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Abstract. We obtain symmetries of a family of difference equations and we prove a relationship between

these symmetries and similarity variables. We proceed with reduction and eventually derive formula

solutions of the difference equations. Furthermore, we discuss the periodic nature of the solutions and

analyze the stability of the fixed points. We use Lie point symmetry analysis as our tool in obtaining

the solutions. Though we have analyzed a specific family of difference equations in this paper, the

algorithmic techniques presented can be utilized to tackle many other difference equations.

1. Introduction

The study of differential and difference equations is of a great importance because they describe

real life phenomena when the variable involved (usually time) is continuous and discrete, respectively.

There are various mathematical methods for solving differential equations. One of the mathematical

tools is Lie symmetry analysis. Lie symmetry analysis has recently been applied to difference equations

and much progress has been made (see [4,6,11]). The idea behind Lie symmetry analysis is to find the

group of transformations that leave the difference equation invariant. When the equation is of lower

order, the calculations are not as tedious as compared to the case when the equation has a higher

order. A common observation in many papers is that authors present the formula solutions and, then

prove generally by induction that the results are correct. Frequently, they use proof by induction as

their tool to show that their results are correct. The beauty of Lie symmetry method is that it exhibits

the algorithm that leads one to the invariants and similarity variables necessary for the obtention of

the solutions. The method was first proposed by Maeda in [9] where the author showed, for first
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order difference equations, that symmetries give analytic expressions of solutions of one-dimensional

equations.

Recently, Hydon proposed a systematic algorithm for solving difference equations of any order but

mainly applied it to relatively lower order difference equations. Later, some authors successfully

derived solutions of higher order using this method [3, 10].

In this paper, we performed an invariance analysis of the recurrence equation

xn+6k =
xnxn+kxn+2k

xn+4kxn+5k(An + Bnxnxn+kxn+2k)
, (1.1)

where An and Bn are random sequences; and xi , i = 0, 1, . . . , 6k − 1 are the initial conditions.

Eventually, symmetries are derived and formula solutions are obtained. We also investigate the periodic

nature of these solutions and discuss the stability of the fixed points admitted by the equation in

concern. Finally, we explain how one can use our results to deduce the solutions to the equivalent

difference equation

xn+1 =
xn−6k+1xn−5k+1xn−4k+1

xn−2k+1xn−k+1(an + bnxn−6k+1xn−5k+1xn−4k+1)
, (1.2)

a form preferred by some authors. For similar work on difference equations from different approaches,

refer to [1, 2, 7, 8, 12].

2. Groundwork

The notation and definitions used in this section are from [6] and [5]. Consider the equation

E(x) = 0 where x = (x1, . . . , xN) are the continuous variables. The group transformations

Θε : x→ x̂(x; ε) (2.1)

are said to be a one-parameter (local) Lie group of transformations provided that the following three

conditions are satisfied:

(1) Θ0 is the identity map, so that x̂ = x when ε = 0.

(2) ΘγΘε = Θγ+ε for every γ, ε sufficiently close to 0.

(3) Every x̂i can be represented as a Taylor series in ε, that is,

x̂j(x; ε) = xj + εξj(x) +O(ε2), j = 0, 1, . . . , N.

Definition 2.1. The infinitesimal generator of the one-parameter Lie group of point transformations

(2.1) is the operator

X = X(x) = ξ(x) · ∆ =

n∑
i=1

ξi(x)
∂

∂xi
, (2.2)

and ∆ is the gradient operator.

Theorem 2.1. F (x) is invariant under the Lie group of transformations (2.1) if and only if XF (x) = 0.
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Given a 6kth-order difference equation of the form

xn+6k = ω(n, xn, xn+k , xn+2k , xn+4k , xn+5k) (2.3)

for some function ω with the condition that ∂ω/∂xn 6= 0, we look for a one-parameter Lie group of

point transformations

x̂n = xn + εQ(n, xn) (2.4)

where ε is the group parameter and Q = Q(n, xn) is the characteristic function. Let

X =Q(n, xn)
∂

∂xn
+ SkQ(n, xn)

∂

∂xn+k
+ S2kQ(n, xn)

∂

∂xn+2k
+ S4kQ(n, xn)

∂

∂xn+4k
+ S5kQ(n, xn)

∂

∂xn+5k

be the prolonged generator admitted by the group of point transformations (2.4), where the operator

Si : n → n + i

is referred to as the forward shift operator. Then, the infinitesimal condition for invariance is given

by S6kQ(n, xn)−Xω = 0, that is,

S6kQ−
∂ω

∂xn+5k
S5kQ−

∂ω

∂xn+4k
S4kQ−

∂ω

∂xn+2k
S2kQ−

∂ω

∂xn+k
SkQ−

∂ω

∂xn
Q = 0 (2.5)

as long as (2.3) is satisfied. The functional equation (2.5) is solvable via a proper differential operator

and a number of derivations. Next, we introduce the following definitions and theorems indispensable

for the study of stability of equilibrium points.

Definition 2.2. The equilibrium point x̄ of (2.3) is locally stable if, for any ε > 0 such that if

{xn}∞n=0 is a solution of (2.3) with |x0 − x̄ | + |x1 − x̄ | + · · · + |x6k−2 − x̄ | + |x6k−1 − x̄ | < δ, then

|xn − x̄ | < ε for all n ≥ 0.

Definition 2.3. The equilibrium point x̄ of (2.3) is a global attractor if, for any solution {xn}∞n=0 of
(2.3), the limit of xn is x̄ as n approaches infinity.

Definition 2.4. The equilibrium point x̄ of (2.3) is globally asymptotically stable if x̄ is locally stable

and is a global attractor of (2.3).

Letting

pi =
∂ω

∂xn+i
(x̄ , . . . , x̄), i = 0, k, 2k, 4k, 5k, (2.6)

we obtain the equation

λ6k − p5kλ5k − p4kλ4k − p2kλ2k − pkλk − p0 = 0 (2.7)

known as the characteristic equation of (2.3) about the fixed point x̄ .

Theorem 2.2. Suppose ω is a smooth function defined on some open neighborhood of equilibrium

point x̄ . Then the following statements are true:
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(i) x̄ is locally asymptotically stable if all the roots of (2.7) have absolute value less than one.

(ii) x̄ is unstable if at least one root of (2.7) has absolute value greater than one.

Definition 2.5. The equilibrium point x̄ of (2.3) is called non-hyperbolic if there exists a root of (2.7)

with absolute value equal to one.

Theorem 2.3. Suppose that p0, pk , p2k , p4k and p5k are real numbers such that

|p0|+ |pk |+ |p2k |+ |p4k |+ |p5k | < 1.

Then, the roots of (2.7) lie inside the open unit disk |λ| < 1.

3. Symmetries and solutions

In this section, we consider the difference equation

xn+6k = ω =
xnxn+kxn+2k

xn+4kxn+5k(An + Bnxnxn+kxn+2k)
. (3.1)

Imposing the invariance criterion (2.5) to (3.1) yields

Q(n + 6k, ω) +
xnxn+kxn+2kQ (n + 5k, xn+5k)

xn+4kx
2
n+5k (Bnxnxn+kxn+2k + An)

+
xnxn+kxn+2kQ (n + 4k, xn+4k)

x2n+4kxn+5k (Bnxnxn+kxn+2k + An)
−

An
xn+4kxn+5k

[
xnxn+kQ (n + 2k, xn+2k)

(Bnxnxn+kxn+2k + An)2
+
xnxn+2kQ (n + k, xn+k)

(Bnxnxn+kxn+2k + An)2
+

xn+kxn+2kQ (n, xn)

(Bnxnxn+kxn+2k + An)2

]
= 0.

(3.2)

Applying the differential operator ∂
∂xn

+
Anxn+4k

xn(An+Bnxnxn+kxn+2k)
∂
∂xn+4k

to (3.2) and multiplying the

resulting equation by (An + Bnxnxn+kxn+2k)3/(Anxn+kxn+2kxn+4kx
2
n+5k), we get

xn+4k(An + Bnxnxn+kxn+2k)Q′(n + 4k, xn+4k)− (An + Bnxnxn+kxn+2k)Q(n + 4k, xn+4k)

+ Bnxnxn+kxn+4kQ(n + 2k, xn+2k) + Bnxnxn+2kxn+4kQ(n + k, xn+k)−

xn+4k(An + Bnxnxn+kxn+2k)Q′(n, xn) + xn+4k

(
An
xn

+ 2Bnxn+kxn+2k

)
Q(n, xk) = 0. (3.3)

The notation ′ stands for the derivative with respect to the continuous variable. The derivation of

(3.3) with respect to xn twice yields

−xn+kxn+2kBnxnQ′′′(n, xn) + An

(
−Q′′′(n, xn) +

1

xn
Q′′(n, xn)−

2

x2n
Q′(n, xn) +

2

x3n
Q(n, xn)

)
= 0.

(3.4)

Remembering that the function Q(n, xn) is independent of the shifts of xn, we apply the method of

separation to get the system of determining equations

xn+kxn+2k terms : −BnxnQ′′′(n, xn) = 0 (3.5)

1 terms : −AnQ′′′(n, xn) +
An
xn
Q′′(n, xn)−

2An
x2n

Q′(n, xn) +
2An
x3n

Q(n, xn) = 0 (3.6)
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that leads to the differential equation

x2nQ
′′ (n, xn)− 2xnQ

′ (n, xn) + 2Q (n, xn) = 0 (3.7)

whose solution is

Q (n, un) = βnun + γnun
2 (3.8)

for some functions βn and γn which depend on n and are arbitrary. Substituting (3.8) and its shifts

in (3.2), and then replacing the expression of un+6k given in (3.1) in the resulting equation with some

bit of simplification leads to

xnxn+kxn+2kx
2
n+4kxn+5kBnγn+4k + xnxn+kxn+2kxn+4kx

2
n+5kBnγn+5k + xnxn+kxn+2kxn+4kxn+5kBn(βn+4k

+ βn+5k + βn+6k) + xn+4kx
2
n+5kAn(γn+4k + γn+5k)− xnxn+4kxn+5kAnγn − xn+kxn+4kxn+5kAnγn+k−

xn+2kxn+4kxn+5kAnγn+2k − xn+4kxn+5kAn(βn + βn+k + βn+2k − βn+4k − βn+5k − βn+6k)

+ xnxn+kxn+2kAnγn+6k = 0. (3.9)

Equating the coefficients of all products of powers of shifts of xn to zero leads to the reduced

constraints

γn = 0,

βn + βn+k + βn+2k = 0. (3.10)

The solutions of the (2k)th-order linear difference equation above are given by

βn = exp

{
i2πn(3p ± 1)

3k

}
, p = 0, 1, . . . , k − 1, (3.11)

and the characteristics are given by

Q(n, xn) = xnβn = xn exp

{
i2πn(3p ± 1)

3k

}
, p = 0, 1, . . . , k − 1. (3.12)

Thus, the 2k symmetry generators are:

X1p =xn exp

(
i2πn(3p + 1)

3k

)
∂xn , X2p = xn exp

(
i2πn(3p − 1)

3k

)
∂xn , p = 0, 1, . . . , k − 1.

(3.13)

The reduction is done using the characteristic Q(n, xn) = βnxn given in (3.12) together with the

canonical coordinate

sn =

∫
dxn
βnxn

=
1

βn
ln |xn|. (3.14)

We come up with the invariant function Ṽn obtained as follows:

Ṽn = snβn + sn+kβn+k + sn+2kβn+2k . (3.15)
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It is easy to verify that X1pṼn = X2pṼn = 0. For the sake of convenience, we introduce the compatible

variable

|Vn| = exp{−Ṽn}. (3.16)

That is to say, Vn = ±1/(xnxn+kxn+2k). Using the plus sign, we have that

Vn =
1

xnxn+kxn+2k
(3.17)

and one can show that

Vn+4k = AnVn + Bn (3.18)

and

xn+3k =
Vn
Vn+k

xn. (3.19)

Furthermore, by simple iterations, equations (3.18) and (3.19) take the forms

V4kn+j =Vj

 n−1∏
k1=0

A4kk1+j

+

n−1∑
m=0

B4km+j n−1∏
k2=m+1

A4kk2+j

 , j = 0, 1, . . . , 4k − 1, (3.20)

and

x3kn+j =xj

(
n−1∏
s=0

V3ks+j
V3ks+k+j

)
, j = 0, 1, . . . , 3k − 1, (3.21)

respectively. It follows from (3.21) that

x12kn+j =xj

(
4n−1∏
s=0

V3ks+j
V3ks+k+j

)

=xj

n−1∏
s=0

V12ks+j
V12ks+k+j

V12ks+3k+j
V12ks+3k+k+j

V12ks+6k+j
V12ks+6k+k+j

V12ks+9k+j
V12ks+9k+k+j

=xj

n−1∏
s=0

3∏
r=0

V12ks+3kr+j
V12ks+3kr+k+j

=xj

n−1∏
s=0

3∏
r=0

V
4k(3s+b 3kr+j4k

c)+τ(3kr+j)

V
4k(3s+b 3kr+k+j4k

c)+τ(3kr+k+j)
, (3.22)

j = 0, 1, . . . , 12k − 1. Note that b·c is the floor function and τ(a) represents the remainder when a

is divided by 4k . Obviously, 0 ≤ τ(a) ≤ 4k − 1. Invoking (3.20) in (3.22), we get
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x12kn+j =xj

n−1∏
s=0

3∏
r=0

Vτ(3kr+j)


3s−1+
b 3kr+j
4k
c∏

k1=0

A4kk1+τ(3kr+j)

+

3s−1+
b 3kr+j
4k
c∑

m=0

 B4km+τ(3kr+j)

3s−1+
b 3kr+j
4k
c∏

k2=m+1

A4kk2+τ(3kr+j)


Vτ(3kr+k+j)


3s−1+
b 3kr+k+j

4k
c∏

k1=0

A4kk1+τ(3kr+k+j)

+

3s−1+
b 3kr+k+j

4k
c∑

m=0

B4km+τ(3kr+k+j)
3s−1+
b 3kr+k+j

4k
c∏

k2=m+1

A4kk2+τ(3kr+k+j)


,

(3.23)

where Vi = 1/(xixi+kxi+2k). Thus, our solution to the difference equation (1.2) is given by the

equation (3.23) as long as the denominators are non-zero.

3.1. The case An and Bn are 1-periodic sequences. In the special case where the sequences An
and Bn are 1-periodic sequences, in other words, An = A and Bn = B, the formula solution (3.23)

simplifies considerably to:

x12kn+j = xj

n−1∏
s=0

Vτ(j)A
3s+b j

4k
c + B

3s+
b j
4k
c−1∑

m=0

Am

Vτ(j+k)A
3s+b j+k

4k
c + B

3s+
b j+k
4k
c−1∑

m=0

Am

Vτ(j+3k)A
3s+b j+3k

4k
c + B

3s+
b j+3k
4k
c−1∑

m=0

Am

Vτ(j)A
3s+b j

4k
c+1 + B

3s+b j
4k
c∑

m=0

Am

Vτ(j+2k)A
3s+b j+2k

4k
c+1 + B

3s+
b j+2k
4k
c∑

m=0

Am

Vτ(j+3k)A
3s+b j+3k

4k
c+1 + B

3s+
b j+3k
4k
c∑

m=0

Am

Vτ(j+k)A
3s+b j+k

4k
c+2 + B

3s+
b j+k
4k
c+1∑

m=0

Am

Vτ(j+2k)A
3s+b j+2k

4k
c+2 + B

3s+
b j+2k
4k
c+1∑

m=0

Am

, (3.24)

for j = 0, 1, . . . , 12k−1. It can be shown that j = 0, 1, . . . , 12k−1 can be written as j = 4kr+pk+j1

with r = 0, 1, 2; p = 0, 1, 2, 3; j1 = 0, 1, . . . , k − 1. So,

x12kn+4kr+j1 =x4kr+j1

n−1∏
s=0

Vj1A
3s+r + B

3s+r−1∑
m=0

Am

Vj1+kA
3s+r + B

3s+r−1∑
m=0

Am

Vj1+3kA
3s+r + B

3s+r−1∑
m=0

Am

Vj1A
3s+r+1 + B

3s+r∑
m=0

Am

Vj1+2kA
3s+r+1 + B

3s+r∑
m=0

Am

Vj1+3kA
3s+r+1 + B

3s+r∑
m=0

Am

Vj1+kA
3s+r+2 + B

3s+r+1∑
m=0

Am

Vj1+2kA
3s+r+2 + B

3s+r+1∑
m=0

Am
, (3.25a)

x12kn+4kr+k+j1 =x4kr+k+j1

n−1∏
s=0

Vk+j1A
3s+r + B

3s+r−1∑
m=0

Am

Vj1+2kA
3s+r + B

3s+r−1∑
m=0

Am

Vj1A
3s+r+1 + B

3s+r∑
m=0

Am

Vj1+kA
3s+r+1 + B

3s+r∑
m=0

Am

Vj1+3kA
3s+r+1 + B

3s+r∑
m=0

Am

Vj1A
3s+r+2 + B

3s+r+1∑
m=0

Am

Vj1+2kA
3s+r+2 + B

3s+r+1∑
m=0

Am

Vj1+3kA
3s+r+2 + B

3s+r+1∑
m=0

Am
, (3.25b)
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x12kn+4kr+2k+j1 =x4kr+2k+j1

n−1∏
s=0

Vj1+2kA
3s+r + B

3s+r−1∑
m=0

Am

Vj1+3kA
3s+r + B

3s+r−1∑
m=0

Am

Vj1+kA
3s+r+1 + B

3s+r∑
m=0

Am

Vj1+2kA
3s+r+1 + B

3s+r∑
m=0

Am

Vj1A
3s+r+2 + B

3s+r+1∑
m=0

Am

Vj1+kA
3s+r+2 + B

3s+r+1∑
m=0

Am

Vj1+3kA
3s+r+2 + B

3s+r+1∑
m=0

Am

Vj1A
3s+r+3 + B

3s+r+2∑
m=0

Am
, (3.25c)

x12kn+4kr+3k+j1 =x4kr+3k+j1

n−1∏
s=0

Vj1+3kA
3s+r + B

3s+r−1∑
m=0

Am

Vj1A
3s+r+1 + B

3s+r∑
m=0

Am

Vj1+2kA
3s+r+1 + B

3s+r∑
m=0

Am

Vj1+3kA
3s+r+1 + B

3s+r∑
m=0

Am

Vj1+kA
3s+r+2 + B

3s+r+1∑
m=0

Am

Vj1+2kA
3s+r+2 + B

3s+r+1∑
m=0

Am

Vj1A
3s+r+3 + B

3s+r+2∑
m=0

Am

Vj1+kA
3s+r+3 + B

3s+r+2∑
m=0

Am
, (3.25d)

for j1 = 0, 1, . . . , k − 1 with Vi = 1/(xixi+kxi+2k). The above solutions are expressed in terms of

xi , i = 0, 1, . . . , 12k − 1 where the first 6k terms are the initial conditions. The other 6k terms are

readily obtained using (3.1) and are given as follows:

x6k+j1 =
xj1xj1+kxj1+2k

xj1+4kxj1+5k(A+ Bxj1xj1+kxj1+2k)
,

x7k+j1 =
x3k+j1xj1+4k(A+ Bxj1xj1+kxj1+2k)

xj1(A+ Bxj1+kxj1+2kxj1+3k)
,

x8k+j1 =
x4k+j1xj1+5k(A+ Bxk+j1xj1+2kxj1+3k)

xk+j1(A+ Bxj1+2kxj1+3kxj1+4k)
,

x9k+j1 =
xj1xj1+k(A+ Bxj1+2kxj1+3kxj1+4k)

xj1+4k(A+ Bxj1xj1+kxj1+2k)(A+ Bxj1+3kxj1+4kxj1+5k)
,

x10k+j1 =
xj1+kxj1+2k(A+ Bxj1+3kxj1+4kxj1+5k)(A+ Bxj1xj1+kxj1+2k)

xj1+5k(A+ Bxj1+kxj1+2kxj1+3k)(A2 + B(A+ 1)xj1xj1+kxj1+2k)
,

x11k+j1 =
xj1+3kxj1+4kxj1+5k(A+ Bxj1+kxj1+2kxj1+3k)(A2 + B(A+ 1)xj1xj1+kxj1+2k)

xj1xj1+k(A+ Bxj1+2kxj1+3kxj1+4k)(A2 + B(A+ 1)xj1+kxj1+2kxj1+3k)
, (3.26)

j1 = 0, 1, . . . k − 1. We further split the above equations into various cases.

3.1.1. The case when A 6= 1. By substitution, one obtains the solution given by the equations:

x12kn+4kr+j1 =

x4kr+j1

n−1∏
s=0

A3s+r + Bxj1xj1+kxj1+2k

(
1−A3s+r
1−A

)
A3s+r + Bxj1+kxj1+2kxj1+3k

(
1−A3s+r
1−A

) A3s+r + Bxj1+3kxj1+4kxj1+5k
(
1−A3s+r
1−A

)
A3s+r+1 + Bxj1xj1+kxj1+2k

(
1−A3s+r+1
1−A

)
A3s+r+1 + Bxj1+2kxj1+3kxj1+4k

(
1−A3s+r+1
1−A

)
A3s+r+1 + Bxj1+3kxj1+4kxj1+5k

(
1−A3s+r+1
1−A

) A3s+r+2 + Bxj1+kxj1+2kxj1+3k
(
1−A3s+r+2
1−A

)
A3s+r+2 + Bxj1+2kxj1+3kxj1+4k

(
1−A3s+r+2
1−A

) , (3.27)
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x12kn+4kr+k+j1 =

x4kr+k+j1

n−1∏
s=0

A3s+r + Bxj1+kxj1+2kxj1+3k

(
1−A3s+r
1−A

)
A3s+r + Bxj1+2kxj1+3kxj1+4k

(
1−A3s+r
1−A

) A3s+r+1 + Bxj1xj1+kxj1+2k

(
1−A3s+r+1
1−A

)
A3s+r+1 + Bxj1+kxj1+2kxj1+3k

(
1−A3s+r+1
1−A

)
A3s+r+1 + Bxj1+3kxj1+4kxj1+5k

(
1−A3s+r+1
1−A

)
A3s+r+2 + Bxj1xj1+kxj1+2k

(
1−A3s+r+2
1−A

) A3s+r+2 + Bxj1+2kxj1+3kxj1+4k

(
1−A3s+r+2
1−A

)
A3s+r+2 + Bxj1+3kxj1+4kxj1+5k

(
1−A3s+r+2
1−A

) , (3.28)

x12kn+4kr+2k+j1 =

x4kr+2k+j1

n−1∏
s=0

A3s+r + Bxj1+2kxj1+3kxj1+4k

(
1−A3s+r
1−A

)
A3s+r + Bxj1+3kxj1+4kxj1+5k

(
1−A3s+r
1−A

) A3s+r+1 + Bxj1+kxj1+2kxj1+3k
(
1−A3s+r+1
1−A

)
A3s+r+1 + Bxj1+2kxj1+3kxj1+4k

(
1−A3s+r+1
1−A

)
A3s+r+2 + Bxj1xj1+kxj1+2k

(
1−A3s+r+2
1−A

)
A3s+r+2 + Bxj1+kxj1+2kxj1+3k

(
1−A3s+r+2
1−A

) A3s+r+2 + Bxj1+3kxj1+4kxj1+5k
(
1−A3s+r+2
1−A

)
A3s+r+3 + Bxj1xj1+kxj1+2k

(
1−A3s+r+3
1−A

) , (3.29)

x12kn+4kr+3k+j1 =

x4kr+3k+j1

n−1∏
s=0

A3s+r + Bxj1+3kxj1+4kxj1+5k

(
1−A3s+r
1−A

)
A3s+r+1 + Bxj1xj1+kxj1+2k

(
1−A3s+r+1
1−A

) A3s+r+1 + Bxj1+2kxj1+3kxj1+4k
(
1−A3s+r+1
1−A

)
A3s+r+1 + Bxj1+3kxj1+4kxj1+5k

(
1−A3s+r+1
1−A

)
A3s+r+2 + Bxj1+kxj1+2kxj1+3k

(
1−A3s+r+2
1−A

)
A3s+r+2 + Bxj1+2kxj1+3kxj1+4k

(
1−A3s+r+2
1−A

) A3s+r+3 + Bxj1xj1+kxj1+2k

(
1−A3s+r+3
1−A

)
A3s+r+3 + Bxj1+kxj1+2kxj1+3k

(
1−A3s+r+3
1−A

) . (3.30)

The case A = −1: In this case, one obtains the solution defined by the following solution equations

x12kn+4kr+j1 =
xj1+4kr if n is even

x4kr+j1

(
(−1)r+ B

Vj1

(
1−(−1)r
2

))
(−1)r+1+ B

Vj1

(
1−(−1)r+1

2

) (−1)r+ B
Vj1+3k

(
1−(−1)r
2

)
(−1)r+1+ B

Vj1+3k

(
1−(−1)r+1

2

) (−1)r+1+ B
Vj1+2k

(
1−(−1)r+1

2

)
(−1)r+ B

Vj1+2k

(
1−(−1)r
2

) if n is odd

x12kn+4kr+k+j1 =
xj1+4kr+k if n is even

x4kr+k+j1

(
(−1)r+ B

Vj1+k

(
1−(−1)r
2

))
(−1)r+1+ B

Vj1+k

(
1−(−1)r+1

2

) (−1)r+1+ B
Vj1

(
1−(−1)r+1

2

)
(−1)r+ B

Vj1

(
1−(−1)r
2

) (−1)r+1+ B
Vj1+3k

(
1−(−1)r+1

2

)
(−1)r+ B

Vj1+3k

(
1−(−1)r
2

) if n is odd

x12kn+4kr+2k+j1 =
xj1+4kr+2k if n is even

x4kr+2k+j1

(
(−1)r+ B

Vj1+2k

(
1−(−1)r
2

))
(−1)r+1+ B

Vj1+2k

(
1−(−1)r+1

2

) (−1)r+1+ B
Vj1+k

(
1−(−1)r+1

2

)
(−1)r+ B

Vj1+k

(
1−(−1)r
2

) (−1)r+ B
Vj1

(
1−(−1)r
2

)
(−1)r+1+ B

Vj1

(
1−(−1)r+1

2

) if n is odd
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x12kn+4kr+3k+j1 =
xj1+4kr+3k if n is even

x4kr+3k+j1

[
(−1)r+ B

Vj1+3k

(
1−(−1)r
2

)][
(−1)r+1+ B

Vj1+2k

(
1−(−1)r+1

2

)][
(−1)r+ B

Vj1+k

(
1−(−1)r
2

)]
[
(−1)r+1+ B

Vj1+3k

(
1−(−1)r+1

2

)][
(−1)r+ B

Vj1+2k

(
1−(−1)r
2

)][
(−1)r+1+ B

Vj1+k

(
1−(−1)r+1

2

)] if n is odd.
(3.31)

More explicitly, for j1 = 0, 1, . . . , k − 1, we have:

x6k+j1 =
xj1xj1+kxj1+2k

xj1+4kxj1+5k(−1 + B
Vj1

)
, x6k+k+j1 =

x3k+j1xj1+4k(−1 + B
Vj1

)

xj1(−1 + B
Vj1+k

)
,

x6k+2k+j1 =
x4k+j1xj1+5k(−1 + B

Vj1+k
)

xj1+k(−1 + B
Vj1+2k

)
, x6k+3k+j1 =

xj1xj1+k(−1 + B
Vj1+2k

)

xj1+4k(−1 + B
Vj1

)(−1 + B
Vj1+3k

)
,

x6k+4k+j1 =
xj1+kxj1+2k(−1 + B

Vj1+3k
)(−1 + B

Vj1
)

xj1+5k(−1 + B
Vj1+k

)
, x6k+5k+j1 =

xj1+3kxj1+4kxj1+5k(−1 + B
Vj1+k

)

xj1xj1+k(−1 + B
Vj1+2k

)
,

x12k+j1 =
xj1(−1 + B

Vj1+2k
)

(−1 + B
Vj1

)(−1 + B
Vj1+3k

)
, x12k+k+j1 =

xk+j1(−1 + B
Vj1

)(−1 + B
Vj1+3k

)

(−1 + B
Vj1+k

)
,

x12k+2k+j1 =
x2k+j1(−1 + B

Vj1+k
)

(−1 + B
Vj1+2k

)(−1 + B
Vj1

)
, x12k+3k+j1 =

x3k+j1(−1 + B
Vj1+2k

)

(−1 + B
Vj1+k

)(−1 + B
Vj1+3k

)
,

x12k+4k+j1 =
x4k+j1(−1 + B

Vj1+3k
)(−1 + B

Vj1
)

(−1 + B
Vj1+2k

)
, x12k+5k+j1 =

x5k+j1(−1 + B
Vj1+k

)

(−1 + B
Vj1

)(−1 + B
Vj1+3k

)
,

x12k+6k+j1 =
x6k+j1(−1 + B

Vj1+2k
)(−1 + B

Vj1
)

(−1 + B
Vj1+k

)
, x12k+7k+j1 =

x7k+j1(−1 + B
Vj1+k

)(−1 + B
Vj1+3k

)

(−1 + B
Vj1+2k

)−1
,

x12k+8k+j1 = x12k+j1 , x12k+9k+j1 = x12k+k+j1 , x12k+10k+j1 = x12k+2k+j1 , x12k+11k+j1 = x12k+3k+j1 ,

x12(2n)k+i =xi , i = 0, 1, . . . , 12k − 1; x12(2n+1)k+j1 = x12k+i , i = 0, 1, . . . , 12k − 1.

(3.32)

3.1.2. The case when A = 1. Using (3.25) and (3.26), the solution equations are as follows:

x6k+j1 =
xj1xj1+kxj1+2k

xj1+4kxj1+5k(1 + Bxj1xj1+kxj1+2k)
,

x7k+j1 =
x3k+j1xj1+4k(1 + Bxj1xj1+kxj1+2k)

xj1(1 + Bxj1+kxj1+2kxj1+3k)
,

x8k+j1 =
x4k+j1xj1+5k(1 + Bxj1+kxj1+2kxj1+3k)

xj1+k(1 + Bxj1+2kxj1+3kxj1+4k)
,
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x9k+j1 =
xj1xj1+k(1 + Bxj1+2kxj1+3kxj1+4k)

xj1+4k(1 + Bxj1xj1+kxj1+2k)(1 + Bxj1+3kxj1+4kxj1+5k)
,

x10k+j1 =
xj1+kxj1+2k(1 + Bxj1+3kxj1+4kxj1+5k)(1 + Bxj1xj1+kxj1+2k)

xj1+5k(1 + Bxj1+kxj1+2kxj1+3k)(1 + 2Bxj1xj1+kxj1+2k)
,

x11k+j1 =
xj1+3kxj1+4kxj1+5k(1 + Bxj1+kxj1+2kxj1+3k)(1 + 2Bxj1xj1+kxj1+2k)

xj1xj1+k(1 + Bxj1+2kxj1+3kxj1+4k)(1 + 2Bxj1+kxj1+2kxj1+3k)
,

x12kn+4kr+j1 =x4kr+j1

n−1∏
s=0

1 + B(3s + r)xj1xj1+kxj1+2k
1 + B(3s + r)xj1+kxj1+2kxj1+3k

1 + B(3s + r)xj1+3kxj1+4kxj1+5k
1 + B(3s + r + 1)xj1xj1+kxj1+2k

1 + B(3s + r + 1)xj1+2kxj1+3kxj1+4k
1 + B(3s + r + 1)xj1+3kxj1+4kxj1+5k

1 + B(3s + r + 2)xj1+kxj1+2kxj1+3k
1 + B(3s + r + 2)xj1+2kxj1+3kxj1+4k

,

x12kn+4kr+k+j1 =x4kr+k+j1

n−1∏
s=0

1 + B(3s + r)xj1+kxj1+2kxj1+3k
1 + B(3s + r)xj1+2kxj1+3kxj1+4k)

1 + B(3s + r + 1)xj1xj1+kxj1+2k
1 + B(3s + r + 1)xj1+kxj1+2kxj1+3k

1 + B(3s + r + 1)xj1+3kxj1+4kxj1+5k
1 + B(3s + r + 2)xj1xj1+kxj1+2k

1 + B(3s + r + 2)xj1+2kxj1+3kxj1+4k
1 + B(3s + r + 2)xj1+3kxj1+4kxj1+5k

,

x12kn+4kr+2k+j1 =x4kr+2k+j1

n−1∏
s=0

1 + B(3s + r)xj1+2kxj1+3kxj1+4k
1 + B(3s + r)xj1+3kxj1+4kxj1+5k

1 + B(3s + r + 1)xj1+kxj1+2kxj1+3k
1 + B(3s + r + 1)xj1+2kxj1+3kxj1+4k

1 + B(3s + r + 2)xj1xj1+kxj1+2k
1 + B(3s + r + 2)xj1+kxj1+2kxj1+3k

1 + B(3s + r + 2)xj1+3kxj1+4kxj1+5k
1 + B(3s + r + 3)xj1xj1+kxj1+2k

,

x12kn+4kr+3k+j1 =x4kr+3k+j1

n−1∏
s=0

1 + B(3s + r)xj1+3kxj1+4kxj1+5k
1 + B(3s + r + 1)xj1xj1+kxj1+2k

1 + B(3s + r + 1)xj1+2kxj1+3kxj1+4k
1 + B(3s + r + 1)xj1+3kxj1+4kxj1+5k

1 + B(3s + r + 2)xj1+kxj1+2kxj1+3k
1 + B(3s + r + 2)xj1+2kxj1+3kxj1+4k

1 + B(3s + r + 3)xj1xj1+kxj1+2k
1 + B(3s + r + 3)xj1+kxj1+2kxj1+3k

, (3.33)

for j1 = 0, 1, . . . , k − 1.

4. Periodic nature and behavior of the solutions

In this section, we show the existence of periodic solutions and we analyze the stability of the

equilibrium points.

Theorem 4.1. Let xn be a solution of

xn+6k =
xnxn+kxn+2k

xn+4kxn+5k(−1 + Bxnxn+kxn+2k)
, (4.1)

with initial conditions xi , i = 0, . . . , 6k − 1. Then, the solution to (4.1) is periodic with period 24k .

Proof. The proof follows from (3.32). �
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Figure 1. Graph of xn+6k =
xnxn+k xn+2k

xn+4k xn+5k (−1+Bxnxn+k xn+2k )
, with x0 = 1/2, x1 = 1/3, x2 = −1/4, x3 = −1/2, x4 =

2, x5 = −1/2, x6 = 1/4, x7 = −5, x8 = 1, x9 = 1/2, x10 = −1/4, x11 = −1/2.

Figure 1 demonstrates Theorem 4.1. As expected, we have a 48-periodic solution, regardless of the

value of B.

Theorem 4.2. Let xn be a solution of

xn+6k =
xnxn+kxn+2k

xn+4kxn+5k(A+ Bxnxn+kxn+2k)
, (4.2)

where A 6= 1 and B are real constants. Assume that the initial conditions xi and xi+3k satisfy

xi = xi+3k , xi 6= xi+k ; and xixi+kxi+2k = (1− A)/B. Then, the solution to (4.2) is 3k-periodic.

Proof. Assuming that the initial conditions satisfy xi = xi+3k , xi 6= xi+k ; and xixi+kxi+2k = (1−A)/B.

It follows from (3.26) and (3.27)-(3.30) that

x6k+i = xi , x12kn+i = xi , (4.3)

for all i = 0, 1, . . . , 12k − 1. The condition xi = xi+3k together with (4.3) imply that the solution is

3k-periodic. �
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Figure 2. Graph of xn+6k =
xnxn+k xn+2k

xn+4k xn+5k (3+2xnxn+k xn+2k )
, with x0 =

1/4, x1 = 1/3, x2 = 1/2, x3 = 1, x4 =

−8, x5 = −3, x6 = 1/4, x7 = 1/3, x8 =
1/2, x9 = 1, x10 = −8, x11 = −3.

Figure 3. Graph of xn+6k =
xnxn+k xn+2k

xn+4k xn+5k (3+4xnxn+k xn+2k )
, with x0 =

1/4, x1 = 1/3, x2 = 1/2, x3 = 1, x4 =

−8, x5 = −3, x6 = 1/4, x7 = 1/3, x8 =
1/2, x9 = 1, x10 = −8, x11 = −3.

Figure 2 demonstrates Theorem 4.2, as expected, we have a 6-periodic solution. Remark that the

initial conditions in Figure 3 do not satisfy the condition xixi+kxi+2k = (1 − A)/B. We note that

in Theorem 4.2, the restriction xi = xi+3k is not sufficient for the solution to be 3k-periodic. If the

restriction xixi+kxi+2k = (1 − A)B on the initial conditions xi is not added, the solution may not be

3k-periodic. We illustrate this with Figure 3.

Theorem 4.3. Consider the equation

xn+6k =
xnxn+kxn+2k

xn+4kxn+5k(1 + Bxnxn+kxn+2k)
, (4.4)

where B 6= 0 is a constant. The only equilibrium point x̄ = 0 is non hyperbolic.

Proof. It is easy to check that the equilibrium point of (4.4) is x = 0. Invoking (2.7), the characteristic

equation of (4.4) about 0 is given by λ6k + λ5k + λ4k − λ2k − λk − 1 = 0. Obviously, λ = 1 is a

solution of this equation. So, the fixed point zero is non-hyperbolic. �

Theorem 4.4. Assuming that |A| > 5, the equilibrium point x̄ = 0 of (4.2) is locally asymptotically

stable. Moreover, the non zero equilibrium points of (4.2) are non-hyperbolic for all A 6= 1.

Proof. One obtains the equilibrium points of (4.2) by solving x̄3(A+ Bx̄3 − 1) = 0.

For the first part of the proof, we consider the characteristic equation of (4.2) about x̄ = 0 given by

λ6k +
1

A
λ5k +

1

A
λ4k −

1

A
λ2k −

1

A
λk −

1

A
= 0. (4.5)
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We have that ∣∣∣∣ 1

A

∣∣∣∣+

∣∣∣∣ 1

A

∣∣∣∣+

∣∣∣∣− 1

A

∣∣∣∣+

∣∣∣∣− 1

A

∣∣∣∣+

∣∣∣∣− 1

A

∣∣∣∣ =
5

|A| < 1 (4.6)

for |A| > 5. By Theorem 2.3, the roots of (4.5) have magnitude less than 1. Consequently, the zero

equilibrium point is locally asymptotically stable if |A| > 5.

For the second part, recall that the non-zero equilibrium points x̄ satisfy A+ Bx̄3 − 1 = 0.

We now consider the characteristic equation of (4.2) about a non-zero equilibrium point given by

λ6k + λ5k + λ4k − Aλ2k − Aλk − A = (λ2k + λk + 1)(λ4k − A) = 0. (4.7)

The solutions λp = e
i
k (± 2π3 +2pπ), p = 0, 1, . . . , k − 1, of λ2k + λk + 1 = 0 are such that |λi | = 1.

Hence, any equilibrium point obtained from the equation A+ Bx̄3 − 1 = 0 is non-hyperbolic. �

The case where k = 1, A = −1 and B = 1:

Employing the equations in (3.32), the solution of the sixth order difference equation

xn+6 =
xnxn+1xn+2

xn+4xn+5(−1 + xnxn+1xn+2)
, (4.8)

with initial conditions x0, x1, x2, x3, x4, x5, will be given by:

x6 =
x0x1x2

x4x5(−1 + x0x1x2)
, x7 =

x3x4(−1 + x0x1x2)

x0(−1 + x1x2x3)
,

x8 =
x4x5(−1 + x1x2x3)

x1(−1 + x2x3x4)
, x9 =

x0x1(−1 + x2x3x4)

x4(−1 + x0x1x2)(−1 + Bx3x4x5)
,

x10 =
x1x2(−1 + x3x4x5)(−1 + x0x1x2)

x5(−1 + x1x2x3)
, x11 =

x3x4x5(−1 + x1x2x3)

x0x1(−1 + x2x3x4)
,

x12 =
x0(−1 + x2x3x4)

(−1 + x0x1x2)(−1 + x3x4x5)
, x13 =

x1(−1 + x0x1x2)(−1 + x3x4x5)

(−1 + x1x2x3)
,

x14 =
x2(−1 + x1x2x3)

(−1 + x2x3x4)(−1 + x0x1x2)
, x15 =

x3(−1 + x2x3x4)

(−1 + x1x2x3)(−1 + x3x4x5)
,

x16 =
x4(−1 + x3x4x5)(−1 + x0x1x2)

(−1 + x2x3x4)
, x17 =

x5(−1 + x1x2x3)

(−1 + x0x1x2)(−1 + x3x4x5)
,

x18 =
x0x1x2(−1 + x2x3x4)

x4x5(−1 + x1x2x3)
, x19 =

x3x4(−1 + x0x1x2)(−1 + x3x4x5)

x0(−1 + x2x3x4)
,

x20 = x12, x21 = x13, x22 = x14, x23 = x15,

x12(2n)+i = xi , i = 0, 1, . . . , 11,

x12(2n+1)+i = x12+i , i = 0, 1, . . . , 11. (4.9)

We can see that we have a 24 periodic solution, confirming Theorem 4.1. If we force the conditions in

Theorem 4.2, that is, x0 = x3, x1 = x4, x2 = x5 and x0x1x2 = 2, then we have the following 3-periodic
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solution {xn}n≥0 = {x0, x1, x2, x0, x1, x2, . . . , x0, x1, x2, . . . } . Note that the solution will still be

24-periodic if x0x1x2 6= 2, even though x0 = x3, x1 = x4, x2 = x5.

5. Concluding remarks

Certain authors prefer the equivalent form

xn+1 =
xn−5xn−4xn−3

xn−1xn(−1 + xn−5xn−4xn−3)
(5.1)

of (4.8). It is noteworthy that the solution of (5.1) is derived from those of (4.8) by back shifting
the solution of (4.8) five times. Hence, thanks to (4.9), the 24-periodic solution of (5.1) is given by

{xn}n≥−5 =
{
x−5, x−4, x−3, x−2, x−1, x0,

x−5x−4x−3

x−1x0(−1 + x−5x−4x−3)
,
x−2x−1(−1 + x−5x−4x−3)
x−5(−1 + x−4x−3x−2)

,

x−1x0(−1 + x−4x−3x−2)
x−4(−1 + x−3x−2x−1)

,
x−5x−4(−1 + x−3x−2x−1)

x−1(−1 + x−5x−4x−3)(−1 + x−2x−1x0)
,
x−4x−3(−1 + x−2x−1x0)(−1 + x−5x−4x−3)

x0(−1 + x−4x−3x−2)
,

x−2x−1x0(−1 + x−4x−3x−2)
x−5x−4(−1 + x−3x−2x−1)

,
x−5(−1 + x−3x−2x−1)

(−1 + x−5x−4x−3)(−1 + x−2x−1x0)
,
x−4(−1 + x−5x−4x−3)(−1 + x−2x−1x0)

(−1 + x−4x−3x−2)
,

x−3(−1 + x−4x−3x−2)
(−1 + x−3x−2x−1)(−1 + x−5x−4x−3)

,
x−2(−1 + x−3x−2x−1)

(−1 + x−4x−3x−2)(−1 + x−2x−1x0)
,
x−1(−1 + x−2x−1x0)(−1 + x−5x−4x−3)

(−1 + x−3x−2x−1)
,

x0(−1 + x−4x−3x−2)
(−1 + x−5x−4x−3)(−1 + x−2x−1x0)

,
x−5x−4x−3(−1 + x−3x−2x−1)
x−1x0(−1 + x−4x−3x−2)

,
x−2x−1(−1 + x−5x−4x−3)(−1 + x−2x−1x0)

x−5(−1 + x−3x−2x−1)
,

x15 = x7, x17 = x9, x18 = x10, · · ·
}
. (5.2)

This important remark is applicable to (1.1) and (1.2) in the sense that one obtains the solution of

(1.2) by back shifting the solutions of (1.1) 6k − 1 times.
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