∗f )(x, t)
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Theorem 3.6. If S2[f (x, t)] = F (w, v : α, β) and S2[g(x, t)] = G(w, v : α, β) then

S2[(f ∗ ∗g)(x, t)] = wβvβF (w, v : α, β)G(w, v : α, β)

Proof. Since

L2[f (x, t) ∗ ∗g(x, t)] = FL(w, v)GL(w, v) = HL(w, v).

Hence

S2[f (x, t) ∗ ∗g(x, t)] = H(w, v : α, β)

=
1

wβvβ
HL(wα, vα)

=
1

wβvβ
·
[
FL(wα, vα)GL(wα, vα)

]
= wβvβ

[ 1

wβvβ
FL(wα, vα) ·

1

wβvβ
GL(wα, vα)

]
= wβvβF (w, v : α, β)G(w, v : α, β).

�

Before implementing the above properties, the Sadik transform of the fractional derivative is stated.

The proof of the theorem can be found in [26]

Theorem 3.7. [26] Let S2[f (x, t)] = F (w, v : α, β) then the double Sadik transform for the partial

fractional Caputo derivatives are

S2[
∂γ1f (x, t)

∂xγ1
] = wγ1αF (w, v : α, β)−

m−1∑
k=0

w (γ1−1−k)α−βSt
[∂k f (0, t)

∂xk
]
,

m − 1 < γ1 ≤ m,m ∈ N,

S2[
∂γ2f (x, t)

∂tγ2
] = vγ2αF (w, v : α, β)−

n−1∑
k=0

v (γ2−1−k)α−βSx
[∂k f (x, 0)

∂tk
]
,

n − 1 < γ2 ≤ n, n ∈ N.

It is worth noting that in cases where both γ1 and γ2 take on integer values, the above theorem

aligns with the findings presented by Singh subsequently:

Theorem 3.8. [28] Let S2[f (x, t)] = F (w, v : α, β) then the double Sadik transform for the partial

derivatives of an arbitrary integer order are

S2[
∂mf (x, t)

∂xm
] = wmαF (w, v : α, β)−

m−1∑
k=0

w (m−1−k)α−βSt
[∂k f (0, t)

∂xk
]
,

S2[
∂nf (x, t)

∂tn
] = vnαF (w, v : α, β)−

n−1∑
k=0

v (n−1−k)α−βSx
[∂k f (x, 0)

∂tk
]
.

The proofs of these theorems are provided in the referenced source, which we have omitted in this

context.
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4. Implementation of Double Sadik Transform Method to Fractional Partial Differential Equation in

Scientific Models

In this section, the practical implications of the double Sadik transform for resolving essential

fractional partial differential equations are discussed. Let us consider the linear fractional partial

differential equations in the form

N∑
k=1

Ak
∂γku(x, t)

∂tγk
+

n∑
k=1

ak
∂ku(x, t)

∂tk
=

M∑
j=1

Bj
∂ηju(x, t)

∂xηj
+

m∑
j=0

bj
∂ju(x, t)

∂x j
+ g(x, t) (4.1)

Nk − 1 < γk ≤ Nk ,Mj − 1 < ηj ≤ Mj with respect to the initial conditions

∂ku(x, 0)

∂tk
= fk(x), k = 0, 1, . . . , n − 1, x ∈ R+ (4.2)

and boundary conditions

∂ju(0, t)

∂x j
= hj(t), j = 0, 1, . . . , m − 1, t ∈ R+. (4.3)

Here Ak , Bk , ak , bk are constants and g(x, t) is given function.

Let denote S2[u(x, t)] = U(w, v : α, β) and the single Sadik transform of initial and boundary condi-

tions are

Sx [fk(x)] = Fk(w : α, β), St [hj(t)] = Hj(v : α, β), k = 0, . . . n − 1, j = 0, . . . , m − 1. (4.4)

For the sake of convenience, α and β are omitted. From now, the transformed function U(w, v : α, β)

is written by U(w, v).

By utilizing the double Sadik transform on both sides of equation (4.1) and incorporating the

prescribed conditions specified by (4.4), an algebraic equation of

N∑
k=1

Ak

[
vγkαU(w, v)−

Nk−1∑
i=0

v (γk−1−i)α−βFi(w)
]

+

n∑
k=1

ak

[
v kαU(w, v)−

k−1∑
i=0

v (k−1−i)α−βFi(w)
]

=

M∑
j=1

Bj

[
wηjαU(w, v)−

Mj−1∑
i=0

w (ηj−1−i)α−βHi(v)
]

+

m∑
j=1

bj

[
w jαU(w, v)−

j−1∑
i=0

w (j−1−i)α−βHi(v)
]

b0U(w, v) + G(w, v),

is derived. Subsequent manipulation of this expression yields[ N∑
k=1

Akv
γkα +

n∑
k=1

akv
kα −

M∑
j=1

Bjw
ηjα −

m∑
j=1

bjw
jα − b0

]
U(w, v)

=

N∑
k=1

Ak

[ Nk−1∑
i=0

v (γk−1−i)α−βFi(w)
]

+

n∑
k=1

ak

[ k−1∑
i=0

v (k−1−i)α−βFi(w)
]

−
M∑
j=1

Bj

[Mj−1∑
i=0

w (ηj−1−i)α−βHi(v)
]
−

m∑
j=1

bj

[ j−1∑
i=0

w (j−1−i)α−βHi(v)
]

+ G(w, v),
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which can be explicitly solved for U(w, v) as

U(w, v) =
1

∆

[
N∑
k=1

Ak

[ Nk−1∑
i=0

v (γk−1−i)α−βFi(w)
]

+

n∑
k=1

ak

[ k−1∑
i=0

v (k−1−i)α−βFi(w)
]

−
M∑
j=1

Bj

[Mj−1∑
i=0

w (ηj−1−i)α−βHi(v)
]
−

m∑
j=1

bj

[ j−1∑
i=0

w (j−1−i)α−βHi(v)
]

+ G(w, v)

]
(4.5)

where ∆ =
∑N
k=1 Akv

γkα +
∑n
k=1 akv

kα −
∑M
j=1Bjw

ηjα −
∑m
j=1 bjw

jα − b0. Therefore, the exact

solution u(x, t) to the problem (4.1)-(4.3) is obtained by performing the inverse double Sadik transform

of U(w, v).

4.1. Applications. This section comprises multiple illustrated examples that demonstrate the appli-

cation of the DST to solve significant linear fractional Caputo partial differential equations. Moreover,

a range of noteworthy homogeneous and inhomogeneous problems have been investigated to confirm

the capabilities of this technique.

Example 4.1 (Fractional Newell-Whitehead-Segel equation). Consider N = 1, A1 = 1, ak =

0, Bk = 0, m = 2, b0 = −3, b1 = 0, b2 = 1, the fractional Newell-Whitehead-Segel equation is

given

∂γu(x, t)

∂tγ
=
∂2u(x, t)

∂x2
− 3u(x, t), 0 < γ ≤ 1.

The initial and boundary conditions are

u(x, 0) = e2x , u(0, t) = Eγ(tγ), ux(0, t) = 2Eγ(tγ),

and the exact solution of this problem is u(x, t) = e2xEγ(tγ).

Here f0(x) = e2x , h0(t) = Eγ(tγ) and h1(t) = 2Eγ(tγ). The single Sadik transform of these

functions are

F0(w) =
1

wβ(wα − 2)
, H0(v) =

vγα−α−β

vγα − 1
and H1(v) = 2

vγα−α−β

vγα − 1
.

After taking the double Sadik transform and utilizing the given conditions, the resulting equation is

vγαU(w, v)−
v (γ−1)α−β

wβ(wα − 2)
= w2αU(w, v)− wα−β

vγα−α−β

vγα − 1
− 2w−β

vγα−α−β

vγα − 1
− 3U(w, v),

which can be effortlessly rearranged to

(vγα − w2α + 3)U(w, v) =
v (γ−1)α−β

wβ
[ 1

wα − 2
−

wα

vγα − 1
−

2

vγα − 1

]
.

Upon simplification, it is found that

U(w, v) =
1

wβ(wα − 2)
·
v (γ−1)α−β

vγα − 1
.

The exact solution is obtained by applying the inverse double Sadik transform, which gives

u(x, t) = e2xEγ(tγ).
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Example 4.2 (Fractional diffusion equation). [19] If N = 1, A1 = 1, ak = 0, Bk = 0, m = 2, b0 =

b1 = 0, b2 = 1
π2 , the time-fractional diffusion equation is derived

∂γu(x, t)

∂tγ
=

1

π2

∂2u(x, t)

∂x2
, x, t > 0, 0 < γ ≤ 1.

The initial and boundary conditions are

u(x, 0) = sinπx, u(0, t) = 0, ux(0, t) = πEγ(−tγ),

and the exact solution of this problem is u(x, t) = sinπxEγ(−tγ).

Note that f0(x) = sinπx, h0(t) = 0, h1(t) = πEγ(−tγ) and the single Sadik transform of these

functions are

F0(w) =
π

wβ(w2α + π2)
, H0(v) = 0 and H1(v) = π

vγα−α−β

vγα + 1
.

Applying the double Sadik transform and utilizing the corresponding conditions yields the equation

vγαU(w, v)−
πv (γ−1)α−β

wβ(w2α + π2)
=

1

π2
w2αU(w, v)− w−β

vγα−α−β

π(vγα + 1)
.

This equation is then rearranged to obtain

(vγα −
w2α

π2
)U(w, v) =

vγα−α−β

wβ
( π

w2α + π2
−

1

π(vγα + 1)

)
.

Upon simplification, it becomes evident that

U(w, v) =
π

wβ(w2α + π2)
·
v (γ−1)α−β

vγα + 1
.

Thus, by utilizing the inverse double Sadik transform, the exact solution can be obtained as

u(x, t) = sinπx · Eγ(−tγ).

It is noteworthy that if γ = 1, the obtained solution reduces to the classical diffusion equation solution

for u(x, t) = e−t sinπx .

Example 4.3 (Fractional wave equation). [29] Consider Ak = 0, a1 = 1, B1 = −1, bj = 0, the

linear inhomogeneous space-fractional wave equation is derived

∂u(x, t)

∂t
+
∂ηu(x, t)

∂xη
= sin x + t cos x, x, t > 0, 0 < η ≤ 1.

The initial and boundary conditions are

u(x, 0) = xη+1E2,η+2(−x2)− x2ηE2,2η+1(−x2), u(0, t) = 0,

and the exact solution of this problem is u(x, t) = xη+1E2,η+2(−x2) + txηE2,η+1(−x2) −
x2ηE2,2η+1(−x2).
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Here f0(x) = xη+1E2,η+2(−x2) − x2ηE2,2η+1(−x2), h0(t) = 0 and the single Sadik transform of

these functions are

F0(w) =
w−ηα−β

w2α + 1
−
wα−2ηα−β

w2α + 1
, and H0(v) = 0.

By applying the double Sadik transform and utilizing the given conditions, the equation

vαU(w, v)− v−β
[w−ηα−β
w2α + 1

−
wα−2ηα−β

w2α + 1

]
+ wηαU(w, v) =

1

vα+β
·

1

wβ(w2α + 1)
+

1

v2α+β

wα

wβ(w2α + 1)

is obtained. Rearranging the equation yields

(vα + wηα)U(w, v) =
1

vβwβ(w2α + 1)

[
w−ηα +

1

vα
]

+
wα

vα+βwβ(w2α + 1)

[ 1

vα
−

vα

w2ηα

]
,

which simplifies to

U(w, v) =
1

vα+β
·
w2α−(α(η+2)+β)

w2α + 1
+

1

v2α+β
·
w2α−(α(η+1)+β)

w2α + 1
−

1

vα+β
·
w2α−(α(2η+1)+β)

w2α + 1
.

As a result, the exact solution,

u(x, t) = xη+1E2,η+2(−x2) + txηE2,η+1(−x2)− x2ηE2,2η+1(−x2)

can be reached by using the inverse double Sadik transform. Note that if η = 1 this solution is reduced

to that of the classical wave equation u(x, t) = t sin x .

Example 4.4 (Fractional Klein-Gordon equation). If A1 = 1, ak = 0, Bj = 0, b0 = 1, b1 = 0, b2 = 1

then the linear homogeneous time-fractional Klein-Gordon equation is obtained [29]

∂γu(x, t)

∂tγ
−
∂2u(x, t)

∂x2
− u(x, t) = 0, x, t ≥ 0, 1 < γ ≤ 2.

The initial and boundary conditions are

u(x, 0) = sin x + 1, ut(x, 0) = 0, u(0, t) = Eγ(tγ), ux(0, t) = 1

and the exact solution of this problem is u(x, t) = sin x + Eγ(tγ).

Note that f0(x) = sin x + 1, f1(x) = 0, h0(t) = Eγ(tγ), h1(t) = 1 and the single Sadik transform

of these functions are

F0(w) =
1

wβ(w2α + 1)
+

1

wα+β
, F1(w) = 0, H0(v) =

v (γ−1)α−β

vγα − 1
and H1(v) =

1

vα+β
.

After applying the double Sadik transform and utilizing the given conditions, the resulting equation is

vγαU(w, v)− v (γ−1)α−β
[ 1

wβ(w2α + 1)
+

1

wα+β

]
− w2αU(w, v)

+wα−β ·
vγα−α−β

vγα − 1
+ w−β ·

1

vα+β
− U(w, v) = 0,

which can be rearranged to obtain

(vγα − w2α − 1)U(w, v) =
[ vγα−α−β

wβ(w2α + 1)
−

1

wβvα+β

]
+ vγα−α−β

[ 1

wα+β
−

wα−β

vγα − 1

]
.
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Upon simplifying, it is found that

U(w, v) =
1

vα+β
·

1

wβ(w2α + 1)
+

1

wα+β
·
vγα−(α+β)

vγα − 1
.

Subsequently, the inverse double Sadik transform is employed to determine the exact solution,

u(x, t) = sin x + Eγ(tγ).

Example 4.5 (Fractional inhomogeneous Klein-Gordon equation). Consider N = 1,M = 1, A1 =

1, B1 = 1, ak = 0, b0 = −1, bj = 0, the linear inhomogeneous space-time fractional Klein-Gordon

equation is provided [29]

∂γu(x, t)

∂tγ
−
∂ηu(x, t)

∂xη
+ u(x, t) = 6x3 t3−γ

Γ(4− γ)
+ (x3 − 6

x3−η

Γ(4− η)
)t3, x, t ≥ 0, 1 < γ, η ≤ 2.

The initial and boundary the conditions are

u(x, 0) = ut(x, 0) = u(0, t) = ux(0, t) = 0

and the exact solution of this problem is u(x, t) = x3t3.

In this context, f0(x) = f1(x) = h0(t) = h1(t) = 0 and their single Sadik transforms are

F0(w) = F1(w) = H0(v) = H1(v) = 0.

By applying the double Sadik transform and utilizing the relevant conditions, it is found that

(vγα − wηα + 1)U(w, v) =
6

w4α+β
·

3!

v (4−γ)α+β
+

3!

w4α+β
·

3!

v4α+β
− 6

3!

v4α+β
·

1

w (4−η)α+β
,

which can be further simplified to

U(w, v) =
3!

w4α+β
·

3!

v4α+β
.

Consequently, the exact solution,

u(x, t) = x3t3,

can be derived by taking the inverse double Sadik transform.

Example 4.6 (Fractional inhomogeneous Burger’s equation). For N = 1, A1 = 1, ak = 0, Bk =

0, b0 = −1, b1 = 0, b2 = 1, the linear inhomogeneous time-fractional Burger’s equation is obtained

∂γu(x, t)

∂tγ
−
∂2u(x, t)

∂x2
+
∂u(x, t)

∂x
=

2t2−γ

Γ(3− γ)
+ 2x − 2, x, t ≥ 0, 0 < γ ≤ 1.

The initial and boundary conditions are

u(x, 0) = x2, u(0, t) = t2, ux(0, t) = 0

and the exact solution of this problem is u(x, t) = x2 + t2.
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It should be noted that the functions f0(x) = x2, h0(t) = t2, and h1(t) = 0 have respective single

Sadik transforms

F0(w) =
2!

w3α+β
, H0(v) =

2!

v3α+β
, and H1(v) = 0.

Upon applying the double Sadik transform and utilizing the conditions, the resulting equation

vγαU(w, v)− v (γ−1)α−β ·
2!

w3α+β
− w2αU(w, v) + wα−β ·

2!

v3α+β
+ wαU(w, v)− w−β ·

2!

v3α+β

=
2

v (3−γ)α+β
·

1

wα+β
+ 2

1

w2α+β
·

1

vα+β
−

2

vα+β
·

1

wα+β

can be expressed as

(vγα − w2α + wα)U(w, v) =
2

w3α+β

(vγα + wα − w2α)

vα+β
+

2

v3α+β

( vγα
wα+β

+
1− wα

wβ
)
.

Further simplification yields

U(w, v) =
1

wα+β
·

2!

v3α+β
+

1

vα+β
·

2!

w3α+β
.

Thus, the inverse double Sadik transform can be employed to obtain the exact solution

u(x, t) = t2 + x2.

This solution is consistent with the findings reported in reference [2].

Example 4.7 (Fractional homogeneous Burger’s equation). If A1 = 1, ak = 0, Bk = 0, b0 =

0, b1 = −1, b2 = 1, the linear homogeneous time-fractional Burger’s equation is found

∂γu(x, t)

∂tγ
−
∂2u(x, t)

∂x2
+
∂u(x, t)

∂x
= 0, 0 < γ ≤ 1.

The initial and boundary conditions are

u(x, 0) = e−x , u(0, t) = Eγ(2tγ), ux(0, t) = −Eγ(2tγ)

and the exact solution of this problem is u(x, t) = e−xEγ(2tγ).

Note that f0(x) = e−x , h0(t) = Eγ(2tγ), h1(t) = −Eγ(2tγ) and the single Sadik transform of

these functions are

F0(w) =
1

wβ(wα + 1)
, H0(v) =

vγα−α−β

vγα − 2
, H1(v) = −H0(v) = −

vγα−α−β

vγα − 2
.

After taking the double Sadik transform and using the given conditions, the resulting equation is

vγαU(w, v)− v (γ−1)α−β ·
1

wβ(wα + 1)
− w2αU(w, v) + wα−β ·

vγα−α−β

vγα − 2

+w−β ·
−vγα−α−β

vγα − 2
+ wαU(w, v)− w−β ·

vγα−α−β

vγα − 2
= 0

which is effortlessly reduced to

(vγα − w2α + wα)U(w, v) =
1

vα+βwβ

( vγα

wα + 1
−

wαvα

vγα − 2
+

2vα

vγα − 2

)
.
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Simplifying the equation, it is found that

U(w, v) =
1

wβ(wα + 1)
·
vγα−α−β

vγα − 2
.

Hence, the exact solution is obtained by applying the inverse double Sadik transform, which gives

u(x, t) = e−xEγ(2tγ).

Example 4.8 (Fractional Fokker-Planck equation). Consider A1 = 1, ak = 0, Bj = 0, b0 = 0, b1 =

−1, b2 = 1, the linear homogeneous time-fractional Fokker-Planck equation is given [29]

∂γu(x, t)

∂tγ
−
∂2u(x, t)

∂x2
+
∂u(x, t)

∂x
= 0, x, t ≥ 0, 0 < γ ≤ 1.

The initial and boundary conditions

u(x, 0) = x, u(0, t) =
tγ

Γ(γ + 1)
, ux(0, t) = 1

and the exact solution of this problem is u(x, t) = x + tγ

Γ(γ+1) .

Note that f0(x) = x, h0(t) = tγ

Γ(γ+1) , h1(t) = 1 and thier single Sadik transform are

F0(w) =
1

w2α+β
, H0(v) =

1

v (γ+1)α+β
, H1(v) =

1

vα+β
.

Applying the double Sadik transform and utilizing the corresponding conditions, leads to

vγαU(w, v)− v (γ−1)α−β ·
1

w2α+β
= w2αU(w, v)− wα−β ·

1

vγα+α+β

−w−β ·
1

vα+β
+ wαU(w, v)− w−β ·

1

vγα+α+β
.

This equation is then arranged to obtain

(vγα − w2α − wα)U(w, v) = (
v (γ−1)α−β

w2α+β
−
w−β

vα+β
)−

w−β

vγα+α+β
−

wα−β

vγα+α+β

=
(v (γ−1)α−β

w2α+β
−
w2αw−β

w2αvα+β
−

wα

w2α+βvα+β

)
+
( vγα

wα+βvγα+α+β
−

w2α

w2α+βvγα+α+β
−

w2α

wα+βvγα+α+β

)
.

Upon simplification, it becomes evident that

U(w, v) =
1

vα+β
·

1

(w2α+β)
+

1

wα+β
·

1

vγα+α+β
.

Hence, by utilizing the inverse double Sadik transform, the exact solution

u(x, t) = x +
tγ

Γ(γ + 1)

can be obtained.

Example 4.9 (Homogeneous Fractional KdV equation). For N = 1, A1 = 1, ak = 0, Bj = 0, b0 =

0, b1 = −2, b2 = 0, b3 = −1, the linear homogeneous time-fractional KdV equation is found

∂γu(x, t)

∂tγ
+ 2

∂u(x, t)

∂x
+
∂3u(x, t)

∂x3
= 0, x, t ≥ 0, 0 < γ ≤ 1.
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The initial and boundary conditions are

u(x, 0) = sin x, u(0, t) = −tγE2γ,γ+1(−t2γ), ux(0, t) = E2γ,1(−t2γ), uxx(0, t) = tγE2γ,γ+1(−t2γ)

and the exact solution of this problem is u(x, t) = sin x · E2γ,1(−t2γ)− cos x · tγE2γ,γ+1(−t2γ).

Note that f0(x) = sin x, h0(t) = −tγE2γ,γ+1(−t2γ), h1(t) = E2γ,1(−t2γ), h2(t) =

tγE2γ,γ+1(−t2γ) and the single Sadik transform of these functions are

F0(w) =
1

wβ(w2α + 1)
, H0(v) = −

vγα−α−β

v2γα + 1
, H1(v) =

v2γα−α−β

v2γα + 1
, H2(v) =

vγα−α−β

v2γα + 1
.

By applying the double Sadik transform and using the given conditions, the equation

vγαU(w, v)− v (γ−1)α−β ·
1

wβ(w2α + 1)
+ 2wαU(w, v) + 2w−β

vγα−α−β

v2γα + 1

+w3αU(w, v) + w2α−β ·
vγα−α−β

v2γα + 1
− wα−β ·

v2γα−α−β

v2γα + 1
− w−β ·

vγα−α−β

v2γα + 1
= 0

is obtained. Rearranging the equation yields

(vγα + 2wα + w3α)U(w, v) =
v (γ−1)α−β

wβ(w2α + 1)
+

vγα−α−β

wβ(v2γα + 1)

(
wαvγα − w2α − 1

)
,

which simplifies to

U(w, v) =
1

wβ(w2α + 1)
·
v2γα−α−β

v2γα + 1
−

wα

wβ(w2α + 1)
·
vγα−α−β

v2γα + 1
.

Hence, the exact solution

u(x, t) = sin x · E2γ,1(−t2γ)− cos x · tγE2γ,γ+1(−t2γ)

can be reached by using the inverse double Sadik transform. The solution is analogous to the solution

obtained in reference [3].

Example 4.10 (Fractional KdV equation). If N = 1, A1 = 1, ak = 0, Bj = 0, b0 = 0, b1 = −1, b2 =

0, b3 = −1 then the linear inhomogeneous time-fractional KdV equation is obtained [29]

∂γu(x, t)

∂tγ
+
∂u(x, t)

∂x
+
∂3u(x, t)

∂x3
= 2

t2−γ

Γ(3− γ)
· cos x, x, t ≥ 0, 0 < γ ≤ 1.

The initial and boundary conditions are

u(x, 0) = 0, u(0, t) = t2, ux(0, t) = 0, uxx(0, t) = −t2

and the exact solution of this problem is u(x, t) = t2 cos x .

Note that f0(x) = 0, h0(t) = t2, h1(t) = 0, h2(t) = −t2 and the single Sadik transform of these

functions are

F0(w) = H1(v) = 0, H0(v) =
2!

v3α+β
, H2(v) = −

2!

v3α+β
.
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After applying the double Sadik transform and utilizing the given conditions, the resulting equation is

vγαU(w, v) + wαU(w, v)− w−β
2!

v3α+β
+ w3αU(w, v)− w2α−β 2!

v3α+β
+ w−β

2!

v3α+β

=
2

v (3−γ)α+β
·

wα

wβ(w2α + 1)
,

which can be rearranged to obtain

(vγα + wα + w3α)U(w, v) =
2!

wβv3α+β

(
w2α +

wαvγα

w2α + 1

)
.

Simplifying the equation, it is found that

U(w, v) =
2

v3α+β
·

wα

wβ(w2α + 1)
.

Subsequently, the inverse double Sadik transform can be relied on to determine the exact solution,

u(x, t) = t2 cos x.

Example 4.11 (Fractional KdV-Burger’s equation). [29] Consider N = 1, A1 = 1, Bj = 0, ak =

0, b0 = 0, b1 = −1, b2 = 1, b3 = −1, the linear inhomogeneous time-fractional KdV-Burger’s equation

is found

∂γu(x, t)

∂tγ
+
∂u(x, t)

∂x
−
∂2u(x, t)

∂x2
+
∂3u(x, t)

∂x3
= e−x , x, t ≥ 0, 0 < γ ≤ 1.

The initial and boundary conditions are

u(x, 0) = e−x , u(0, t) = uxx(0, t) =
1

3
[4Eγ(3tγ)− 1], ux(0, t) = −

1

3
[4Eγ(3tγ)− 1]

and the exact solution of this problem is u(x, t) = 1
3e
−x [4Eγ(3tγ)− 1].

Note that f0(x) = e−x , h0(t) = h2(t) = 1
3 [4Eγ(3tγ)−1], h1(t) = −1

3 [4Eγ(3tγ)−1] and the single

Sadik transform of these functions are

F0(w) =
1

wβ(wα + 1)
, H0(v) = H2(v) =

1

3

[
4
vγα−α−β

vγα − 3
−

1

vα+β

]
, H1(v) = −H0(v).

By applying the double Sadik transform and using the relavant conditions, it is found that the resulting

equation

vγαU(w, v)− vγα−α−β
1

wβ(wα + 1)
+ wαU(w, v)− w−β ·

1

3

[
4
vγα−α−β

vγα − 3
−

1

vα+β

]
−w2αU(w, v) + wα−β ·

1

3

[
4
vγα−α−β

vγα − 3
−

1

vα+β

]
− w−β ·

1

3

[
4
vγα−α−β

vγα − 3
−

1

vα+β

]
+w3αU(w, v)− w2α−β ·

1

3

[
4
vγα−α−β

vγα − 3
−

1

vα+β

]
+ wα−β ·

1

3

[
4
vγα−α−β

vγα − 3
−

1

vα+β

]
−w−β ·

1

3

[
4
vγα−α−β

vγα − 3
−

1

vα+β

]
=

1

vα+β
·

1

wβ(wα + 1)
,
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can be expressed as

(vγα + wα − w2α + w3α)U(w, v) =
vγα−α−β

wβ(wα + 1)
+

1

vα+β
·

1

wβ(wα + 1)

+
1

3

[
4
vγα−α−β

vγα − 3
−

1

vα+β

]
·

(3− 2wα + w2α)

wβ
.

Further simplification yields

U(w, v) =
1

wβ(wα + 1)
·

vγα + 1

vα+β(vγα − 3)
=

1

wβ(wα + 1)
·

1

3

[
4
vγα−α−β

vγα − 3
−

1

vα+β

]
.

Hence, the inverse double Sadik transform can be deployed to obtain the exact solution

u(x, t) =
1

3
e−x [4Eγ(3tγ)− 1].

5. Discussion and Conclusions

The double Sadik transform is an efficient analytical tool for solving fractional models in science

and engineering. We have successfully demonstrated the significant properties of this type of dou-

ble integral transform and applied it to different types of linear Caputo fractional partial differential

equations, including the fractional diffusion equation, the fractional wave equation, the fractional

Newell-Whitehead-Segel equation, the fractional KdV equation, the fractional Klein-Gordon equation,

the fractional Fokker-Planck equation, and the fractional Burger equation. Furthermore, this tech-

nique is applicable to both homogeneous and inhomogeneous problems. The outcomes achieved are

presented in a closed form, which corresponds to conventional methods involving the double Laplace

transform [20], [29], double Elzaki transform [21], double Kamal transform [23], and so on. The pro-

posed improvements can be regarded as a generalization of other double integral transform methods.

For these reasons, this method is a viable and practical way to tackle fractional scientific problems.

Nevertheless, the efficacy of this approach is limited to a specific class of linear fractional partial

differential equations. To address nonlinear problems, an development has been required. In future re-

search, we intend to enhance this method with the goal of making it more effective in solving nonlinear

fractional scientific problems.
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