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Abstract. In this paper, we exhibit a detailed analysis of non-associativity and non-commutativity of the binary operation

% in a semi-Brouwerian almost distributive lattice and characterize the algebraic structure in terms of the different

associative types.

1. Introduction

1.1. Background and Motivation. The idea of an almost distributive lattice [12] emerged as a

generalization of the more restrictive concept of a distributive lattice [1,2,10,11]. While distributive

lattices have well-defined properties and are widely studied, they impose strong conditions on

the relationships between lattice operations. In a distributive lattice, the meet Z and join Y

operations satisfy the distributive properties. However, in certain applications or contexts, it is

desirable to relax this strict requirement and consider structures where the distributive property

only approximately holds or holds with some exceptions. This relaxation led to the introduction

of almost distributive lattices. In an almost distributive lattice, the distributive property is not
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strictly required to hold for all elements. Instead, it is allowed to hold approximately or with some

exceptions. In other words, an almost distributive lattice satisfies the distributive property "almost

everywhere" but may have some specific elements or combinations of elements where the property

does not hold. The relaxation of the distributive property in almost distributive lattices allows

for more flexible and diverse mathematical structures that can capture real-world phenomena

or scenarios that do not adhere strictly to distributivity. It provides a broader framework for

modelling and analyzing situations where there might be exceptions or variations in the behaviour

of lattice operations. On this almost distributive lattice, many authors [13–15] explored the pseudo-

complementation, stone representation, Birkhoff center and many more, on this algebra with the

two binary operations Y and Z.

In 2010 by introducing another binary operation % on almost distributive lattices, Heyting almost

distributive lattices [5] was introduced, which captures the essence of both almost distributive

lattices and Heyting algebras [3]. The % operation represents implication or logical implication

within the lattice structure. It allows for a more expressive and powerful algebraic structure that

can model reasoning and logical relationships between elements. Further, in 2014, semi-Heyting

almost distributive lattices [6] and almost semi-Heyting algebra [7] extend the concept of Heyting

almost distributive lattices by allowing a more flexible notion of implication, which is known as a

semi-Heyting implication. The semi-Heyting implication captures a weaker form of implication,

often referred to as repudiation.

Up to date, all authors have studied various algebras on almost distributive lattices with both

least element 0 and maximal element m, in 2022 semi-Brouwerian almost distributive lattice [9]

were studied with only a maximal element m, by having only a maximal element, provide a

simplified structure that focuses on the properties and relationships associated with the maximal

element. This simplicity can aid in analyzing and understanding the behaviour and implications

of a single dominating element within the lattice. By excluding the least element, semi-Brouwerian

almost distributive lattices possess specific properties and characteristics distinct from those found

in semi-Heyting almost distributive lattices.

The major observation in an almost distributive lattice is that it fails to satisfy the one of distribu-

tive law according to the definition given in [12]. Later, it was observed that the associativity with

respect to Z holds in an almost distributive lattice, but the associativity of Y is still not known. It

was an open problem given by Rao and Swamy in 1980. As the associativity of the binary operation

with respect to Y failed, it gave us the idea to check the associativity of the binary operation %, the

failure of commutativity with respect to Y and Z in an almost distributive lattices lead us the way

to discuss the commutativity of % in semi-Brouwerian almost distributive lattices.

1.2. Objective and Overview. The main objective is to study the failure of the associative and

commutative binary operation % in semi-Brouwerian almost distributive lattices; we can recall that

an associative identity contains three variables that are distinct and can occur in any order which

are grouped in and around 14 different ways. We aim to identify specific elements or combinations
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of elements within the lattice where the 14 identities of associativity do not hold, providing a clear

explanation and illustration of this failure along with the commutative property of %.

In this overview, we will briefly introduce the notation of a semi-Brouwerian almost distributive

lattice and its defining properties. We will then outline the significance of studying the failure of

associativity and commutativity within this lattice structure and also study the peculiar behaviour

of the 14 identities in associativity and how they can be obtained by considering any one of

the 14 identities of associative and considering the commutative identity on semi-Brouwerian

almost distributive lattices. Finally, observe that the first associative identity, the fourth associative

identity and the commutative identity are distinct.

2. Preliminaries

Let us recall useful, necessary results on almost distributive lattices and semi-Brouwerian almost

distributive lattices, frequently required in the sequel.

Definition 2.1. [12] An algebra (S,Y,Z) of type (2, 2) is referred to as an almost distributive lattice if it
meets the conditions listed below:

(i) (xY y)Z z = (xZ z)Y (yZ z)
(ii) xZ (yY z) = (xZ y)Y (xZ z)

(iii) (xY y)Z y = y
(iv) (xY y)Z x = x
(v) xY (xZ y) = x

for all x, y, z ∈ S.

Example 2.1. [12] If S is a non-empty set, then for any x, y ∈ S. Define x Z y = y, x Y y = x. Then
(S,Y,Z) is an ADL, and it is classified as a discrete ADL.

Throughout the preliminaries section, by S, we mean an almost distributive lattice (S,Y,Z),

until otherwise mentioned. Given x, y ∈ S, we say that x is less than or equal to y if and only if

x = xZ y; or equivalently xY y = y, and it is denoted by x ≤ y. Therefore ≤ is a partial ordering

on S. An element m is considered maximal if no element x exists, such as m < x.

Theorem 2.1. [12] For any m ∈ S, the below conditions are interchangeable,

(i) m is a maximal element
(ii) mY x = m, for all x ∈ S

(iii) mZ x = x, for all x ∈ S.

Theorem 2.2. [12] For any x, y, z ∈ S,

(i) xY y = x⇔ xZ y = x
(ii) xY y = y⇔ xZ y = x

(iii) xZ y = yZ x = x whenever x ≤ y
(iv) Z is associative in L
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(v) xZ yZ z = yZ xZ z
(vi) (xY y)Z z = (yY x)Z z

(vii) xZ y ≤ y and x ≤ xY y
(viii) xZ x = x and xY x = x

(ix) if x ≤ z and y ≤ z, then xZ y = yZ x and xY y = yY x.

Definition 2.2. [9] S with m as its maximal element is considered as a semi-Brouwerian almost distributive
lattice (SBADL) if there is a binary operation % on S with the following identities:

(N1) (x % x)Zm = m
(N2) xZ (x % y) = xZ yZm
(N3) xZ (y % z) = xZ [(xZ y) % (xZ z)]
(N4) (x % y)Zm = [(xZm) % (yZm)]

for all x, y, z ∈ S.

Theorem 2.3. [9] If S is an SBADL, then these are equivalent to one another:

(i) (x % y)Zm = (y % x)Zm
(ii) (x % m)Zm = xZm

(iii) yZ (x % y)Zm = xZ yZm

for all x, y ∈ S.

3. Identities of Associative Type

In this section, we provide a good number of counter-examples for an SBADL in which the

binary operation % is not associative as well as commutative. We present different identities of

associative types of length three with respect to the binary operation % and characterize SBADLs

through these identities.

Lemma 3.1. If S is an SBADL, with m as its maximal element then, for any x, y ∈ S,

(i) (x % y)Zm = m⇒ xZm ≤ yZm
(ii) xZm ≤ yZm⇒ xZm ≤ x % y

(iii) m % x = xZm.

Proof. Let x, y be any two elements in an SBADL S with a maximal element m.

(i) Assume that (x % y)Zm = m. Then xZ (x % y)Zm = xZm. Now,
(xZm)Z (yZm) = xZ yZmZm

= xZ (x % y)Zm (by N2 of Definition 2.2)

= xZm.
Therefore, xZm ≤ yZm.
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(ii) Assume that xZm ≤ yZm. Then xZm = xZmZ yZm. Now,
(xZm)Z (x % y) = xZ (x % y) (since m is maximal)

= xZ yZm (by N2 of Definition 2.2)

= xZm. (by our assumption)
Therefore, xZm ≤ (x % y).

(iii) Consider,
m % x = mZ (m % x)

= mZ xZm (by N2 of Definition 2.2)

= xZm.

�

In the following, we give a counter-example for an SBADL in which the binary operation % does

not satisfy commutative and associative identities.

Example 3.1. Consider a five-element chain S = {w, x, y, z, m} in which the binary operation % is given as
follows:

% w x y z m

w m m m m m
x w m y z m
y x x m z m
z y y y m m
m w x y z m

Clearly, (S,Y,Z, %, m) is an SBADL. For w, x, y ∈ S, it is straight forward to observe that [(w % x) % y]Zm ,
[w % (x % y)]Zm, and also [(w % x)]Zm , [(x % w)]Zm. Therefore, % is not associative and commutative
in S.

If S is an SBADL, m1 is a maximal element, and % is the binary operation, then let us state and

name around 14 identities of length 3 of an associative kind with respect to the binary operation

%, as follows: for any x, y, z ∈ S,

(SA1) [(x % y) % z] Zm = [x % (y % z)]Zm (Associative law)

(SA2) [x % (y % z)]Zm = [x % (z % y)]Zm
(SA3) [x % (y % z)]Zm = [(x % z) % y] Zm
(SA4) [x % (y % z)]Zm = [y % (x % z)]Zm
(SA5) [x % (y % z)]Zm = [(y % x) % z] Zm
(SA6) [x % (y % z)]Zm = [y % (z % x)]Zm
(SA7) [x % (y % z)]Zm = [(y % z) % x] Zm
(SA8) [x % (y % z)]Zm = [(z % x) % y] Zm
(SA9) [x % (y % z)]Zm = [z % (y % x)]Zm
(SA10) [x % (y % z)]Zm = [(z % y) % x] Zm
(SA11) [(x % y) % z] Zm = [(x % z) % y] Zm
(SA12) [(x % y) % z] Zm = [(y % x) % z] Zm
(SA13) [(x % y) % z] Zm = [(y % z) % x] Zm
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(SA14) [(x % y) % z] Zm = [(z % y) % x] Zm.

Throughout this section, by S, we mean that (S,Y,Z, %, m) is an SBADL in which m is a maximal

element and % is the binary operation.

Definition 3.1. S is said to be associative with respect to the binary operation % if it satisfies SA1.

Definition 3.2. S said to be commutative with respect to the binary operation %, if it holds the property
(x % y)Zm = (y % x)Zm, for all x, y ∈ S.

It can be easily observed that the following Theorem 3.1 follows from Definitions 3.1, 3.2 and

2.2.

Theorem 3.1. If S is commutative and associative with regard to the binary operation %, then SAi if and
only if SA j, for all i, j ∈ {1, 2, 3, . . . , 14}.

Lemma 3.2. If S is associative, then pZm = (p % m)Zm, for all p ∈ S.

Proof. Suppose S is an associative SBADL, with m as its maximal element. Then, we have

[(x % y) % z] Z m = [x % (y % z)] Z m, for all x, y, z ∈ S. Replacing x, y, z with p in above, we

get

[(p % p) % p] Zm = [p % (p % p)]Zm
⇒ (m % p)Zm = (p % m)Zm (by N1 of Definition 2.2)

⇒ mZ (m % p)Zm = (p % m)Zm
⇒ mZ pZm = (p % m)Zm (by N2 of Definition 2.2)

⇒ pZm = (p % m)Zm. (by (v) of Theorem 2.2)
Therefore, pZm = (p % m)Zm. �

We provide a counter-example for an SBADL in which the identity in Lemma 3.2 does not hold

in the paragraphs that follow. In the following, we give a counter-example for an SBADL in which

the identity in Lemma 3.2 does not hold.

Example 3.2. Consider a three-element chain S = {x, y, m}, in which the binary operation % is given as
follows:

% x y m

x m x x
y x m m
m x y m

Then (S,Y,Z, %, m) is a semi-Brouwerian almost distributive lattice. Moreover y Z m = y , m =

(y % m)Zm.

Lemma 3.3. If S satisfies identities SA5 or SA8 or SA10 or SA12 or SA13 or SA14, then pZm = (p %m)Zm,
for all p ∈ S.
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Proof. Suppose that S satisfies SA5. Then
(p % m)Zm = [(pZm) % (p % p)Zm] (by N1 and N4 of Definition 2.2)

= [p % (p % p)]Zm (by N4 of Definition 2.2)

= [(p % p) % p] Zm (by SA5)

= (m % p)Zm (by N1 of Definition 2.2)

= pZm. (by (iii) of Lemma 3.1)
SA8:
pZm = pZmZm

= (m % p)Zm (by (iii) of Lemma 3.1)

= [(m % m) % p] Zm (by N1 of Definition 2.2)

= [m % (p % m)]Zm (by SA8)

= (p % m)ZmZm (by (iii) of Lemma 3.1)

= (p % m)Zm.
SA10:
(p % m)Zm = [p % (m % m)]Zm (by N1 of Definition 2.2)

= [(m % m) % p] Zm (by SA10)

= (m % p)Zm (by N1 of Definition 2.2)

= pZm. (by (iii) of Lemma 3.1)
SA12:

From Lemma 3.1 (ii), since pZm ≤ m, we have pZm ≤ (p % m)Zm. On the other hand, consider
[(p % m) % p] Zm = [(m % p) % p] Zm (by SA12)

= [(pZm) % p] Zm (by (iii) of Lemma 3.1)

= (p % p)Zm (by N4 of Definition 2.2)

= m.
Hence (p % m)Zm ≤ pZm from (i) of Lemma 3.1.

Therefore pZm = (p % m)Zm.

SA13:
aZm = pZmZm

= (m % p)Zm (by (iii) of Lemma 3.1)

= [(m % m) % p] Zm (by N1 of Definition 2.2)

= [(m % p) % m] Zm (by SA13)

= (p % m)Zm. (by (iii) of Lemma 3.1)
SA14:
(p % m)Zm = (p % m)Z (p % m)ZmZm

= (p % m)Z [(pZm) % m] Zm (by N4 of Definition 2.2)

= (p % m)Z [(m % p) % m] Zm (by (iii) of Lemma 3.1)

= (p % m)Z [(m % m) % p] Zm (by SA14)

= (p % m)Z (m % p)Zm (by N1 of Definition 2.2)

= (p % m)Z pZmZm. (by (iii) of Lemma 3.1)
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Therefore (p % m) Zm ≤ p Zm. On the other hand, we know that p Zm ≤ (p % m) Zm. Thus

pZm = (p % m)Zm. �

Remark 3.1. If S satisfies SA3 or SA4 or SA7 or SA9 or SA11, then S need not satisfies the identity in
Lemma 3.2. For, see Example 3.2, we have yZm , (y % m)Zm.

Remark 3.2. If S satisfies SA2, then S need not satisfy the identity in Lemma 3.2. For, take the example
below.

Example 3.3. Let S = {x, y, m}, with Y,Z and % defined as follows:

Y x y m

x x y m
y y y y
m m m m

Z x y m

x x x x
y x y m
m x y m

% x y m

x m m m
y x m m
m x x m

It is evident that (S,Y,Z, %, m) is an SBADL which satisfies SA2. It is clear to observe that

xZm , (x % m)Zm.

Recall the following lemma from [9].

Lemma 3.4. The following are equivalent in S:

(i) (x % y)Zm = (y % x)Zm, for all x, y ∈ S
(ii) (x % m)Zm = xZm, for all x ∈ S

(iii) yZ (x % y)Zm = xZ yZm, for all x, y ∈ S.

We establish a sufficient condition for an SBADL to satisfy condition Lemma 3.4(i) in the results

that follow.

Theorem 3.2. If S satisfies the identities SA1 or SA5 or SA8 or SA10 or SA12 or SA13 or SA14, then S is
commutative.

Proof. It is easy to prove the result from Lemmas 3.2, 3.3 and 3.4. �

Theorem 3.3. If S satisfies the identities SA2 or SA3 or SA6 or SA7 or SA9 or SA11, then S is commutative.

Proof. Consider an SBADL with

SA2:
(x % y)Zm = m % (x % y)Zm (since xZ yZm = yZ xZm)

= m % [(xZm) % (yZm)] (by N4 of Definition 2.2)

= m % [(yZm) % (xZm)] (by SA2)

= m % [(y % x)Zm] (by N4 of Definition 2.2)

= (y % x)Zm. (by (iii) of Lemma 3.1)
SA3:
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(x % y)Zm = m % [(x % y)Zm] (by (iii) of Lemma 3.1)

= m % [(xZm) % (yZm)] (by N4 of Definition 2.2)

= [m % (yZm)] % (xZm) (by SA3)

= (yZm) % (xZm) (by (iii) of Lemma 3.1)

= (y % x)Zm. (by N4 of Definition 2.2)
SA6:
(x % y)Zm = (xZm) % (yZm) (by N4 of Definition 2.2)

= (xZm) % (m % y) (by (iii) of Lemma 3.1)

= m % [y % (xZm)] (by SA6)

= [y % (xZm)]Zm (by (iii) of Lemma 3.1)

= (yZm) % (xZm) (by N4 of Definition 2.2)

= (y % x)Zm. (by N4 of Definition 2.2)
SA7:
(x % y)Zm = (xZm) % (yZm) (by N4 of Definition 2.2)

= (xZm) % (m % y) (by (iii) of Lemma 3.1)

= (m % y) % (xZm) (by SA7)

= (yZm) % (xZm) (by (iii) of Lemma 3.1)

= (y % x)Zm. (by N4 of Definition 2.2)
SA9:
(x % y)Zm = (x % y)ZmZm

= [(xZm) % (yZm)]Zm (by N4 of Definition 2.2)

= [(xZm) % (m % y)]Zm (by (iii) of Lemma 3.1)

= (xZm) % [m % (yZm)] (by N4 of Definition 2.2)

= (yZm) % [m % (xZm)] (by SA9)

= (yZm) % (xZm) (by (iii) of Lemma 3.1)

= (y % x)Zm. (by N4 of Definition 2.2)
SA11 :
(x % y)Zm = (xZm) % (yZm) (by N4 of Definition 2.2)

= (m % x) % (yZm) (by (iii) of Lemma 3.1)

= [m % (yZm)] % (xZm) (by SA11)

= (yZm) % (xZm) (by (iii) of Lemma 3.1)

= (y % x)Zm. (by N4 of Definition 2.2)
�

Remark 3.3. Every SBADL with SA4 may not be commutative. For, see Example 3.2, (m % y)Zm = y ,
m = (y % m)Zm.

Theorem 3.4. If S satisfies the identities SA3 or SA5 or SA6 or SA8 or SA9 or SA11 or SA13 or SA14, then
[(x % y) % z] Zm = [x % (y % z)]Zm, for all x, y, z ∈ S.

Proof. Consider an SBADL with

SA3 :



10 Int. J. Anal. Appl. (2024), 22:13

[x % (y % z)]Zm = (xZm) % [(y % z)Zm] (by (iii) of Lemma 3.1)

= (xZm) % [(z % y)Zm] (by Theorem 3.3)

= (xZm) % [(zZm) % (yZm)] (by N4 of Definition 2.2)

= [(xZm) % (yZm)] % (zZm) (by SA3)

= [(x % y)Zm] % (zZm) (by N4 of Definition 2.2)

= [(x % y) % z] Zm. (by N4 of Definition 2.2).
SA5 :
[x % (y % z)]Zm = (xZm) % [(y % z)Zm] (by N4 of Definition 2.2)

= (xZm) % [(yZm) % (zZm)] (by N4 of Definition 2.2)

= [(yZm) % (xZm)] % (zZm) (by SA5)

= [(y % x)Zm] % (zZm (by N4 of Definition 2.2)

= [(x % y)Zm] % (zZm) (by Theorem 3.2)

= [(x % y) % z] Zm. (by N4 of Definition 2.2)
SA6 :
[x % (y % z)]Zm = (xZm) % [(y % z)Zm] (by N4 of Definition 2.2)

= (xZm) % [(z % y)Zm] (by Theorem 3.3)

= (xZm) % [(zZm) % (yZm)] (by N4 of Definition 2.2)

= (zZm) % [(yZm) % (xZm)] (by SA6)

= (zZm) % [(y % x)Zm] (by N4 of Definition 2.2)

= (zZm) % [(x % y)Zm] (by Theorem 3.3)

= [z % (x % y)]Zm (by N4 of Definition 2.2)

= [(x % y) % z] Zm. (by Theorem 3.3)
SA8 :
[(x % (y % z)]Zm = (xZm) % [(y % z)Zm] (by N4 of Definition 2.2)

= (xZm) % [(z % y)Zm] (by Theorem 3.2)

= (xZm) % [(zZm) % (yZm)] (by N4 of Definition 2.2)

= [(yZm) % (xZm)] % (zZm) (by SA8)

= [(y % x)Zm] % (zZm) (by N4 of Definition 2.2)

= [(x % y)Zm] % (zZm) (by Theorem 3.2)

= [(x % y) % z] Zm. (by N4 of Definition 2.2)
SA9 :
[(x % (y % z)]Zm = (xZm) % [(yZm) % (zZm)] (by N4 of Definition 2.2)

= (zZm) % [(yZm) % (xZm)] (by SA9)

= (zZm) % [(y % x)Zm] (by N4 of Definition 2.2)

= (zZm) % [(x % y)Zm] (by Theorem 3.3)

= [z % (x % y)]Zm (by N4 of Definition 2.2)

= [(x % y) % z] Zm. (by Theorem 3.3)
SA11 :
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[(x % y) % z] Zm = [(x % y)Zm] % (zZm) (by N4 of Definition 2.2)

= [(y % x)Zm] % (zZm) (by Theorem 3.3)

= [(y % x) % z] Zm (by N4 of Definition 2.2)

= [(y % z) % x] Zm (by SA11)

= [x % (y % z)]Zm. (by Theorem 3.3)
SA13 :
[(x % y) % z] Zm = [(y % z) % x] Zm (by SA13)

= [x % (y % z)]Zm. (by Theorem 3.2)
SA14 :
[(x % y) % z] Zm = [(z % y) % x] Zm (by SA14)

= [x % (z % y)]Zm (by Theorem 3.2)

= (xZm) % [(z % y)Zm] (by N4 of Definition 2.2)

= (xZm) % [(y % z)Zm] (by Theorem 3.2)

= [x % (y % z)]Zm. (by N4 of Definition 2.2)

�

Theorem 3.5. Every commutative SBADL satisfies the identities SA2, SA7, SA10 and SA12.

Proof. Suppose that S satisfies the property [(x % y)]Zm = [(y % x)]Zm. Now, consider
[x % (y % z)]Zm = (xZm) % [(y % z)Zm] (by N4 of Definition 2.2)

= (xZm) % [(z % y)Zm] (by Definition 3.2)

= [x % (z % y)]Zm (by N4 of Definition 2.2)
which is SA2.

SA7 is clear from the commutative property.

Consider
[x % (y % z)]Zm = [(y % z) % x] Zm

= [(y % z)Zm] % [xZm] (by N4 of Definition 2.2)

= [(z % y)Zm] % [xZm] (by Definition 3.2)

= [(z % y) % x] Zm (by N4 of Definition 2.2)
which is SA10.

Consider
[(x % y) % z] Zm = [(x % y)Zm] % (zZm) (by N4 of Definition 2.2)

= [(y % x)Zm] % (zZm) (by Definition 3.2)

= [(y % x) % z] Zm (by N4 of Definition 2.2)
which is SA12. �

Corollary 3.1. In an associative SBADL, we have SA3 = SA5 = SA6 = SA8 = SA9 = SA11 = SA13 =

SA14.

Proof. The proof follows directly from Theorems 3.1, 3.2, 3.3 and 3.4. �

Corollary 3.2. In a commutative SBADL, we have SA2 = SA7 = SA10 = SA12.

Proof. Theorems 3.3, 3.4 and 3.5 all directly lead to the proof. �
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Theorem 3.6. Every commutative SBADL with the identity SA4 is associative.

Proof. Let x, y, z ∈ S. Then
[x % (y % z)]Zm = [x % (z % y)]Zm (by Definition 3.2)

= [z % (x % y)]Zm (by SA4)

= [(x % y) % z] Zm. (by Definition 3.2)
Therefore, S is associative. �

4. Conclusion

This paper extensively studied the associativity and commutativity properties of % in a semi-

Brouwerian almost distributive lattice. We provided a good number of counter-examples to

demonstrate that associativity and commutativity can fail in a semi-Brouwerian almost distribu-

tive lattice, to highlight the non-trivial nature of this algebraic structure. Overall, the paper’s

contributions lie in characterising semi-Brouwerian almost distributive lattices as a novel class of

almost distributive lattices.
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