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Abstract. In this paper, we introduce the notions of minimal u-ω-closed sets, maximal u-ω-open sets,

u-ω-paraopen sets, u-ω-paraclosed sets, u-ω-mean open sets and u-ω-mean closed sets in bitopological

spaces and obtain several characterizations and some of its properties.

1. Introduction

The notion of biotopological spaces was first introduced by Kelly [7]. Then A large number of

topologists have directed their attention to generalizing different well known concepts of a topological

space and trying to study them in biotopological spaces. The importance of generalized open sets in

general topology is well known. and are now research topics of many topologists around the world. In

fact, a significant topic in General Topology and Real Analysis concerns the various modified forms of

continuity, separation axioms, etc. using generalized open sets. Recently, as a generalization of closed

sets, the notion of ω-closed sets was introduced and studied by Hdeib [5]. Several characterizations and

properties of ω-closed sets were provided in [2–6]. In this paper, we introduce and study the notions of

minimal u-ω-closed sets, maximal u-ω-open sets, u-ω-paraopen sets, u-ω-paraclosed sets, u-ω-mean
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open sets and u-ω-mean closed sets in bitopological spaces and obtain several characterizations and

some of its properties.

2. Preliminaries

Throughout this paper, (X, τ1, τ2) always mean bitopological spaces in which no separation axioms

are assumed unless explicitly stated. A point x ∈ X is called a condensation point of A if for each

U ∈ τ with x ∈ U, the set U ∩ A is uncountable. A is said to be ω-closed [5] if it contains all its

condensation points. The complement of an ω-closed set is said to be an ω-open set. It is well known

that a subset W of a space (X, τ) is ω-open if and only if for each x ∈ W , there exists U ∈ τ such

that x ∈ U and U\W is countable. The family of all ω-open subsets of a topological space (X, τ)

forms a topology on X finer than τ . The intersection of all ω-closed sets containing A is called the

ω-closure [5] of A and is denoted by ωCl(A). The family of all ω-open sets of X is denoted by ω(τ).

Definition 2.1. [1] Let (X, τ1, τ2) be a bitopological space and let A ⊂ X. Then

(1) A is said to be u-ω-open in (X, τ1, τ2) if A ∈ ω(τ1) ∪ ω(τ2),

(2) A is said to be u-ω-closed in (X, τ1, τ2) if X − A is u-ω-open in (X, τ1, τ2).

The family of all u-ω-open sets in (X, τ1, τ2) is denoted by ω(τ1, τ2), and the family of all u-ω-closed

sets in (X, τ1, τ2) is denoted by ωc(τ1, τ2).

Definition 2.2. (1) The u-ω-closure of A in (X, τ1, τ2) is denoted by (τ1, τ2)-ωCl(A) and defined

as follows: (τ1, τ2)-ωCl(A) = ωClτ1 (A) ∩ ωClτ2 (A).

(2) The u-ω-interior of A in (X, τ1, τ2) is denoted by (τ1, τ2)-ω Int(A) and defined as follows:

(τ1, τ2)-ω Int(A) = ω Intτ1 (A) ∪ ω Intτ2 (A).

3. Weak forms bitopological ω-open sets

In this section, we study some fundamental properties of u-ω-minimal closed sets and u-ω-

maximal open sets.

Definition 3.1. A proper nonempty u-ω-closed subset F of (X, τ1, τ2) is said to be a minimal u-ω-

closed set if any u-ω-closed set contained in F is ∅ or F .

Definition 3.2. A proper nonempty u-ω-open U of (X, τ1, τ2) is said to be a maximal u-ω-open set if

any u-ω-open set containing U is either X or U.

Example 3.1. Let X = R, τ1 = τ2 = {∅,R,R \Q}. Then A = Q is a u-ω-closed set and B = R \Q
is a u-ω-open set. Observe that the set A is not a minimal u-ω-closed set and the set B is not a

maximal u-ω-open. In the same form, any unitary set of the set A is a minimal u-ω-closed and the

set D = R \ E, were E is a unitary set of A is a maximal u-ω-open.
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Remark 3.1. The collection of all minimal u-ω-closed sets of X is denoted by ω−c(τ1, τ2) and the

collection of all maximal u-ω-open sets of X is denoted by ω+(τ1, τ2).

Theorem 3.1. A proper nonempty subset U ∈ ω+(τ1, τ2) if and only if X\U ∈ ω−c(τ1, τ2).

Proof. Let U ∈ ω+(τ1, τ2). Suppose X\U /∈ ω−c(τ1, τ2). Then there exists V ∈ ωc(τ1, τ2) and

V 6= X\U such that ∅ 6= V ⊂ X\U. That is U ⊂ X\V and X\V ∈ ω(τ1, τ2), a contradiction for

U ∈ ω−c(τ1, τ2). Conversely, let X\U ∈ ω−c(τ1, τ2). Suppose U /∈ ω+(τ1, τ2). Then there exists

E ∈ ω(τ1, τ2) and E 6= U such that U ⊂ E 6= X. That is ∅ 6= X\E ⊂ X\U and X\E ∈ ωc(τ1, τ2), a

contradiction for X\U ∈ ω−c(τ1, τ2). Therefore, U ∈ ω+(τ1, τ2). �

Lemma 3.1. (1) If U ∈ ω−c(τ1, τ2) and V ∈ ωc(τ1, τ2), then U ∩ V = ∅ or U ⊂ V .
(2) If U, V ∈ ω−c(τ1, τ2), then U ∩ V = ∅ or U = V .

Proof. (1). If U ∩ V = ∅, then there is nothing to prove. If U ∩ V 6= ∅, then U ∩ V ⊂ U. Since

U ∈ ω−c(τ1, τ2), U ∩ V = U. Hence U ⊂ V .
(2). If U ∩ V 6= ∅, then U ⊂ V and V ⊂ U by (1). Hence U = V . �

Theorem 3.2. Let U ∈ ω−c(τ1, τ2). If x ∈ U, then U ⊂ W for some W ∈ ωc(τ1, τ2, x).

Proof. Let x ∈ U and W ∈ ωc(τ1, τ2, x). Then U ∩W = ∅. By Lemma 3.1 (1), U ⊂ W . �

Theorem 3.3. If U ∈ ω−c(τ1, τ2), then U = ∩{W : W ∈ ωc(τ1, τ2, x)}.

Proof. By Theorem 3.2 and U ∈ ωc(τ1, τ2, x), we have U ⊂ ∩{W : W ∈ ωc(τ1, τ2, x)}. Next let,

x ∈ ∩{W : W ∈ ωc(τ1, τ2, x)}. Then x ∈ W for all W ∈ ωc(τ1, τ2). As U ∈ ωc(τ1, τ2), x ∈ U;
hence ∩{W : W ∈ ωc(τ1, τ2, x)} = U. �

Theorem 3.4. Let U be a nonempty u-ω-closed subset of (X, τ1, τ2). Then the following statements

are equivalent:

(1) U ∈ ω−c(τ1, τ2).

(2) U ⊂ (τ1, τ2)-ωCl(S) for any nonempty subset S of U.

(3) (τ1, τ2)-ωCl(U) = (τ1, τ2)-ωCl(S) for any nonempty subset S of U.

Proof. (1) ⇒ (2): Let x ∈ U; U ∈ ω−c(τ1, τ2) and S( 6= ∅) ⊂ U. By Theorem 3.2, for any

W ∈ ωc(τ1, τ2, x), S ⊂ U ⊂ W gives S ⊂ W . Now S = S ∩ U ⊂ S ∩W . Since S 6= ∅, S ∩W 6= ∅.
Since W ∈ ωc(τ1, τ2, x), by Theorem 3.2, x ∈ (τ1, τ2)-ωCl(S). That is, x ∈ U ⇒ x ∈ (τ1, τ2)-

ωCl(S). Hence U ⊂ (τ1, τ2)-ωCl(S) for any nonempty subset S of U.

(2) ⇒ (3): Let S be a nonempty subset of U. Then (τ1, τ2)-ωCl(S) ⊂ (τ1, τ2)-ωCl(U). By (2),

(τ1, τ2)-ωCl(U) ⊂ (τ1, τ2)-ωCl((τ1, τ2)-ωCl(S)) = (τ1, τ2)-ωCl(S). That is, (τ1, τ2)-ωCl(U) ⊂
(τ1, τ2)-ωCl(S). We have (τ1, τ2)-ωCl(U) = (τ1, τ2)-ωCl(S) for any nonempty subset S of U.

(3) ⇒ (1): Suppose U /∈ ω−c(τ1, τ2). Then there exists V ∈ ωc(τ1, τ2) such that V ⊂ U and
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V 6= U. Now, there exists a ∈ U such that a /∈ V . That is, (τ1, τ2)-ωCl({a}) ⊂ (τ1, τ2)-ωCl(X\V ) =

X\V , as X\V ∈ ωc(τ1, τ2). Then (τ1, τ2)-ωCl({a}) 6= (τ1, τ2)-ωCl(U), a contradiction for (τ1, τ2)-

ωCl({a}) = (τ1, τ2)-ωCl(U) for any {a}( 6= ∅) ⊂ U. Therefore, U ∈ ω−c(τ1, τ2). �

Theorem 3.5. If V is a nonempty finite u-ω-closed subset of (X, τ1, τ2), then there exists at least

one (finite) U ∈ ω−c(τ1, τ2) such that U ⊂ V .

Proof. If V ∈ ω−c(τ1, τ2), we may set U = V . If V /∈ ω−c(τ1, τ2), then there exists (finite)

V1 ∈ ωc(τ1, τ2) such that ∅ 6= V1 ⊂ V . If V1 ∈ ω−c(τ1, τ2), we may set U = V1. If V1 /∈ ω−c(τ1, τ2),

then there exists (finite) V2 ∈ ωc(τ1, τ2) such that ∅ 6= V2 ⊂ V1. Continuing this process, we have a

sequence of u-ω-closed sets V ⊃ V1 ⊃ V2 ⊃ V3 ⊃ · · · ⊃ Vk ⊃ · · · . Since V is a finite set, this process

repeats only finitely many time and finally we get a minimal u-ω-closed set U = Vn for some positive

integer n. �

Theorem 3.6. Let U,Uα ∈ ω−c(τ1, τ2) for any element α ∈ ∆. If U ⊂ ∪
α∈∆

Uα, then there exists

α ∈ ∆ such that U = Uα.

Proof. Let U ⊂ ∪
α∈∆

Uα. Then U ∩ ( ∪
α∈∆

Uα) = U. That is ∪
α∈∆

(U ∩Uα) = U. Also by Lemma 3.1 (2),

U ∩ Uα = ∅ or U = Uα for any α ∈ ∆. Then there exists α ∈ ∆ such that U = Uα. �

Theorem 3.7. Let U,Uα ∈ ω−c(τ1, τ2) for any α ∈ ∆. If U 6= Uα for any α ∈ ∆, then ( ∪
α∈∆

Uα)∩U =

∅.

Proof. Suppose that ( ∪
α∈∆

Uα) ∩ U 6= ∅. Then there exists α ∈ ∆ such that U ∩ Uα 6= ∅. By

Lemma 3.1 (2), we have U = Uα, which contradicts the fact that U 6= Uα for any α ∈ ∆. Hence

( ∪
α∈∆

Uα) ∩ U = ∅. �

Lemma 3.2. For the subsets A and B of X, we have the following:

(1) If A ∈ ω+(τ1, τ2) and B ∈ ω(τ1, τ2), then A ∪ B = X or B ⊂ A.
(2) Let A,B ∈ ω+(τ1, τ2), then A ∪ B = X or A = B.

Proof. (1). If A∪B = X, then there is nothing to prove. If A∪B 6= X, then A∪B ∈ ω(τ1, τ2) such

that A ⊂ A ∪ B. Then A ∪ B = A. Hence B ⊂ A.
(2). If A∪B 6= X, then A∪B ∈ ω(τ1, τ2) such that A, B ⊂ A∪B, that is, A∪B = A and A∪B = B.

Hence A = B. �

Theorem 3.8. Let F ∈ ω+(τ1, τ2). If x ∈ F , then S ⊂ F for some S ∈ ω(τ1, τ2, x).

Proof. Similar to the proof of Theorem 3.2. �

Theorem 3.9. Let A,B, C ∈ ω+(τ1, τ2) such that A 6= B. If A∩B ⊂ C, then either A = C or B = C.
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Proof. If A = C, then there is nothing to prove. If A 6= C, then we have to prove B = C. Now

B ∩ C = B ∩ (C ∩ X) = B ∩ (C ∩ (A ∪ B) (by Theorem 3.2 (2)) = B ∩ ((C ∩ A) ∪ (C ∩ B)) =

(B ∩ C ∩ A) ∪ (B ∩ C) = (A ∩ B) ∪ (C ∩ B) = (A ∪ C) ∩ B = X ∩ B = B (Since A,C ∈ ω+(τ1, τ2)

by Theorem 3.2 (2), A ∪ C = X). That is, B ∩ C = B ⇒ B ⊂ C. Since B,C ∈ ω+(τ1, τ2), B = C.

Hence B = C. �

Theorem 3.10. If A,B, C ∈ ω+(τ1, τ2) which are different from each other, then (A∩B) * (A∩C).

Proof. Let A∩B ⊂ A∩C. Then (A∩B)∪(C∩B) ⊂ (A∩C)∪(C∩B). That is, (A∪C)∩B ⊂ C∩(A∪B).

By Theorem 3.2 (2), A∪C = X = A∪B. Hence X ∩B ⊂ C ∩X ⇒ B ⊂ C. Thus from the definition

of maximal u-ω-open set, we have B = C, a contradiction to the fact that A, B and C are different

to each other. Therefore, (A ∩ B) * (A ∩ C). �

Theorem 3.11. If F ∈ ω+(τ1, τ2) and x ∈ F , then F = ∪{S : S ∈ ω(τ1, τ2, x) such that F ∪S 6= X}.

Proof. Similar to the proof of Theorem 3.3. �

We call a set cofinite if its complement is finite.

Theorem 3.12. If F is a proper nonempty cofinite u-ω-open set, then there exists (cofinite) E ∈
ω+(τ1, τ2) such that F ⊂ E.

Proof. If F ∈ ω+(τ1, τ2), we may set E = F . If F /∈ ω+(τ1, τ2), then there exists (cofinite)

F1 ∈ ω(τ1, τ2) such that F ⊂ F1 6= X. If F1 ∈ ω+(τ1, τ2), we may set E = F1. If F1 /∈ ω+(τ1, τ2),

then there exists (cofinite) F2 ∈ ω(τ1, τ2) such that F ⊂ F1 ⊂ F2(6= X). Continuing this process, we

have a sequence of u-ω-open sets such that F ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ · · · . Since F is cofinite, this

process repeats only finitely many times and finally we get a maximal u-ω-open set E = F . �

Theorem 3.13. For a bitopological space (X, τ1, τ2), we have the following:

(1) If A ∈ ω+(τ1, τ2) and x ∈ X\A, then X\A ⊂ B for any B ∈ ω(τ1, τ2, x).

(2) If A ∈ ω+(τ1, τ2), then either of the following (i) or (ii) holds:

(i) For each x ∈ X\A and each B ∈ ω(τ1, τ2, x), B = X.

(ii) There exists B ∈ ω(τ1, τ2) such that X\A ⊂ B.
(3) If A ∈ ω+(τ1, τ2), then either of the following (i) or (ii) holds:

(i) For each x ∈ X\A and each B ∈ ω(τ1, τ2, x), X\A ⊂ B.
(ii) There exists B ∈ ω(τ1, τ2) such that X\A = B.

Proof. (1). Since x ∈ X\A, B * A for any B ∈ ω(τ1, τ2, x). Then by Theorem 3.2 (1), A ∪ B =

X ⇒ X\A ⊂ B.
(2). If (i) holds, we are done. Let (i) do not hold. Then there exist x ∈ X\A and B ∈ ω(τ1, τ2, x) such

that B ⊂ X. Then by Theorem 3.2 (1), A∪B = X or B ⊂ A. But B * A⇒ A∪B = X ⇒ X\A ⊂ B.
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(3). If (ii) holds, we are done. Let (ii) do not hold. Then (by (i)) for each x ∈ X\A and each

B ∈ ω(τ1, τ2, x), X\A ⊂ B. Hence by assumption X\A ⊂ B. �

Theorem 3.14. If A ∈ ω+(τ1, τ2), then either (τ1, τ2)-ωCl(A) = X or (τ1, τ2)-ωCl(A) = A.

Proof. Since A ∈ ω+(τ1, τ2), only the following cases (i) and (ii) occur by Theorem 3.13 (3).

(i). For each x ∈ X and x ∈ X\A and each B ∈ ω(τ1, τ2, x), we have X\A ⊂ B. Let x ∈ X\A
and B ∈ ω(τ1, τ2, x). Since X\A 6= B, B ∩ A 6= ∅ and X\A ⊂ (τ1, τ2)-ωCl(A). Since

X = A ∪ (X\A) ⊂ A ∪ (τ1, τ2)-ωCl(A) = (τ1, τ2)-ωCl(A) ⊂ X, X = (τ1, τ2)-ωCl(A).

(ii). There exists B ∈ ω(τ1, τ2) such that X\A = B( 6= X). Since X\A = B, A ∈ ωc(τ1, τ2) ⇒
(τ1, τ2)-ωCl(A) = A.

�

Theorem 3.15. If A ∈ ω+(τ1, τ2), then either (τ1, τ2)-ω Int(X\A) = X\A or (τ1, τ2)-ω Int(X\A) = ∅.

Proof. By Theorem 3.14, we have (τ1, τ2)-ωCl(A) = A or (τ1, τ2)-ωCl(A) = X. That is, (τ1, τ2)-

ω Int(X\A) = X\A or (τ1, τ2)-ω Int(X\A)

= ∅. �

Theorem 3.16. If A ∈ ω+(τ1, τ2) and ∅ 6= B ⊂ X\A, then (τ1, τ2)-ωCl(B) = X\A.

Proof. Since ∅ 6= B ⊂ X\A, W ∩ B 6= ∅ for any element x ∈ X\A and any W ∈ ω(τ1, τ2, x), by

Theorem 3.13 (1). Thus, X\A ⊂ (τ1, τ2)-ωCl(B). Since X\A ∈ ωc(τ1, τ2) and B ⊂ X\A, we have

(τ1, τ2)-ωCl(B) ⊂ X\A. �

Corollary 3.1. If A ∈ ω+(τ1, τ2) and A ⊂ B, then (τ1, τ2)-ωCl(B) = X.

Proof. The proof follows from Theorem 3.14. �

Theorem 3.17. If A ∈ ω+(τ1, τ2) andX\A have at least two elements, then (τ1, τ2)-ωCl(X\{a}) = X

for any a ∈ X\A.

Proof. As A ⊂ X\{a}, we have, by Corollary 3.1, (τ1, τ2)-ωCl(X\{a}) = X. �

Theorem 3.18. If A ∈ ω+(τ1, τ2) and ∅ 6= G ⊂ X with A ⊂ G, then (τ1, τ2)-ω Int(G) = A.

Proof. If G = A, then (τ1, τ2)-ω Int(G) = (τ1, τ2)-ω Int(A) = A. If G 6= A, then A ⊂ G. Thus A ⊂
(τ1, τ2)-ω Int(G). Since A ∈ ω+(τ1, τ2), (τ1, τ2)-ω Int(G) ⊂ A. Hence (τ1, τ2)-ω Int(G) = A. �

Theorem 3.19. If A ∈ ω+(τ1, τ2) and F ⊂ X\A, then X\(τ1, τ2)-ωCl(F ) = A.

Proof. Since A ⊂ X\F ⊂ X, by our assumption and by Theorem ??, X\(τ1, τ2)-ωCl(F ) = A. �
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4. Basic properties of u-ω-radical

In this section, we study some fundamental properties of radical of maximal u-ω-open sets.

We establish a very useful decomposition theorem for a maximal u-ω-open sets.

Definition 4.1. Let U = {Uα : α ∈ ∆} ∈ ω+(τ1, τ2). Then ∩U =
⋂
α∈∆

Uα is called the u-ω-radical of

U .

Theorem 4.1. Suppose that |∆| ≥ 2. Let Uα ∈ ω+(τ1, τ2) for any α ∈ ∆ and Uα 6= Uβ, for any

α, β ∈ ∆ with α 6= β. If β ∈ ∆, then the following hold:

(1) X\
⋂

α∈∆\{β}
Uα ⊆ Uβ.

(2)
⋂

α∈∆\{β}
Uα 6= ∅.

Proof. (1). By Lemma 3.2 (2), we have X\Uβ ⊆ Uα for any α ∈ ∆ with α 6= β. Then X\Uβ ⊆⋂
α∈∆\{β}

Uα. Therefore, X\
⋂

α∈∆\{β}
Uα ⊆ Uβ.

(2). If
⋂

α∈∆\{β}
Uα = ∅. By (1), we have X = Uβ, a contradiction to our supposition that Uα ∈

ω+(τ1, τ2). Therefore,
⋂

α∈∆\{β}
Uα 6= ∅. �

Corollary 4.1. Let Uα ∈ ω+(τ1, τ2) for any α ∈ ∆ and Uα 6= Uβ for any α, β ∈ ∆ with α 6= β. If

|∆| ≥ 2, then Uα ∩ Uβ 6= ∅ for any α, β ∈ ∆ with α 6= β.

Proof. The proof follows from Theorem 4.1 (2). �

Theorem 4.2. Let Uα ∈ ω+(τ1, τ2) for any α ∈ ∆ and Uα 6= Uβ for any α, β ∈ ∆ with α 6= β.

Assume that |∆| ≥ 2. If β ∈ ∆, then
⋂

α∈∆\{β}
Uα * Uβ *

⋂
α∈∆\{β}

Uα.

Proof. If
⋂

α∈∆\{β}
Uα ⊆ Uβ. Then by Theorem 4.1 (2), we have X = (X\

⋂
α∈∆\{β}

Uα)∪(
⋂

α∈∆\{β}
Uα) ⊆

Uα, a contradiction. If Uβ ⊆
⋂

α∈∆\{β}
Uα, then Uβ ⊆ Uα and Uβ = Uα for any element α ∈ (∆\{β}).

This contradicts our assumption that Uβ 6= Uα when α 6= β. �

Corollary 4.2. Let Uα ∈ ω+(τ1, τ2) for any α ∈ ∆ and Uα 6= Uβ for any α, β ∈ ∆ with α 6= β. If

∅ 6= ∆? ⊆ ∆, then
⋂

α∈∆\∆?
Uα *

⋂
ι∈∆?

Uι *
⋂

α∈∆\∆?
Uα.

Proof. Let ι ∈ ∆?. By Theorem 4.2,
⋂

α∈∆\∆?
Uα =

⋂
α∈∆\(∆?∪{ι})

Uα * Ui . Then
⋂

α∈∆\∆?
Uα *

⋂
ι∈∆?

Uι.

On the other hand, since
⋂
ι∈∆?

Uι =
⋂

ι∈∆\(∆\δ?)

Uι *
⋂

α∈∆\∆?
Uα, we have

⋂
ι∈∆?

Uι *
⋂

α∈∆\∆?
Uα. �

Theorem 4.3. Let Uα ∈ ω+(τ1, τ2) for any α ∈ ∆ and Uα 6= Uβ for any α, β ∈ ∆ with α 6= β. If

∅ 6= ∆? ⊆ ∆, then
⋂
α∈∆

Uα *
⋂
ι∈∆?

Uι.
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Proof. By Corollary 4.2, we have
⋂
α∈∆

Uα = (
⋂

α∈∆\∆?
Uα) ∩ (

⋂
ι∈∆

Uι) *
⋂
ι∈∆

Uι. �

The following theorem shows the useful decomposition theorem for a maximal u-ω-open sets.

Theorem 4.4. Let |∆| ≥ 2. If Uα ∈ ω+(τ1, τ2) for any α ∈ ∆ and Uα 6= Uβ for any α, β ∈ ∆ with

α 6= β. Then for any β ∈ ∆, Uβ = (
⋂
α∈∆

Uα) ∪ (X\
⋂

α∈∆\{β}
Uα).

Proof. Let β ∈ ∆. By Theorem 4.1 (1), we have

(
⋂
α∈∆

Uα) ∪ (X\
⋂

α∈∆\{β}
Uα) = ((

⋂
α∈∆\{β}

Uα) ∩ Uβ) ∪ (X\
⋂

α∈∆\{β}
Uα)

= ((
⋂

α∈∆\{β}
Uα) ∪ (X\

⋂
α∈∆\{β}

Uα))

∩(Uβ ∪ (X\
⋂

α∈∆\{β}
Uα))

= Uβ ∪ (X\
⋂

α∈∆\{β}
Uα)

= Uβ.

Therefore, Uβ = (
⋂
α∈∆

Uα) ∪ (X\
⋂

α∈∆\{β}
Uα). �

Theorem 4.5. Let ∆ be a finite set and Uα ∈ ω+(τ1, τ2) for any α ∈ ∆ and Uα 6= Uβ for any α, β ∈ ∆

with α 6= β. If
⋂
α∈∆

Uα ∈ ωc(τ1, τ2), then Uα ∈ ωc(τ1, τ2) for any α ∈ ∆.

Proof. By Theorem 4.4, we have Uβ = (
⋂
α∈∆

Uα) ∪ (X\
⋂

α∈∆\{β}
Uα) = (

⋂
α∈∆

Uα) ∪ ( ∪
α∈∆\{β}

(X\Uα)).

Since ∆ is finite, ∪
α∈∆\{β}

X\Uα ∈ ωc(τ1, τ2). Hence Uα ∈ ωc(τ1, τ2). �

Theorem 4.6. Assume that |∆| ≥ 2. Let Uα ∈ ω+(τ1, τ2) for any α ∈ ∆ and Uα 6= Uβ for any

α, β ∈ ∆ with α 6= β. If
⋂
α∈∆

Uα = ∅, then {Uα : α ∈ ∆} ∈ ω+(τ1, τ2).

Proof. If there exists Uυ ∈ ω+(τ1, τ2), which is not equal to Uα for any α ∈ ∆, then ∅ =
⋂
α∈∆

Uα =⋂
α∈(∆∪{υ})\{υ}

Uα. By Theorem 4.1 (2),
⋂

α∈(∆∪{υ})\{υ}
Uα 6= ∅, a contradiction. �

Proposition 4.1. If (τ1, τ2)-ωCl(
⋂
α∈∆

Uα) = X, then (τ1, τ2)-ωCl(Uα) = X for any α ∈ ∆.

Proof. We see that X = (τ1, τ2)-ωCl(
⋂
α∈∆

Uα) ⊆ (τ1, τ2)-ωCl(Uα). Then (τ1, τ2)-ωCl(Uα) = X for

any α ∈ ∆. �

Theorem 4.7. Let ∆ be a finite set and Uα ∈ ω+(τ1, τ2) for any α ∈ ∆. If (τ1, τ2)-ωCl(
⋂
α∈∆

Uα) 6= X,

then there exists α ∈ ∆ such that (τ1, τ2)-ωCl(Uα) = Uα.



Int. J. Anal. Appl. (2023), 21:124 9

Proof. Suppose that (τ1, τ2)-ωCl(Uα) = X for any α ∈ ∆. Let β ∈ ∆. Then
⋂

α∈∆\{β}
Uα ∈ ω(τ1, τ2).

Also

(τ1, τ2)-ωCl(
⋂
α∈∆

Uα) = (τ1, τ2)-ωCl((
⋂

α∈∆\{β}
Uα) ∩ Uβ)

= (τ1, τ2)-ωCl(
⋂

α∈∆\{β}
Uα) ∩ (τ1, τ2)-ωCl(Uβ)

⊇
⋂

α∈∆\{β}
Uα ∩ (τ1, τ2)-ωCl(Uβ)

=
⋂

α∈∆\{β}
Uα ∩X

=
⋂

α∈∆\{β}
Uα.

So (τ1, τ2)-ωCl(
⋂

α∈∆\{β}
Uα) ⊆ (τ1, τ2)-ωCl((τ1, τ2)-ωCl(

⋂
α∈∆

Uα)) = (τ1, τ2)-ωCl(
⋂
α∈∆

Uα). On the

other hand,
⋂
α∈∆

Uα ⊆
⋂

α∈∆\{β}
Uα. It follows that (τ1, τ2)-ωCl(

⋂
α∈∆

Uα) = (τ1, τ2)-ωCl(
⋂

α∈∆\{β}
Uα).

Then by induction on the element of ∆, (τ1, τ2)-ωCl(
⋂
α∈∆

Uα) 6= X. Then there exists α ∈ ∆ such

that (τ1, τ2)-ωCl(Uα) = Uα. �

Theorem 4.8. Let ∆ be finite and Uα ∈ ω+(τ1, τ2) for each α ∈ ∆. Let ∆? ⊆ ∆ such that

(τ1, τ2)− ωCl(Uα) =

{
Uα for any α ∈ ∆?,

X for any α ∈ ∆\∆?.

Then (τ1, τ2)-ωCl(
⋂
α∈∆

Uα) =
⋂
α∈∆

Uα(= X, if ∆? = ∅).

Proof. If ∆ = ∅, then we have the result by Theorem 4.7. Otherwise, ∆ 6= ∅, and

(τ1, τ2)-ωCl(
⋂
α∈∆

Uα) = (τ1, τ2)-ωCl((
⋂

α∈∆?
Uα)

⋂
(

⋂
α∈∆\∆?

Uα))

= (τ1, τ2)-ωCl(
⋂

α∈∆?
Uα) ∩ (τ1, τ2)-ωCl(

⋂
α∈∆\∆?

Uα)

⊇ (
⋂

α∈∆?
Uα) ∩ (τ1, τ2)-ωCl(

⋂
α∈∆\∆?

Uα)

=
⋂

α∈∆?
Uα ∩X

=
⋂

α∈∆?
Uα.

By Theorem 4.7 and the fact that
⋂

α∈∆?
Uα ∈ ω(τ1, τ2). Hence (τ1, τ2)-ωCl(

⋂
α∈∆

Uα) = (τ1, τ2)-

ωCl((τ1, τ2)-ωCl(
⋂
α∈∆

Uα)) ⊇ (τ1, τ2)-ωCl(
⋂

α∈∆?
Uα). On the other hand, we see that

⋂
α∈∆

Uα ⊆⋂
α∈∆?

Uα, and hence (τ1, τ2)-ωCl(
⋂
α∈∆

Uα) ⊆ (τ1, τ2)-ωCl(
⋂

α∈∆?
Uα). It follows that (τ1, τ2)-

ωCl(
⋂
α∈∆

Uα) = (τ1, τ2)-ωCl(
⋂

α∈∆?
Uα). The u-ω-radical

⋂
α∈α

Uα ∈ ωc(τ1, τ2) since Uα ∈ ωc(τ1, τ2)

for any α ∈ ∆? by our assumption. Therefore, (τ1, τ2)-ωCl(
⋂
α∈∆

Uα) =
⋂

α∈∆?
Uα. �
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5. Bitopological u-ω-paraopen / u-ω-paraclosed sets

In this section, a new class of sets called paraopen sets and paraclosed sets in bitopological spaces

are introduced and studied. Some properties of the new concepts have been studied.

Definition 5.1. An u-ω-open set A is said to be u-ω-paraopen if it is neither u-ω-minimal open nor

u-ω-maximal open. The collection of all u-ω-paraopen sets of X is denoted by ωpo(τ1, τ2).

Definition 5.2. An u-ω-closed A is said to be an u-ω-paraclosed set if its complement is an u-ω-

paraopen set. The collection of all u-ω-paraclosed sets of X is denoted by ωpc(τ1, τ2).

Example 5.1. From Example 3.1, the set B = R \Q is u-ω-paraopen, and the set A = Q is a

u-ω-paraclosed.

Now we describe some properties of the u-ω-paraopen and u-ω-paraclosed sets.

Proposition 5.1. If A ∈ ωpo(τ1, τ2) such that A 6= ∅, then there exists B ∈ ω−(τ1, τ2) such that

B ⊂ A.

Proof. It is evident that B ⊂ A, by the definition of u-ω-minimal open set. �

Proposition 5.2. If A ∈ ωpo(τ1, τ2) such that A 6= ∅, then there exists B ∈ ω+(τ1, τ2) such that

A ⊂ B.

Proof. It is apparent that A ⊂ B by the definition of u-ω-maximal open set. �

Proposition 5.3. If A ∈ ωpo(τ1, τ2) and B ∈ ω−(τ1, τ2), then A ∩ B = ∅ or B ⊂ A.

Proof. Since A ∈ ωpo(τ1, τ2) and B ∈ ω−(τ1, τ2), A∩B = ∅ or A∩B 6= ∅. If A∩B = ∅, then there

is nothing to prove. If A ∩ B 6= ∅, then A ∩ B ∈ ω(τ1, τ2) and A ∩ B ⊆ B. Since B ∈ ω−(τ1, τ2),

A ∩ B = B which implies B ⊂ A. �

Proposition 5.4. If A ∈ ωpo(τ1, τ2) and B ∈ ω+(τ1, τ2), then A ∩ B = ∅ or A ⊂ B.

Proof. Since A ∈ ωpo(τ1, τ2) and B ∈ ω+(τ1, τ2), A∩B = ∅ or A∩B 6= ∅. If A∩B = ∅, then there

is nothing to prove. If A ∩ B 6= ∅, then A ∩ B ∈ ω(τ1, τ2) and B ⊆ A ∩ B. Since B ∈ ω+(τ1, τ2),

A ∩ B = B, which implies A ⊂ B. �

Proposition 5.5. If A1, A2 ∈ ωpo(τ1, τ2), then A1 ∩ A2 ∈ ωpo(τ1, τ2) ∪ ω−(τ1, τ2).

Proof. Let A1 ∩ A2 ∈ ωpo(τ1, τ2). If A1 ∩ A2 ∈ ωpo(τ1, τ2), then there is nothing to prove. If

A1 ∩A2 /∈ ωpo(τ1, τ2), then A1 ∩A2 ∈ ωpo(τ1, τ2)∪ω+(τ1, τ2). If A1 ∩A2 ∈ ω+(τ1, τ2), then there

is nothing to prove. So, let A1∩A2 ∈ ω+(τ1, τ2). Now A1∩A2 ⊆ A1 and A1∩A2 ⊆ A2, a contradiction,

since A1, A2 ∈ ωpo(τ1, τ2). Hence A1 ∩ A2 /∈ ω+(τ1, τ2). Hence A1 ∩ A2 ∈ ω−(τ1, τ2). �
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Proposition 5.6. If A1, A2 ∈ ωpo(τ1, τ2), then A1 ∪ A2 ∈ ωpo(τ1, τ2) ∪ ω+(τ1, τ2).

Proof. Let A1, A2 ∈ ωpo(τ1, τ2). If A1 ∪ A2 ∈ ωpo(τ1, τ2), then there is nothing to prove. If

A1∪A2 /∈ ωpo(τ1, τ2), then A1∪A2 ∈ ω−(τ1, τ2)∪ω+(τ1, τ2). If A1∪A2 ∈ ω+(τ1, τ2), then there is

nothing to prove. So, let A1∪A2 ∈ ω−(τ1, τ2). Now A1 ⊆ A1∪A2 and A2 ⊆ A1∪A2, a contradiction

to the fact that A1, A2 ∈ ωpo(τ1, τ2). Hence A1∪A2 /∈ ω−(τ1, τ2). Hence A1∪A2 ∈ ω+(τ1, τ2). �

Proposition 5.7. For a subset A of X, A ∈ ωpc(τ1, τ2) ⇔ A /∈ ω+c(τ1, τ2) ∩ ω−c(τ1, τ2).

Proof. It is apparent from the facts that the complement of an u-ω-minimal open set is a u-ω-maximal

closed set and the complement of an u-ω-maximal open set is a u-ω-minimal closed set. �

Proposition 5.8. If ∅ 6= A ∈ ωpc(τ1, τ2), then there exists B ∈ ω−c(τ1, τ2) such that B ⊂ A.

Proof. It is evident that B ⊂ A, by the definition of u-ω-minimal closed set. �

Proposition 5.9. If A ∈ ωpc(τ1, τ2), then there exists B ∈ ω+c(τ1, τ2) such that A ⊂ B.

Proof. It is apparent that A ⊂ B, by the definition of u-ω-maximal closed set. �

Proposition 5.10. If ∅ 6= C ∈ ωpc(τ1, τ2), then there exist A,B( 6= C) ∈ ωc(τ1, τ2) such that

A ⊂ C ⊂ B.

Proof. Follows from the respective Definition. �

Proposition 5.11. If A ∈ ωpc(τ1, τ2) and B ∈ ω−c(τ1, τ2), then A ∩ B = ∅ or B ⊂ A.

Proof. Let A ∈ ωpc(τ1, τ2) and B ∈ ω−c(τ1, τ2). Then X\A ∈ ωpo(τ1, τ2) and X\B ∈ ω+(τ1, τ2).

Then X\A ∪X\B = X or B ⊂ A. Hence A ∩ B = ∅ or B ⊂ A. �

Proposition 5.12. If A ∈ ωpc(τ1, τ2) and B ∈ ω+c(τ1, τ2), then A ∪ B = X or A ⊂ B.

Proof. Since A ∈ ωpc(τ1, τ2) and B ∈ ω+c(τ1, τ2), X\A ∈ ωpo(τ1, τ2) and X\B ∈ ω−(τ1, τ2).

Then (X\A) ∩ (X\B) = ∅ or X\B ⊂ X\A, which implies that X\(A ∪ B) = ∅ or A ⊂ B. Hence

A ∪ B = X or A ⊂ B. �

Proposition 5.13. If A1, A2 ∈ ωpc(τ1, τ2), then A1 ∩ A2 ∈ ωpc(τ1, τ2) ∪ ω−c(τ1, τ2).

Proof. Let A1, A2 ∈ ωpc(τ1, τ2). If A1 ∩ A2 ∈ ωpc(τ1, τ2), then there is nothing to prove. If

A1 ∩ A2 /∈ ωpc(τ1, τ2), then A1 ∩ A2 ∈ ω−c(τ1, τ2) ∪ ω+c(τ1, τ2). If A1 ∩ A2 ∈ ω−c(τ1, τ2), then

there is nothing to prove. Suppose A1 ∩ A2 ∈ ω+(τ1, τ2). Now A1 ∩ A2 ⊆ A1 and A1 ∩ A2 ⊆ A2

which is a contradiction to the fact that A1, A2 ∈ ωpc(τ1, τ2). Hence A1 ∩ A2 /∈ ω+(τ1, τ2). Hence

A1 ∩ A2 ∈ ω−c(τ1, τ2). �

Proposition 5.14. If A1, A2 ∈ ωpc(τ1, τ2), then A1 ∪ A2 ∈ ωpc(τ1, τ2) ∪ ω+c(τ1, τ2).

Proof. Similar to the Proposition 5.13. �
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6. Bitopological u-ω-mean open / u-ω-closed sets

In this section, we introduce and study the concept of u-ω-mean open sets and u-ω-mean closed

sets in bitopological spaces.

Definition 6.1. An u-ω-open set A is said to be u-ω-mean open if there exist two distinct proper

u-ω-open sets A1, A2( 6= A) such that A1 ⊂ A ⊂ A2. The collection of all u-ω-mean open sets of X

is denoted by ω(τ1, τ2).

Definition 6.2. An u-ω-closed set A is said to be u-ω-mean closed if there exist two distinct proper

u-ω-closed sets A1, A2(6= A) such that A1 ⊂ A ⊂ A2. The collection of all u-ω-mean closed sets of

X is denoted by ωc(τ1, τ2).

Example 6.1. From Example 3.1, the set B = R \Q is u-ω-mean open, and the set A = Q is a

u-ω-mean closed. For the first case, take B1 = B ∪ {α0, α0 ∈ Q} and B2 = B \ {β0, β0 ∈ R \Q}.

Theorem 6.1. An u-ω-open set of X is u-ω-mean open if and only if its complement is u-ω-mean

closed.

Proof. Let B ∈ ω(τ1, τ2). Then A1( 6= ∅), B, A2(6= B), X ∈ ω(τ1, τ2) such that A1 ⊂ B ⊂ A2 and

so X\A2 ⊂ X\B ⊂ X\A1. Since X\A2 6= ∅, X\B and X\A1 6= X\B,X; hence X\B ∈ ωc(τ1, τ2).

Conversely, let B ∈ ω(τ1, τ2) such that X\B ∈ ωc(τ1, τ2). Hence there exist C1 6= ∅, X\B,C2 6=
X\B,X ∈ ωc(τ1, τ2) such that C1 ⊂ X\B ⊂ C2. Then X\C2 ⊂ B ⊂ X\C1. Since X\C2 6= ∅, B and

X\C1 6= B,X and hence B ∈ ω(τ1, τ2). �

Theorem 6.2. (1) A proper u-ω-paraopen set is an u-ω-mean open set and vice-versa.

(2) A proper u-ω-paraclosed set is an u-ω-mean closed set and vice-versa.

Proof. (1). If α ∈ ωpo(τ1, τ2) such that α /∈ {∅, X}, then α ∈ ω(τ1, τ2). Conversely, let B ∈
ω(τ1, τ2). Then there exist B1( 6= B), B2( 6= B) ∈ ω(τ1, τ2) such that B1 ⊂ B ⊂ B2 and B1, B2 /∈
{∅, X}. Since B1 6= ∅, B and B2 6= X,B, B /∈ ω−(τ1, τ2)∩ω+(τ1, τ2). As B 6= ∅, X, B ∈ ωpo(τ1, τ2).

(2). Similar to (1). �

Theorem 6.3. (1) If C1, C2 ∈ ω+(τ1, τ2) with C1 6= C2 and ω ∈ ω(τ1, τ2), then C1 ∩ C2 6= ∅.
(2) If C1, C2 ∈ ω−(τ1, τ2) with C1 6= C2 and ω ∈ ω(τ1, τ2), then C1 ∪ C2 6= X.

(3) If C1, C2 ∈ ω+c(τ1, τ2) with C1 6= C2 and ω ∈ ωc(τ1, τ2), then C1 ∩ C2 6= ∅.
(4) If C1, C2 ∈ ω+(τ1, τ2) with C1 6= C2 and ω ∈ ω(τ1, τ2), then C1 ∪ C2 6= X.

Proof. (1). Let C1, C2 ∈ ω+(τ1, τ2) with C1 6= C2 and A ∈ ω(τ1, τ2). Then C1 ∪ C2 = X. A ∈
ω(τ1, τ2) implies A /∈ ω+(τ1, τ2) ∩ ω−(τ1, τ2). Then A 6= C1, C2. Also A 6= X. Then A * C1 or

A∪ C1 = X and A * C2 or A∪ C2 = X. Then we have the following cases: (i). A * C1 and A * C2,

(ii). A * C1 and A ∪ C2 = X, (iii). A ∪ C1 = X and A * C2 and (iv). A ∪ C1 = X and A ∪ C2 = X.
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Case (i): Obviously, C1 ∩ C2 6= ∅ if A * C1 and A * C2. Case (ii): If A ∩ C2 6= ∅, then C1 ∩ C2 6= ∅.
Now suppose A ∩ C2 6= ∅. As A * C1, then there exists x ∈ C1 such that x /∈ C2. Since A ∪ C2 = X,

x ∈ C2. So C1 ∩ C2 6= ∅. Case (iii): Similar to Case (ii). Case (iv): A ∪ C1 = X and A ∪ C2 = X

imply that A ∪ (C1 ∩ C2) = X which in turn imply that A 6= X, we have C1 ∩ C2 6= ∅.
(2). Similar to (1).

(3). Follows from (1).

(4). Follows from (2). �
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