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Abstract. Curves on surfaces and their frames play an important role in differential geometry and in

many branches of science such as mechanics and physics. So, we are interested in studying one of

these surfaces along a curve lying on a surface. In this paper, we define a surface normal to a surface

along a curve lying on a surface in Euclidean 3-space E3. Then, we analyze the necessary and sufficient

conditions for that surface to be a ruled surface. Finally, we illustrate the convenience and efficiency

of this approach with some representative examples.

1. Introduction

The problem of finding surfaces with a given common curve as a special curve play an important

role in geometric design. The first paper related with this type of the problem proposed by Wang

et.al., [1]. They parameterized the surface by using the Serret–Frenet frame of the given curve and

gave the necessary and sufficient condition to satisfy the geodesic requirement. The basic idea is to

regard the wanted surface as an extension from the given characteristic curve, and represent it as

a linear combination of the marching-scale functions: u(s, t), v(s, t), w(s, t) and the three vector

functions t(s), n(s), b(s), which are the unit tangent, principal normal and binormal vectors of the

curve, respectively. With the given geodesic curve and isoparametric constraints, they derived the

necessary and sufficient conditions for the correct parametric representation of the surface pencil.

The extension to ruled and developable surfaces is also outlined. Kasap et al. [2] generalized the

marching-scale functions of Wang and gave a sufficient condition for a given curve to be a geodesic

on a surface. With the inspiration of the work of Wang, Li et.al. [3], they changed the characteristic

curve from geodesic to a line of curvature and defined the surface pencil with a common line of
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curvature. Bayram et.al. [4] tackled the problem of constructing surfaces passing through a given

asymptotic curve. Important contributions to surface passing through a given curve have been studied

in [5–8].

However, the relevant work on surfaces through characteristic curve on a surface depending on the

Darboux frame is rare. So, this led us to offer an approach for designing a surface possessing a given

curve on a surface, we call it a normal surface along the curve. Then, we analyze the necessary

and sufficient condition for that surface to be a normal ruled surface. Moreover, some examples are

illustrated to explain the applications of the theoretical results.

2. Preliminaries

In this section, we list some notions, formulas and conclusions for space curves, and ruled surfaces

in Euclidean 3-space E3 (see for instance, [9, 10]).

Let α : I ⊆ R → E3 be a unit speed curve; by κ(s) and τ(s) we denote the natural curvature and

torsion of α = α(s), respectively. We assume α
′′
(s) 6= 0 for all s ∈ [0, L], since this would give us

a straight line. In this paper, α
′
(s) denotes the derivative of α with respect to arc length parameter

s. For each point of α(s), the set {t(s), n(s), b(s)} is called the Serret–Frenet frame along α(s),

where t(s) = α
′
(s) is the unit tangent, n(s) = α

′′
(s)/

∥∥∥α′′ (s)∥∥∥ is the unit principal normal, and

b(s) = t(s)× n(s) is the unit binormal vector. The arc-length derivative of the Serret–Frenet frame

is governed by the relations:
t
′
(s)

n
′
(s)

b
′
(s)

 =

0 κ(s) 0

−κ(s) 0 τ(s)

0 −τ(s) 0



t(s)

n(s)

b(s)

 , (2.1)

Let M be a regular surface, and α : I ⊆ R → M be a unit speed curve on M. If we denote the

Darboux frame along the curve α = α(s) by {e1(s), e2(s), e3(s)}; t = e1(s) be the unit tangent

vector, e3 = e3(s) is the surface unit normal restricted to α, and e2= e3×e1 be the unit tangent to

the surface M. Then, the rotation matrix between Serret–Frenet frame and Darboux frame is
t(s)

n(s)

b(s)

 =

1 0 0

0 cosϑ sinϑ

0 − sinϑ cosϑ



e1

e2

e3

 . (2.2)

Hence, we have the derivative formulae of the Darboux frame as follows
e
′
1

e
′
2

e
′
3

 =

0 κg κn

−κg 0 τg

−κn −τg 0



e1

e2

e3

 , (2.3)
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where
κn = κ sinϑ =< e

′
1, e3>,

κg = κ cosϑ = det
(
α
′
, α
′′
, e2

)
,

τg = τ + ϑ
′
= det

(
α
′
, e2, e

′

2

)
,

 (2.4)

we call κg = κg(s) a geodesic curvature, κn = κn(s) a normal curvature, and τg = τ −ϑ
′
a geodesic

torsion of α(s). In terms of these quantities, the geodesics, asymptotic lines, and line of curvatures

on a smooth surface may be characterized as loci on a surface which κg = 0, κn = 0, and τg = 0,

respectively. Further, we have

κ(s) =
√
κ2g + κ

2
n,

τg(s) = ϑ
′
+ τ.

 (2.5)

3. Normal surface family

In this section, we consider a surface normal to the surface M along a regular curve α = α(s),

such that the surface tangent plane is coincident with the subspace Sp{e1, e3}, that is expressing the

surface along α(s) as follows:

Mn : P (s, t) = α(s) + u(s, t)e1(s)+v(s, t)e3(s); 0 ≤ t ≤ T, 0 ≤ s ≤ L, (3.1)

where u(s, t), and v(s, t) are C1 functions. If the parameter t is seen as the time, the functions

u(s, t), and v(s, t) can then be viewed as directed marching distances of a point unit in the time t in

the direction e1 and e3, respectively, and the position vector α(s) is seen as the initial location of this

point on M. It is easily checked that the two tangent vectors of Mn are given by

Ps(s, t) = (1 + us − vκn)e1 + (uκg − vτg)e2 + (vs + uκn)e3,
Pt(s, t) = ute1 + vte3.

}
(3.2)

The lowercase subscript letters s, and t denote partial derivatives corresponding to the indicated

variable, e.g., Ps = ∂P
∂s , Pt =

∂P
∂t . Thus, the normal vector of Mn is given by

N(s, t) := Ps × Pt = η1(s, t)e1 + η2(s, t)e2 + η3(s, t)e3, (3.3)

where
η1(s, t) = vt(uκg − vτg),
η2(s, t) = ut(vs + uκn)− vt(1 + us − uκg − vκn),
η3(s, t) = −ut(uκg − vτg).

 (3.4)

Our goal is to find the necessary and sufficient conditions for which the surface Mn is normal to

the surface M along α(s). First, since α(s) is an isoparametric curve on the surface Mn, there exists

a parameter t0 ∈ [0, T ] such that P (s, t0) = α(s), 0 ≤ t0 ≤ T, 0 ≤ s ≤ L, that is,

u(s, t0) = v(s, t0) = 0,

us(s, t0) = vs(s, t0) = 0.

}
(3.5)
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Secondly, when t = t0, i.e., along the curve α(s) of M, the surface normal is

N(s, t0) = −vt(s, t0)e2, (3.6)

this is the reason why we call Mn the normal surface of M along the curve α(s). Therefore, we have

the following theorem.

Theorem 3.1. The surface Mn is a normal surface along the curve α(s) of M if and only if

u(s, t0) = v(s, t0) = 0,

us(s, t0) = vs(s, t0) = 0,

vt(s, t0) 6= 0, 0 ≤ t0 ≤ T, 0 ≤ s ≤ L.

 (3.7)

Proof. First, since α(s) is an isoparametric curve on the surface Mn, there exists a parameter t0 ∈
[0, T ] such that P (s, t0) = α(s), 0 ≤ t0 ≤ T, 0 ≤ s ≤ L, that is

u(s, t0) = v(s, t0) = 0,

us(s, t0) = vs(s, t0) = 0.

}
(3.8)

Secondly, when t = t0, i.e., along the curve α(s) of M, the surface normal is

N(s, t0) = −vt(s, t0)e2. (3.9)

Thus, the proof is completed. �

We will call the set of surfaces defined by Eqs. (3.1) and (3.7) an isoparametric normal surface

family, since the common curve is an isoparametric curve on these surfaces. Any surface Mn defined

by Eq. (3.1) and satisfying Eqs. (3.7) is a member of this family. For the purposes of simplification

and better analysis, next we study the case when the marching-scale functions u(s, t), and v(s, t) can

be decomposed into two factors:
u(s, t) = l(s)U(t),

v(s, t) = n(s)V (t).
(3.10)

Here l(s), n(s), U(t) and V (t) are C1 functions and not identically zero. Thus, from Theorem 3.1,

we can get the following corollary.

Corollary 3.1. The necessary and sufficient condition for Mn being a normal along the curve

α(s) of M is:

U(t0) = V (t0) = 0, l(s) = const. 6= 0, n(s) = const. 6= 0,
dV (t0)
dt = const. 6= 0, 0 ≤ t0 ≤ T, 0 ≤ s ≤ L.

}
(3.11)

Note that, to obtain a normal surface family, we can first design the marching-scale functions in

Eq. (3.11), and then apply them to Eq. (3.1) to derive the final parametrization. For convenience in

practice, the marching-scale functions can be further constrained to be in more restricted forms and

still possess enough degrees of freedom to define a large class of normal surface family along the curve
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α(s) of M. Specifically, let us suppose that u(s, t), and v(s, t) can be chosen in two different forms:

(1) If we choose 
u(s, t) =

p∑
k=1

a1k l(s)
kU(t)k ,

v(s, t) =
p∑
k=1

a2km(s)
kV (t)k .

(3.12)

Thus, we can simply express the sufficient condition for which Mn being a normal along the curve

α(s) of M as follows: {
U(t0) = V (t0) = 0,

a21 6= 0, m(s) 6= 0, and dV (t0)dt 6= 0,
(3.13)

where l(s), m(s), U(t), and V (t) are C1 functions, ai j ∈ R (i = 1, 2; j = 1, 2, ..., p) and l(s), and
n(s) are not identically zero.

(2) If we choose 
u(s, t) =

p

f (
∑
k=1

a1k l(s)
kU(t)k),

v(s, t) = g(
p∑
k=1

a2kn(s)
kV (t)k),

(3.14)

then we can rewrite the condition (3.11) as:{
U(t0) = V (t0) = v(t0) = f (0) = g(0) = 0,

a21 6= 0, dV (t0)dt = const 6= 0, n(s) 6= 0, g ′(0) 6= 0,
(3.15)

where l(s), n(s), U(t), V (t), f , and g are C1 functions.

Example 3.1. We consider a surface of revolution parameterized by

M : X(s, t) = (s, es sin t, es cos t) .

The curve

α(s) =
(
s, es sin s2, es cos s2

)
, s ∈ R,

is a regular curve on the surface M. In this case the subspace Sp{e1, e3} of α(s) is

e1(s) =

.
α(s)∥∥ .α(s)∥∥ =

(
1√

1 + e2s (1 + 4s2)
,
es
(
2s cos s2 + sin s2

)√
1 + e2s (1 + 4s2)

,
es
(
cos s2 − 2s sin s2

)√
1 + e2s (1 + 4s2)

)
,

and

e3(s) =
Xs ×Xt
‖Xs ×Xt‖

=

(
−

e2s√
e2s + e4s

,
es sin s2√
e2s + e4s

,
es cos s2√
e2s + e4s

)
.
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Using Eq. (3.1), the normal surface family can be calculated as follows:

Mn : P (s, t) =


s,

es sin(s2),

es cos(s2)



+u(s, t)


1√

1+e2s(1+4s2)
,

es(2s cos(s2)+sin(s2))√
1+e2s(1+4s2)

,

es(cos(s2)−2s sin(s2))√
1+e2s(1+4s2)

+ v(s, t)

− e2s√

e2s+e4s
,

es sin(s2)√
e2s+e4s

,
es cos(s2)√
e2s+e4s

 .
It is very clear that the functions u(s, t), and v(s, t) can control the shape of the surface, and if

these functions are given, then we immediately obtain a normal surface in this family. So, we consider

the following cases.

Case(3.1). We choose u(s, t) = s sin t, and v(s, t) = t cos s, and t ∈ [0, T ]. Obviously,

Eqs. (3.11) are satisfied, and the normal surface is given by

Mn : P (s, t) =


s − te2s cos s√

e2s+e4s
+ s sin t√

1+e2s(1+4s2)
,

es
(
sin(s2) + t cos s sin(s

2)√
e2s+e4s

+
s(2s cos(s2)+sin(s2)) sin t√

1+e2s(1+4s2)

)
,

es
(
cos(s2) + t cos s cos(s

2)√
e2s+e4s

+
s(cos(s2)−2s sin(s2)) sin t√

1+e2s(1+4s2)

)

.

The surfaces M, Mn, and M ∪Mn along to the curve α are shown in Figs. (1a, 1b), and Figs. (2a,

2b).

(a) (b)

Figure 1. (a) The curve α. (b) The curve on the surface M.
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(a) (b)

Figure 2. (a) The normal surface Mn. (b) The surface Mn normal to M along the

curve α.

Case(3.2). If we choose u(s, t) = (1 + sin(t)) +
4∑
k=2

a1k(1 + sin(t))
k , v(s, t) = cos(t) +

4∑
k=2

a2k cos
k(t), t0 = 0, t0 = 3π/2, a1k , a2k ∈ R, and t ∈ [0, 2π], then Eqs. (3.11) are satis-

fied.

Hence, the normal surface can be represented as follows:

Mn : P (s, t) = {P1(s, t), P2(s, t), P3(s, t)} ,

where

P1(s, t) =

 s − e
2s(1+cos t+(1+cos t)2+2(1+cos t)3+3(1+cos t)4)√

e2s+e4s

+1+sin t+(1+sin t)
2+2(1+sin t)3+3(1+sin t)4√
1+e2s(1+4s2)

 ,

P2(s, t) = e
s

 sin (s2)+ (7+21 cos t+25 cos2(t)+14 cos3(t)+3 cos4(t)) sin(s2)√
e2s+e4s

+

(2s cos(s2)+sin(s2))(7+21 sin t+25 sin2(t)+14 sin3(t)+3 sin4(t))√
1+e2s(1+4s2)

 ,

P3(s, t) = e
s

 cos (s2)+ cos(s2)(7+21 cos t+25 cos2(t)+14 cos3(t)+3 cos4(t))√
e2s+e4s

+

(cos(s2)−2s sin(s2))(7+21 sin t+25 sin2(t)+14 sin3(t)+3 sin4(t))√
1+e2s(1+4s2)

 .
In this case, the surfaces Mn, and M ∪Mn along the curve α are shown in Figs. (3a, 3b).

Example 3.2. Let M be a surface given by

M : X(s, t) =

(
cos s −

t√
2
cos s, sin s −

t√
2
sin s,

s√
2

)
,

and the curve is expressed as:

α(s) =

(
cos s −

cos s√
2
, sins −

sin s√
2
,
s√
2

)
.
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(a) (b)

Figure 3. (a) The normal surface Mn. (b) The surface Mn normal to M along the

curve α.

In this case, the subspace Sp{e1, e3} of α(s) is given by

e1(s) =

(
−
1

2

√
2−
√
2sins,

1

2

√
2−
√
2coss,

1√
4− 2

√
2

)
,

e3(s) =

(
sins√
4− 2

√
2
,−

coss√
4− 2

√
2
,
−1 +

√
2√

4− 2
√
2

)
.

Also, using Eq. (3.1), the normal surface family can be represented as:

Mn : P (s, t) =

(
coss −

coss√
2
, sins −

sins√
2
,
s√
2

)

+u(s, t)


−12
√
2−
√
2sins,

1
2

√
2−
√
2coss,

1√
4−2
√
2

+ v(s, t)


sins√
4−2
√
2
,

− coss√
4−2
√
2
,

−1+
√
2√

4−2
√
2

 .
It is very clear that the functions u(s, t), and v(s, t) can control the shape of the surface, and if

these functions are given, then we immediately obtain a normal surface in this family. So, we consider

the following cases.

Case(3.3). We choose u(s, t) = es sin t, and v(s, t) = sin t cos s, and t ∈ [0, T ]. Obviously,

Eqs. (3.11) are satisfied, and the normal surface is given by

Mn : P (s, t) =


−12
√
2−
√
2es sin s sin t + cos s

(
1− 1√

2
+ sin s sin t√

4−2
√
2

)
,(

1− 1√
2

)
sin s − cos s((−2+

√
2)es+

√
2 cos s) sin t

2
√
2−
√
2

,
√
2−
√
2s+(es+(−1+

√
2) cos s) sin t√

4−2
√
2


.

The surfaces M, Mn, and M ∪Mn along the curve α are shown in Figs. (4a, 4b), and Figs. (5a, 5b).
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(a) (b)

Figure 4. (a) The base curve α. (b) The surface M.

(a) (b)

Figure 5. (a) The normal surface Mn. (b) The surface Mn normal to M along the

curve α.

Case(3.4). If we choose u(s, t) = (1 + sin(t)) +
4∑
k=2

a1k(1 + sin(t))
k , v(s, t) = cos(t) +

4∑
k=2

a2k cos
k(t), t0 = 0, t0 = 3π/2, a1k , a2k ∈ R, and t ∈ [0, 2π], then Eqs. (3.11) are satisfied.

Hence, the normal surface can be represented as follows:

Mn : P (s, t) = {P1(s, t), P2(s, t), P3(s, t)} ,

where

P1(s, t) =


cos s − cos s√

2
+
(1+cos t+(1+cos t)2+2(1+cos t)3+3(1+cos t)4) sin s√

4−2
√
2

−

1
2

√
2−
√
2 sin s

(
1 + sin t + (1 + sin t)2

+2(1 + sin t)3 + 3(1 + sin t)4

)
 ,
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P2(s, t) =


− cos s(1+cos t+(1+cos t)

2+2(1+cos t)3+3(1+cos t)4)√
4−2
√
2

+ sin s − sin s√
2
+

1
2

√
2−
√
2 cos s

(
1 + sin t + (1 + sin t)2

+2(1 + sin t)3 + 3(1 + sin t)4

)
 ,

P3(s, t) =

 u√
2
+
(−1+

√
2)(1+cos t+(1+cos t)2+2(1+cos t)3+3(1+cos t)4)√

4−2
√
2

+

1+sin t+(1+sin t)2+2(1+sin t)3+3(1+sin t)4√
4−2
√
2

 .
In this case, the surfaces Mn, and M ∪Mn along the curve α are shown in Figs. (6a, 6b).

(a) (b)

Figure 6. (a) The normal surface Mn. (b) The surface Mn normal to M along the

curve α.

3.1. Normal ruled surfaces. A ruled surface is a surface generated by a straight line moving along

a curve. The various positions of the generating lines are called the rulings or generators of the

surface. Suppose that Mn is a ruled surface along the curve α(s) of M, then there exists t0 such that

P (s, t0) = α(s). This follows that the ruled surface can be expressed as

Mn : P (s, t) = P (s, t0) + (t − t0)e(s), 0 ≤ s ≤ L, with t, t0 ∈ [0, T ],

where e(s) denotes the direction of the rulings. According to the Eq. (3.1), we have

(t − t0)e(s) = u(s, t)e1(s)+v(s, t)e3(s), 0 ≤ s ≤ L, with t, t0 ∈ [0, T ], (3.16)

which is a system of two equations with two unknown functions u(s, t), and v(s, t). For simplicity,

we omit variable s. The solutions of the above system can be deduced as follows:

u(s, t) = (t − t0) < e, e1 >= (t − t0) det(e, e2, e3),
v(s, t) = (t − t0) < e, e3 >= (t − t0) det(e, e1, e2).

(3.17)

The above equations are just the necessary and sufficient conditions for which Mn is a ruled surface

with a directrix α(s) on M.
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Now, we need to check if Mn is the normal ruled surface with a directrix α(s) of M by using the

conditions given in Theorem 3.1. It is evident that in this case, these conditions become

det(e, e1, e2) =< e, e3 >6= 0. (3.18)

It follows that at any point on the curve α(s); the ruling direction e(s) must be in the plane Sp{e1, e3}.
This leads to

e(s) = βe1 + γe3, γ(s) 6= 0, 0 ≤ s ≤ L, (3.19)

for some real functions β(s), and γ(s). Substituting it into the expressions in Eq. (3.16), we get

u(s, t) = β(s)t, v(s, t) = γ(s)t; γ(s) 6= 0, 0 ≤ s ≤ L.

Hence, the isoparametric ruled surface family with a directrix α(s) on M can be expressed as:

Mn : P (s, t) = α(s) + te(s),

e(s) = βe1 + γe3, 0 ≤ s ≤ L, 0 ≤ t ≤ T,

}
(3.20)

where the functions β(s) and γ(s) 6= 0, can control the shape of the ruled surface family. However,

the normal vector to the ruled surface Mn is

N(s, t) = t (βκg − γτg) (γe1 + βe3) +
[
−γ + t

(
β2 + γ2

)
κn + t

(
βγ

′ − γβ ′
)]
e2,

and thus when t0 = 0, i.e., along the curve α(s), the surface normal is

N(s, 0) = −γe2.

So, the normal vector of Mn at P (s, t0) = α(s) is orthogonal to the normal vector of M at α(s).

Thus, Mn is the normal ruled surface of M along α(s).

Theorem 3.2. The necessary and sufficient condition for Mn being a normal ruled surface along α(s)

of M is that there exist a parameter t0 ∈ [0, T ], and the functions β(s), and γ(s) 6= 0, so that Mn

can be represented by Eq. (3.19).

Proof. Since the functions β(s) and γ(s) 6= 0, can control the shape of the ruled surface family.

Then, the normal vector to the ruled surface Mn is

N(s, t) = t (βκg − γτg) (γe1 + βe3)

+
[
−γ + t

(
β2 + γ2

)
κn + t

(
βγ

′ − γβ ′
)]
e2,

and thus when t0 = 0, i.e., along the curve α(s), the surface normal is

N(s, 0) = −γe2.

So, the normal vector of Mn at P (s, t0) = α(s) is orthogonal to the normal vector of M at α(s).

Thus, Mn is a normal ruled surface of M along α(s). Hence, this completes the proof. �
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By Theorem 3.2, we not only prove the existence of the normal surface, but also give the concrete

expression of the surface. Every member of the isoparametric normal ruled surface family along α(s) of

M is decided by two family of parameters β(s) and γ(s) 6= 0, i.e., by the direction vector function e(s).

Example 3.3. We consider a surface parameterized by

M : X(s, t) =

(
1 + cos s −

√
2t sin s√
3 + cos s

,

√
2t cos s√
3 + cos s

+ sin s,

√
2t cos s√
3 + cos s

+ 2 sin
s

2

)
.

This surface is a ruled surface such that the base curve is

α(s) = (1 + cos s, sin s, 2 sin
s

2
), s ∈ R.

Therefore, α(s) is a regular curve on the surface M. In this case the subspace Sp{e1, e3} of α(s) is

e1(s) =

.
α(s)∥∥ .α(s)∥∥ =

(
−
√
2 sin s√
3 + cos s

,

√
2 cos s√
3 + cos s

,

√
2 cos s2√
3 + cos s

)
,

and

e3(s) =
Xs ×Xt
‖Xs ×Xt‖

=

(
−3 sin s2 − sin

3s
2√

13 + 3 cos s
,
2
√
2 cos3

(
s
2

)
√
13 + 3 cos s

,
−2
√
2√

13 + 3 cos s

)
.

Thus, using Eq. (3.19), the normal surface family can be represented as:

Mn : P (s, t) =
{
1 + cos s, sin s, 2 sin

s

2

}
+

t

β(s)

−
√
2 sin s√
3+cos s

,
√
2 cos s√
3+cos s

,
√
2 cos s

2√
3+cos s

+ γ(s)

−3 sin s

2
−sin 3s

2√
13+3 cos s

,

2
√
2 cos3( s2)√
13+3 cos s

,

−2
√
2√

13+3 cos s


 .

The functions β(s) and γ(s) can control the shape of the surface and it is very clear that if these

functions are given, then we immediately obtain the normal surface in the family. In the following, we

consider two cases.

Case(3.5). We choose β(s) = sin s, and γ(s) = s. Obviously, Eqs. (3.15-3.19) are satis-

fied, and the normal surface in this family is given by:

Mn : P (s, t) =


1 + cos s + t

(
−
√
2 sin2 s√
3+cos s

− s(3 sin(
s
2)+sin(

3s
2 ))√

26+6 cos s

)
,

2
√
2s t cos3( s2)√
13+3 cos s

+ sin s +
√
2t cos s sin s√
3+cos s

,

2 sin
(
s
2

)
+
√
2t

(
− 2u√

13+3 cos s
+
cos( s2) sin s√
3+cos s

)

.

The surfaces M, Mn, and M ∪Mn along the curve α, are shown in Figs. (7a, 7b), and Figs. (8a, 8b).
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(a) (b)

Figure 7. (a) The base curve α. (b) The ruled surface M.

(a) (b)

Figure 8. (a) The normal surface Mn. (b) The surface Mn normal to M along the

curve α.

Case(3.6). If we choose β(s) = s2 and γ(s) = 2s, then the normal surface in this family is given

by:

Mn : P (s, t) =


1 + cos s +

√
2st

(
− s sin s√

3+cos s
− 3 sin(

s
2)+sin(

3s
2 )√

13+3 cos s

)
,

√
2s2t cos s√
3+cos s

+
4
√
2st cos3( s2)√
13+3 cos s

+ sin s,
√
2s2t cos( s2)√
3+cos s

− 4
√
2st√

13+3 cos s
+ 2 sin

(
s
2

)

 .
The surfaces M, Mn, and M ∪Mn along the curve α, are shown in Figs. (9a, 9b).
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(a) (b)

Figure 9. (a) The normal surface Mn. (b) The surface Mn normal to M along the

curve α.

4. Conclusion

In the three-dimensional Euclidean space E3, a surface normal to a surface along a curve on the

surface has been defined. Also, the necessary and sufficient conditions for that surface to be a ruled

surface have been investigated. Moreover, we have illustrated the convenience and efficiency of this

approach by some representative examples. In future works, we plan to study the normal surfaces in

Lorentz-Minkowski space for different queries and further improve the results in this paper, combined

with the techniques and results in the related papers [11–16].

Acknowledgments: We gratefully acknowledge the constructive comments from the editor and the

anonymous referees. Also, the first author would like to express his gratitude to the Islamic University

of Madinah.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publi-

cation of this paper.

References

[1] G.J. Wang, K. Tang, C.L. Tai, Parametric Representation of a Surface Pencil With a Common Spatial Geodesic,

Computer-Aided Design. 36 (2004), 447–459. https://doi.org/10.1016/s0010-4485(03)00117-9.

[2] E. Kasap, F.T. Akyildiz, K. Orbay, A Generalization of Surfaces Family With Common Spatial Geodesic, Appl.

Math. Comput. 201 (2008), 781–789. https://doi.org/10.1016/j.amc.2008.01.016.

[3] C.Y. Li, R.H. Wang, C.G. Zhu, Parametric Representation of a Surface Pencil With a Common Line of Curvature,

Computer-Aided Design. 43 (2011), 1110–1117. https://doi.org/10.1016/j.cad.2011.05.001.

[4] E. Bayram, F. Güler, E. Kasap, Parametric Representation of a Surface Pencil With a Common Asymptotic Curve,

Computer-Aided Design. 44 (2012), 637–643. https://doi.org/10.1016/j.cad.2012.02.007.

[5] C.Y. Li, R.H. Wang, C.G. Zhu, A Generalization of Surface Family With Common Line of Curvature, Appl. Math.

Comput. 219 (2013), 9500–9507. https://doi.org/10.1016/j.amc.2013.03.077.

https://doi.org/10.1016/s0010-4485(03)00117-9
https://doi.org/10.1016/j.amc.2008.01.016
https://doi.org/10.1016/j.cad.2011.05.001
https://doi.org/10.1016/j.cad.2012.02.007
https://doi.org/10.1016/j.amc.2013.03.077


Int. J. Anal. Appl. (2023), 21:119 15

[6] C.Y. Li, R.H. Wang, C.G. Zhu, An Approach for Designing a Developable Surface Through a Given Line of

Curvature, Computer-Aided Design. 45 (2013), 621–627. https://doi.org/10.1016/j.cad.2012.11.001.

[7] E. Bayram, E. Ergun, E. Kasap, Surface family with a common natural asymptotic lift, J. Sci. Arts. 2 (2015),

117–124.

[8] E. Bayram, M. Bilici, Surface family with a common involute asymptotic curve, Int. J. Geom. Methods Mod. Phys.

13 (2016), 1650062. https://doi.org/10.1142/s0219887816500626.

[9] M.P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, Englewood Cliffs, 1976.

[10] H. Pottman, J. Wallner, Computational Line Geometry, Springer-Verlag, Berlin, Heidelberg, 2001.

[11] M.K. Saad, R.A. Abdel-Baky, F. Alharbi, A. Aloufi, Characterizations of Some Special Curves in Lorentz-Minkowski

Space, Math. Stat. 8 (2020), 299–305. https://doi.org/10.13189/ms.2020.080308.

[12] H.S. Abdel-Aziz, H. Serry, M.K. Saad, Evolution Equations of Pseudo Spherical Images for Timelike Curves in

Minkowski 3-Space, Math. Stat. 10 (2022), 884–893. https://doi.org/10.13189/ms.2022.100420.

[13] Y. Li, Ali.H. Alkhaldi, A. Ali, R.A. Abdel-Baky, M.K. Saad, Investigation of Ruled Surfaces and Their Singularities

According to Blaschke Frame in Euclidean 3-Space, AIMS Math. 8 (2023), 13875–13888. https://doi.org/10.

3934/math.2023709.

[14] M.K. Saad, H.S. Abdel-Aziz, H.A. Ali, On Magnetic Curves According to Killing Vector Fields in Euclidean 3-Space,

Int. J. Anal. Appl. 20 (2022), 18. https://doi.org/10.28924/2291-8639-20-2022-18.

[15] R.A. Abdel-Baky, M.K. Saad, Osculating Surfaces Along a Curve on a Surface in Euclidean 3-Space, J. Math.

Comput. Sci. 12 (2022), 84. https://doi.org/10.28919/jmcs/7109.

[16] M.K. Saad, R.A. Abdel-Baky, On Ruled Surfaces According to Quasi-Frame in Euclidean 3-Space, Aust. J. Math.

Anal. Appl. 17 (2020), 11.

https://doi.org/10.1016/j.cad.2012.11.001
https://doi.org/10.1142/s0219887816500626
https://doi.org/10.13189/ms.2020.080308
https://doi.org/10.13189/ms.2022.100420
https://doi.org/10.3934/math.2023709
https://doi.org/10.3934/math.2023709
https://doi.org/10.28924/2291-8639-20-2022-18
https://doi.org/10.28919/jmcs/7109

	1. Introduction
	2. Preliminaries
	3. Normal surface family
	3.1. Normal ruled surfaces

	4. Conclusion
	References

