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Abstract. This paper deals with the utilization of the concept of the granular differentiability to establish a fractional
derivative of the conformable type for fuzzy number valued functions. Subsequently, we introduce the notion of
a conformable granular integral and provide evidence of its fundamental properties pertaining to differentiability
and integrability through illustrative examples. Lastly, we delve into the discussion of the solution approach for
the conformable granular initial value problem (CGIVP), as well as the solution of conformable granular differential

equations (CGDEgs) associated with growth and decay.

1. INTRODUCTION

Since 1965, fuzzy theory had many applications in science and engineering fields to avoid
uncertain process problems in real-world situations. The concept of fuzzy calculus has risen
in recent times to cover a number of vague or imprecise situations. The applications of fuzzy
derivatives are widely explored in various fields of research. Firstly L.A. Zadeh [16] presented a
theory on fuzzy sets in his paper. The derivative for fuzzy function has been introduced by several
authors, namely Hukuhara, Strongly generalized Hukuhara, Generalized Hukuhara derivatives
and g-derivative, H-differentiability [4,5,13-15]. Later granular derivative [10] using horizontal
membership function (HMF) was introduced by Mazandarani, which is efficient derivative rather
than derivatives listed above.

The fractional derivative has developed significantly in the past few decades. Fractional calcu-

lus is entered in the year 1695. The applications of fractional calculus are used in Mathematical
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models the real-world phenomenon. The most frequently used definition of derivatives is frac-
tional Riemann- Liouville(R-L) and fractional Caputo derivatives [12]. The generalized Hukuhara
R-L and Caputo fractional derivatives were introduced in [1], [2]. The Strongly generalized
Hukuhara R-L and Caputo fuzzy non-integer order derivatives were discussed in [14]. In [3], the
fuzzy fractional differential equations(DEqs) are discussed under Caputo fractional generalized
differentiability. Marzieh Najariyan, in her paper [11], the granular Caputo and R-L fractional
derivatives proposed and investigated the fuzzy non-integer order linear dynamic systems.

In 2014, R. Khalil [7] introduced a different type of derivative named conformable fractional
derivative and proved fundamental properties that are distinct from those usual in other for-
mulations. The fuzzy conformable fractional strongly generalized Hukuhara derivative is estab-
lished [6]. In [11], the author describes the conformable fractional Laplace transforms and obtains
the analytical solutions of non-integer order conformable DEqs under generalized Hukuhara de-
rivative. The conformable fuzzy DEqs involved above mentioned derivatives had some drawbacks
like no unique solution and the diameter of the solution being unbounded. The goal of this paper
is to develop non-integer order fuzzy conformable calculus using the concept of HMF. Our ap-
proach is natural and has the same advantages as crisp functions. We obtain the solution to fuzzy
conformable granular initial value growth and decay problems.

The current paper presents advancements in the field of conformable granular fractional differ-
entiability and integrability for fuzzy number valued functions(FNVF). It is organized into several
sections. Section 2, provides an overview of the basic theory of fractional calculus. In section 3, we
introduce a novel concept called the conformable granular derivative and discuss its fundamental
properties. The definition of the conformable granular integral is presented in section 4. Moving
on to section 5, we derive CGDEgs and demonstrate graphical illustrations of several examples

based on the previously introduced concepts.

2. PRELIMINARIES

Basic needful concepts of fuzzy fractional calculus are given below, which will be applied
throughout the paper. In this paper, R is denoted as a real number set, K; is denoted as fuzzy

number set on R.

Definition 2.1. [7] Given ¢ : [0,00] — R, be function then the conformable derivative(CD) of fractional
order a € (0,1] of y is defined as for all z > 0,

¢[z + hzl“"] -z]
Tap(z) = lim .

h—0 h
If the CD of ¢ of fractional order « exists, then we simply say Y (z) is a—differentiable.

Remark 2.1. If i is CD in some (0,c),c > 0 and lim,_q+ ¥(¥ (z) exists, then define

P! (0) = lim p@(2).

z—0t
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Definition 2.2. [7] Conformable Integral of fractional order of a, Ify(z) = If [z“‘llp(z)] = [ g

where the integral is the usual Riemann improper integral and o € (0, 1].

7 : R — [0,1] is commonly referred to as a fuzzy number (FN) when it is a normal, fuzzy convex,
upper semi-continuous, and compactly supported set of fuzzy number sets.
A function ¢ is a FNVF if ¢ : [c,d] € R — K; and []0 = [?, 48], where 9,98 are left and

right end points of O—level set [¢]°.

Definition 2.3. [10] A FN n whose HMF n8" : [0,1] X [0, 1] — [c, d] is defined as n8" (0, B,) = z and it
is also defined by H(7) 2 n8"(6, B, ). Moreover, n$" (0, B,) = n? + (n§ —n?)B,.

Note 2.1. The inverse HMF is obtained by
[1(2)]? = |inf minn8" (v, ), sup maxn (v, )| . (2.1)
0<y Bn o<y Bn

Here ‘gr’ stands for the information granule contained in z € [c,d], 0 € [0, 1] is the membership degree of z

inn(z) and B, € [0,1] is read as the relative-distance-measure (RDM) variable.

Definition 2.4. [10] Let n1, np are two FNs and = represents one of the arithmetic operators +, -, + and X.
Then 1y * ny is a fuzzy number n such that H(n) = H(ny) « H(ny) provided 0 ¢ H(ny) when * denotes
division operator.

Note 2.2. [10] If n1, n, 3 € Ky then the following relations holds:
(1) m =np = —[my —m]
2 nm-n=0
(3) rﬁl +ﬁ1 =1

(4) [-1’71 +Fﬁz]‘ﬁ3 = nin3 + nons.

Note 2.3. [10] The fuzzy numbers ny and ny are equal if and only if their HMFs are equal i.e., n1=n3
& MH(n) = H(na) and whenever H(ny) > H(ny) then ny = ny for all By, B, € [0,1].

Note 2.4. [11] Let ¢ ENVE, then HMF of (¢ (z)) is defined as H[@(]I—I(%(z)))]
Definition 2.5. [10] Let ny, 1, be two FNs, then the granular metric on Ky is denoted by D" : K3 X K3 —

R* U0, defined by

D8'[ny, ] = sup  max |1’l‘1gr(6,ﬁn1)—7’l§r(6,,8n2)|~
0e[0,1]Pn1 Py €(01]

Definition 2.6. [10] Suppose that 1,? : [c,d] €R — Kj be the FNVF is known as the granular differentiable

(gr-differentiable) of J; at z € [c,d|, if there exists a FN % € K such that the following limit exists
S 0
i P2 =0T _ ()
h—0 h dz

where the limit is exists in the (D8", K1) metric space.



4 Int. J. Anal. Appl. (2024), 22:37

Theorem 2.1. [10] Given a FNVF {ﬁ : [c,d] € R — Ky is granularly differentiable at the point z € [c, d]
if and only if its HMF is differentiable with respect to z at that point. Moreover,

(S - 2 ).
Definition 2.7. [10] Suppose FNVF i : [c,d] € R — Ky is continuous with HMF 8" (z, 0, By) is
integrable on z € [c,d] and f ¥ {E dz is the integral of g—bv on [c,d]. The FNVF {ﬁ is known as granularly
integrable in the interval [c,d] if there exists a FN n = f W(z)dz such that H(7) = f H{[(z)]dz.

Theorem 2.2. [10] Suppose the ENVF ¢ : [c,d] € R — Ky is gr-differentiable, grw( % e a continuous
FNVF in interval [c,d], then fd d”"b L—=)dz = 1/}(51) —J(c).

Theorem 2.3. [11] Let ¢ : K" — K; and qb]- : [e,d] € R = Ky for j=1, 2, ... m. The function
{bd(al( ), P2 (2), - 5]( )y oo (2 )) is known as granular partial (gr-partial) differentiable with respect to z
if there exists a FN ‘P((Pl( Z), e (}5]- (z), (}Sm(z)), such that the below limit exists

tim (01 (2), - 31(2) + - Bu(2)) = 91 2) - B2), -G (2)))

_9gr~~ 2), . $i(2), Pz
i (01(2), -0(2), -Pu(2)).

Theorem 2.4. [11] Let:ﬁ :[c,d] CR — Ky and 175 :BC A — K;be FNVFs. Supposegis gr-differentiable
at the point z € [c,d] and 11; is gr-partial differentiable at that point (7‘5(2) The gr-derivative of the composite

function 1 o 5(2) at that point z is % [Vo ?q;(z)] = %J{%(z))%.

3. CONFORMABLE GRANULAR DERIVATIVE

Definition 3.1. The FNVF {,bv: [c,d] € R — Kj is called the a— granular differentiable at z if Ve > 0,0 >
0, k| < 6 such that

Pt ) 296 1ozl

D5,

zﬁhere, Tgriz;(Z) € Ky (provided it exists) and o € [0,1]. We read Tgriz;(Z) as a— granular derivative of
Y at z if its a— granular derivative exists at z, a—granular derivative is also called conformable granular
derivative(CGD).

Theorem 3.1. Ifa FNVFI;[T: [c,d| CR — Ky isa CGD at zp > 0,a € [0,1], then J;z's continuous at zg.
Proof. Consider

{;DV(ZO 4 hzl—a) _ {Py(zo) _ 1111(20 + hzl}:a) _ I;ZJ(ZO)h

Apply limit on both sides,

limh].

lim[(zo + hz'™*) ~ §(z0)] = |lim p

U(z 217 — ¢ (z
P(zo +hz ™) —y( o)](h._)o)
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Let hz1=@ = ¢, then

lim (20 + €] — Plz0]) = T4 (20) X0

which implies that

Hence ¢ is continuous at zp.

lim ) (zo +€) = ().

O

Theorem 3.2. Given ) : [c,d] € R — Ky is ENVE. If ) is granular differentiable, then Tgrif = zl‘“%qj

Proof. From definition 3.1, we know that

Let hz!1=® = ¢, then

Therefore,

Tgr{/; (z) = lim

Tgy(z) = lim

h—0 h

-~ Y(z+e€) -9(2)

e—0 eza—l

— Zl—a lim I’D(Z + 6) B I][J(Z) )

e—0 €

d
Toi(z) =270,

@(z + hzl‘“) - 1?5(2)

O

Theorem 3.3. Given a FNVF g—bv : [c,d] € R — Kj is a CGD at the point z if and only if its HMF is

differentiable with respect to z at the point. Furthermore, H(Tgrlf (z)) = 21702 ys’ (2,0, By).

Proof. From the Theorem 2.1 and 3.2, we have

Consider,

Therefore,

]H(%) - %gbgf(z, 0, 'Blp)and
T?TJ(Z) = Zl_a%;l;.

n(ry ) = -4

)

= zl‘“IH(

- a 14
=zl leg (z,0,By).

~ P
H(T59(2)) = 21795 (2,0, ).
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Example 3.1. Suppose that {(z) = (2.3, 5.6, 9.7) sinz,z € [0, 3].
Then its HMF is given by

H[$(z)] = [2.3 1336 +7.4(1 - G)ﬁlp] sinz.

Now the HMF of Tgr{pv (z) is

H[T ()] = 2 2 H[(2)]

= zl_“[Z.?) +3.30 +74(1- 6)ﬁ¢] os z.

From Note 2.3, we have

[T%4(2)]7 = [(igr<1f rrﬁﬁn z17% cos z(2.3 +33y +7.4(1- y)ﬁ¢),
sY Py

sup max z'~ cos 2(2.3 +33y+74(1- 7/),814,)} , (3.1)
o<y By

where 0, By € [0,1]. Applying inverse HMF, we get O-level sets of derivative (3.1), using MATLAB and is
depicted in Figure 1.

(D

[T

[ Vi

-20

Ficure 1. O-level sets of CGD of the FNVF 175 (z) corresponding to the Example 3.1
with a = 0.5.

Theorem 3.4. If a € (0,1]. Given that if 1:5,5 : [e,d] € R — Kj be conformable granular differentiable
functions at a point z > 0, then

1. T?r(i*‘ 5) = TngZ‘F Tgré;;
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2. Tgr({ﬁ_ (P) = Tgribv_ Tgrag;

3. T%(Cy) = CT}, where C € R;

4 TH(P) = YTS¢ + TS ¢;

n ¢’T —yTh —
5. T (i) il (A AP
&M\ o (9)? s

6. T% (M) =0, where A is a constant.

Proof. (1) From Theorem 3.3, we have

H(Tg(2)) = 2 297 (2,0, By).
Consider

H[Tgr(ga s 5)) _ zl-a%[wr(z, 0,80)+ 62,0,

[ 0,px) + 27 (2,0,)]
- zl‘“a—wgf(z, 0,B0) + 2 502,00
:]H[ +T“r¢]

From Note 2.3, we have

To(§+ 6) = T d + Tgo.
(2) From Theorem 3.3, we have
H(Tg(2)) = 2 29 (2,0, By).

Consider

H[Tgr(fﬁ - &5)] = = [0, 0,84) = 6.6,

J d
2170 205 (2,60,By) - - 69(2,0,B)|
P d
2 Y8 (2,0,By) =2 -0 (2,0,B5)
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From Note 2.3, we have
TS (¢ = ¢) = Tg ) = To.
(3) From Theorem 3.3, we have

) swecom)
Consider
H(T5,(CP) = 22 (C3¥ (2,0, )
= 22C 4 (2,0,6,)
d
_ c[zl—aﬁgf(z, 9,ﬁ¢)]

H(15,07) = 1 (cT37)
From Note 2.3, we get
T3(CY) = CTS 9.

(4) From Theorem 3.3, we have

H(Tg(2)) = 2 29 (2,6,By).

Consider
w13 (59

d
— Sl-a 7 erper
-l o

9 0
_ Zl—a[wgr(z, 0, 5¢)E¢3r(z, 0,Bs) + ¥ (2,0, ﬁ¢)£¢8r (z, 9r5¢)]

d d
= Y¥(z, e,ﬁw.zl'“ygf(z, 6,Bp) + ¢5'(2,6, ﬁ¢)-21'“£¢g’(zr 6,By)

= H(p).H(Tg¢) + H(p) H(TS,y)
= H[{PVT;&; + 5Tgr$]'
From Note 2.3, we get
T;W‘P) = lszgr¢ + ¢Tgr¢'

(5) From Theorem 3.3, we have

H(Tg(2)) = 2 297 (,0,By).
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Consider

_ el [W(z, G,ﬁw]
9z| §%'(z, 0, By)
_ 1m0 P52 0.85) Y5 (2 0,By) — Y% (2,0,By) £ (2,0,B)
[oz.0.8]
2170957 (2, 6, o) TV (2,0, By) =2 Y5 (2, 6, By) £9% (2,6, By)
[ z.0.8]
_ 95(2,0,B9) 2 £ Y (2,0, By) — 97 (2,0,B5)2' " 65 (2,0, B5)
[0z 0.8,)]
H(O)H(T39) - HE)H(T50)
. )
_ ey -vTe)
(¢)?

From note 2.3, we get

O CA L et
¢ (¢)?
(6) From the Theorem 3.3, we have ]I—I(TgrgE (z)) = zl“"%lpé’r@, 0,By).
Consider
2 d
H(Tgr/\) Z &A
= 21720 = 0.
O

Example 3.2. Consider (z) = 3(2% - z), 5( ) = for z €[0,1] and 3 = (2, 3, 4). Since H[3] =

0)+2(1- Q)ﬁg](z ~2) and H[p(2)] = [(2+

—_—

(24 0) +2(1 - 0)B3, then we have H[y(z)] =
0)+2(1- 6),83]2. Using Theorem 3.4, we get
(1) H(Tg(P + ) = 222[(2+ 0) + 21 - 0)f]
therefore [Tgr(l,;#— $)]f = ]H‘l[Zzz‘“((Z +0)+2(1- 9)[)’3)], using MATLAB draws O-sets and
depicted in Figure 2.
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10
6
—e—To (o) | #
PALY )
5| —+—Tgldolp| 4
2
k_
=, ar P
8
=
+
N 3t
S A 2
E. / - &
2r - /g,/ z
/ o =
‘ 2
} o
1+ o

Ficure 2. O-level sets of CGD of the fuzzy function (¢ + ¢) corresponding to the
Example 3.2 with a« = 0.5.

@ H(Te( - 9)) = (2= 1)2-[(2+ 0) +2(1 - 0)ps)),
therefore [Tgr@— $))° = IH‘l[?_(z -1z ((2+0) +2(1 - G)ﬁg)], using MATLAB draws
O-sets and depicted in Figure 3.

3

0 0.1 02 03 04 05 06 07 08 0.9 1

Ficure 3. O-level sets of CGD of the fuzzy function (¢ — ¢») corresponding to the
Example 3.2 with a« = 0.5.
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3) n{[igg(giij] — [+ 6) +2(1 - 0)ps] 21(322 - 22)

therefore [Tgr(@)]e = H! [((2 +6)+2(1- 6)[33)221“"(322 - 22)], using MATLAB draws
O-sets and depicted in Figure 4.

(w(@2)iz)’
N

Cx
gr

[-l-i:

9 . . . . . . . . . 4
0 0.1 02 03 04 05 06 07 08 0.9 1

4

Ficure 4. O-level sets of CGD of the FNVF @ corresponding to the Example 3.2
with @ = 0.5.

Theorem 3.5. : Let o € [0, 00]. If i) is granular differentiable at ¢(z) and ¢ is CGD then
e Aoy —/— _
T3 9(0)| = 902 T3 ().

Proof. From the Theorem 3.3, we have

H(Tg(2)) = 2 245 (2,0,By).

Consider,

Tz’r[w(mz))ﬂ = 22y (67 (2))
= 267 () 26 (2)
= S (o) 2 ov ()

- 2ol

H

From Note 2.3, we have

r[#(50)| = Zie6) 0.
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O

Example 3.3. Consider (¢ (z)) = sin(¢(z)), where p(z) = ¢ +2,2 = (1,2,3). Since H(¢p(z)) =
e+ (1+6) +2(1 - 6)py then we have II—I(T"‘ ( (z ))) Ye cos((e +(14+06)+2(1- 9)[)’2)).
Therefore

Tgr{,bv((g(z)) =H" 1[ 12002 cos(e? + (1 +0) +2(1 - 9)52].
4. CoONFORMABLE GRANULAR INTEGRAL

Definition 4.1. Suppose {E : R — K; is continuous FNVF whose HMF 8'(z,0,By) is integrable on
z € [c,d]. Let J; ! 29714 (2)dz is conformable fractional integral on [c,d]. Then the fuzzy function v is said
to be conformable granular integrable (CGI) on [c,d] if there exists a fuzzy number n = fc i z“‘ll,ﬁbv(z)dz
such that H(n f 29714 (2)dz and this integral is denoted by I rgb( ).

Theorem 4.1. Given 1p, qb be FNVFs. Then
1]96) +86)| = 15 + ILb(2).
Proof. From the definition of CGI, we have
M1z [0+ 9] = [ = {7 + o)

Z

= z“‘lH(yE(z)dz) + f: z“‘llH(Zﬁ(z)dz)

From Note 2.3, we have

1] 96) +8()| = 1) + Ib(2).

O
Theorem 4.2. If { : [c,d] C R — Ky is FNVE, then Ig,[/\g?(z)] = AI3,(z) when A € R.
Proof. From the definition of CGI, we have
H[Igr(w(z))]: fo z“—lﬁ(m,'ﬂ(z))dz
Z —~
= )\f z“‘lﬂ—I(lp(z))dz
0
= )\H[Igr{ﬁ(z)].
From Note 2.3, we get
1| A9()| = A13p(z).
O

Theorem 4.3. If 11; : [c,d] € R — Kj, be continuous FNVF then Tgrlgrl/l(z) = J(z)
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Proof. From the definition of CGI, we have

0
H[To I 9(2)| = 2 S0 (2,0,py)
a Z
:zl_“g i z“‘1¢gr(z,9,ﬁ¢)dz
= 2y (2,0,B,)
= H9(2)|

From Note 2.3, we get

Tolep(z) = ¢(2).

Theorem 4.4. If § : [c,d] € R — Ky is a—granular differentiable, then alnggrfﬁ(z) = (2) = 9(c).

Proof. We know that
alnggﬂl’(Z) —a Igrzl_a’;p (Z)

Consider,

[ I T“rgb( )] \f: z“_lzl_“]l—l(g—bv’(z))dz

0
:f; Elpgr(z, 0, By)dz
=¥
= 4 () - 95(c)

— H((2) - H (7).

From Note 2.3, we get

I T (z) = 9(2) = (o).

Theorem 4.5. (Integration by parts): Let 1,3,5 : [c,d] € R — Kj be FNVF. Then

]J r¢ﬁ—mdf¢ 7)oz,

where d,z = z% dz.
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Proof. From the definition of CGI, we have

f P()TS, dz]— f *%[J@)]H[Tgﬂ(z)]dz

i J
—_ f Za—l¢grzl—a£¢grdz
c

49
— 8" ___ H8"
f; Y aZ(z) dz

d
—prot- [ o
Cc

N I ER T

“H@HEE - [ BTG

From the Note 2.3, we have

[ Femype = sder- [ aEsee
O

Example 4.1. Consider 1(z) = 2z% and $(z) = &, where 2 = (1,2,3). Since H[2] = (14 6) +2(1 -
0)p2 then [ [ za—la(z)Tg@(z)dz] — [(146) +2(1 - 0)Ba)ez2 — 2[(1 1 0)+2(1- G)ﬁz](zez _ ).
Apply inverse HMF, therefore we get fz“‘llj;(z)zgr:ﬁ(z)dz = ]H‘l[{(l +0)+2(1- G)ﬁz}ez(zz -2z+ 2)]

Example 4.2. Let gb ¢ + 1, wherel = (0,2,3). We know that I“ fo z% 11,b (z)dz then

IH[ ] fo a-1Hq [ ] Since, H[l] = 20+ 3(1 - 0)B1, where ﬁl € [0,1] therefore,
[ r¢( ] = 2= 1 ZE[ 51] Applying inverse HMF, we get Ig,&(z) H~ 1[5 i +
t(20+3(1 )]

5. CoNFORMABLE GRANULAR INITIAL VALUE PROBLEM AND APPLICATIONS

Consider the following CGIVP,

Tgh(2) = ¥z 9(2)) (5.1)
¢(z0) = Po, (5.2)
where ¢ : [c,d] € R — Ky, ¢ : [c,d] xK; — K is called fuzzy mapping and % € Kj is initial

condition.

The solution of CGIVP (5.1) is obtained using HMF according to the steps given below:
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e Take HMF on both sides of equation (5.1), we get

202 05(2,0,84) = U5 (2,0 By) 53
% (20,0,Bp) = P53 (0,By), (5.4)

where f, € (0,1). Hence equation (5.3) is a partial differential equation in one independent
variable z. Therefore the equation (5.3) is taken as conformable fractional DEq.
e Solving equation (5.3), we get

H((0(2) = ¢z 0.8,) 55)

e Applying inverse HMF on both sides of equation (5.5), we get

10
[gb(z)] = [ inf ming3(z,y,By), sup rrkaxq)gr(z, Y, Bo)

0<y<1 B o<y<1 Po

which is the O—cut solution of CGIVP equation (5.1).

The application problems of natural growth and decay models are discussed for FNVFs based on
HMEF with triangular FN.

Example 5.1. Suppose the CGIVP of the growth model with the initial condition as triangular FN.

T%$(z) = 0.5¢(z), z € [0, 5] (5.6)

sbject to, $(0) = (0.4,0.6,0.9). (5.7)

Now [¢(0)]? = [0.4 4 0.26,0.9 — 0.30] where O € [0,1].
Apply HMF on both sides of equation (5.6) and (5.7), we get

- % $8" = 0.5¢08", with [$(0)]8"(6,By) = 0.4+ 0.26 + 0.5(1 - 6)By, (5.8)

where By € [0,1].
Solving (5.8), we get

$(2,0,B4) = [0.4 +0.26 + 0.5(1 = 0)Bgle+, (5.9)
¢ ¢
which is the solution of equation (5.8).

Using inverse HMF on (5.9), we get

10
z)| = inf mind3"(z,v,Bs), sup maxdd’ (z,v, ],
[9@] = int mings(z,7.po), sup max @y, i)

which is the O-cuts solution of equation (5.6), using MATLAB the O-sets are depicted in Figure 5.
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Ficure 5. O-level sets of solution of the IVP (5.6) corresponding to the Example 5.1
with a = 0.5.

Example 5.2. Suppose the CGIVP of the decay model with the initial condition as triangular FN.

T%¢(z) = —0.3¢(z), z € [0,1] (5.10)

sbject to, ¢(0) = (3.97,4.3,5.1). (5.11)

Now [¢(0)]? = [3.97 + 0.330, 5.1 — 0.80], where 0 € [0,1].
Apply HMF on both sides of equation (5.10) and (5.11), we get

zl_“%q)gr = —0.3¢%", with [$(0)]¢"(0,By) = 3.97 + 0.330 + 1.13(1 - 0)B, (5.12)
where By € [0,1].
Solving (5.12), we get

-0.3z%

0" (2,0,B4) = [3.97 +0.330 + 1.13(1 - 0)Byle =, (5.13)

which is the solution of equation (5.12).
Using inverse HMF on (5.13), we get

10
z)| =| inf mind%" (z, vy, Bs), sup maxps’(z,y, ],
9] = | int ming oy, sup maxo )

which is the O-cuts solution of equation (5.10), using MATLAB the O-cut sets are depicted in Figure 6.
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Ficure 6. O-level sets of solution of the IVP (5.10) corresponding to the Example 5.2
with a = 0.5.

Conclusions. We have proposed a definition for the conformable granular derivative within the
framework of HME, incorporating a relative-distance-measure variable for FNVE. Additionally, we
have established the fundamental properties of this novel derivative and have provided graphical
examples for illustration. Furthermore, we have introduced the definition of the conformable
granular integral and have developed a solution method for CGIVPs using HMF, which incorpo-
rates a relative-distance-measure variable. This approach proves beneficial in obtaining unique
and bounded solutions, similar to IVPs involving crisp functions. We have also explored the
applications of this framework in growth and decay problems. Moving forward, our future objec-
tives include the development of a conformable granular system of DEgs as well as CGDEqs with
boundary conditions.
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