Some Subsets of Bitopological Spaces

R. Rajalakshmi ${ }^{1}$, C. Carpintero ${ }^{2}$, N. Rajesh ${ }^{3}$, E. Rosas ${ }^{4,5}$
${ }^{1}$ Department of Mathematics, Dhanalakshmi Srinivasan Engineering College, Perambalur, Tamilnadu, India
${ }^{2}$ Corporación Universitaria del Caribe-CECAR, Sincelejo, Colombia
${ }^{3}$ Department of Mathematics, Rajah Serfoji Govt. College (affiliated to Bharathidasan University), Thanjavur-613005, Tamilnadu, India
${ }^{4}$ Departamento de Ciencias Naturales y Exactas, Universidad de la Costa, Barranquilla, Colombia
${ }^{5}$ Department of Mathematics, Universidad de Oriente, Cumana, Venezuela
*Corresponding author: nrajesh_topology@yahoo.co.in

Abstract

In this paper, we introduce the notions of minimal u - ω-closed sets, maximal u - ω-open sets, u - ω-paraopen sets, u - ω-paraclosed sets, u - ω-mean open sets and u - ω-mean closed sets in bitopological spaces and obtain several characterizations and some of its properties.

1. Introduction

The notion of biotopological spaces was first introduced by Kelly [7]. Then A large number of topologists have directed their attention to generalizing different well known concepts of a topological space and trying to study them in biotopological spaces. The importance of generalized open sets in general topology is well known. and are now research topics of many topologists around the world. In fact, a significant topic in General Topology and Real Analysis concerns the various modified forms of continuity, separation axioms, etc. using generalized open sets. Recently, as a generalization of closed sets, the notion of ω-closed sets was introduced and studied by Hdeib [5]. Several characterizations and properties of ω-closed sets were provided in [2-6]. In this paper, we introduce and study the notions of minimal u - ω-closed sets, maximal u - ω-open sets, u - ω-paraopen sets, u - ω-paraclosed sets, u - ω-mean

[^0]Key words and phrases. bitopological spaces; u - ω-open sets; u - ω-closed sets.
open sets and u - ω-mean closed sets in bitopological spaces and obtain several characterizations and some of its properties.

2. Preliminaries

Throughout this paper, $\left(X, \tau_{1}, \tau_{2}\right)$ always mean bitopological spaces in which no separation axioms are assumed unless explicitly stated. A point $x \in X$ is called a condensation point of A if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable. A is said to be ω-closed [5] if it contains all its condensation points. The complement of an ω-closed set is said to be an ω-open set. It is well known that a subset W of a space (X, τ) is ω-open if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and $U \backslash W$ is countable. The family of all ω-open subsets of a topological space (X, τ) forms a topology on X finer than τ. The intersection of all ω-closed sets containing A is called the ω-closure [5] of A and is denoted by $\omega \mathrm{Cl}(A)$. The family of all ω-open sets of X is denoted by $\omega(\tau)$.

Definition 2.1. [1] Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bitopological space and let $A \subset X$. Then
(1) A is said to be u - ω-open in $\left(X, \tau_{1}, \tau_{2}\right)$ if $A \in \omega\left(\tau_{1}\right) \cup \omega\left(\tau_{2}\right)$,
(2) A is said to be u - ω-closed in $\left(X, \tau_{1}, \tau_{2}\right)$ if $X-A$ is u - ω-open in $\left(X, \tau_{1}, \tau_{2}\right)$.

The family of all u - ω-open sets in $\left(X, \tau_{1}, \tau_{2}\right)$ is denoted by $\omega\left(\tau_{1}, \tau_{2}\right)$, and the family of all u - ω-closed sets in $\left(X, \tau_{1}, \tau_{2}\right)$ is denoted by $\omega c\left(\tau_{1}, \tau_{2}\right)$.

Definition 2.2. (1) The u - ω-closure of A in $\left(X, \tau_{1}, \tau_{2}\right)$ is denoted by $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(A)$ and defined as follows: $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(A)=\omega \mathrm{Cl}_{\tau_{1}}(A) \cap \omega \mathrm{Cl}_{\tau_{2}}(A)$.
(2) The u - ω-interior of A in $\left(X, \tau_{1}, \tau_{2}\right)$ is denoted by $\left(\tau_{1}, \tau_{2}\right)-\omega \operatorname{lnt}(A)$ and defined as follows: $\left(\tau_{1}, \tau_{2}\right)-\omega \operatorname{lnt}(A)=\omega \operatorname{Int}_{\tau_{1}}(A) \cup \omega \operatorname{Int}_{\tau_{2}}(A)$.

3. Weak forms bitopological ω-open sets

In this section, we study some fundamental properties of u - ω-minimal closed sets and $u-\omega$ maximal open sets.

Definition 3.1. A proper nonempty u - ω-closed subset F of $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be a minimal $u-\omega$ closed set if any u - ω-closed set contained in F is \emptyset or F.

Definition 3.2. A proper nonempty u - ω-open U of $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be a maximal u - ω-open set if any u - ω-open set containing U is either X or U.

Example 3.1. Let $X=\mathbb{R}, \tau_{1}=\tau_{2}=\{\emptyset, \mathbb{R}, \mathbb{R} \backslash \mathbb{Q}\}$. Then $A=\mathbb{Q}$ is a u- ω-closed set and $B=\mathbb{R} \backslash \mathbb{Q}$ is a u - ω-open set. Observe that the set A is not a minimal u - ω-closed set and the set B is not a maximal u - ω-open. In the same form, any unitary set of the set A is a minimal u - ω-closed and the set $D=\mathbb{R} \backslash E$, were E is a unitary set of A is a maximal u - ω-open.

Remark 3.1. The collection of all minimal u - ω-closed sets of X is denoted by $\omega^{-} c\left(\tau_{1}, \tau_{2}\right)$ and the collection of all maximal u - ω-open sets of X is denoted by $\omega^{+}\left(\tau_{1}, \tau_{2}\right)$.

Theorem 3.1. A proper nonempty subset $U \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ if and only if $X \backslash U \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$.
Proof. Let $U \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$. Suppose $X \backslash U \notin \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$. Then there exists $V \in \omega c\left(\tau_{1}, \tau_{2}\right)$ and $V \neq X \backslash U$ such that $\emptyset \neq V \subset X \backslash U$. That is $U \subset X \backslash V$ and $X \backslash V \in \omega\left(\tau_{1}, \tau_{2}\right)$, a contradiction for $U \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$. Conversely, let $X \backslash U \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$. Suppose $U \notin \omega^{+}\left(\tau_{1}, \tau_{2}\right)$. Then there exists $E \in \omega\left(\tau_{1}, \tau_{2}\right)$ and $E \neq U$ such that $U \subset E \neq X$. That is $\emptyset \neq X \backslash E \subset X \backslash U$ and $X \backslash E \in \omega c\left(\tau_{1}, \tau_{2}\right)$, a contradiction for $X \backslash U \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$. Therefore, $U \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$.

Lemma 3.1. (1) If $U \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$ and $V \in \omega c\left(\tau_{1}, \tau_{2}\right)$, then $U \cap V=\emptyset$ or $U \subset V$.
(2) If $U, V \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$, then $U \cap V=\emptyset$ or $U=V$.

Proof. (1). If $U \cap V=\emptyset$, then there is nothing to prove. If $U \cap V \neq \emptyset$, then $U \cap V \subset U$. Since $U \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right), U \cap V=U$. Hence $U \subset V$.
(2). If $U \cap V \neq \emptyset$, then $U \subset V$ and $V \subset U$ by (1). Hence $U=V$.

Theorem 3.2. Let $U \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$. If $x \in U$, then $U \subset W$ for some $W \in \omega c\left(\tau_{1}, \tau_{2}, x\right)$.
Proof. Let $x \in U$ and $W \in \omega c\left(\tau_{1}, \tau_{2}, x\right)$. Then $U \cap W=\emptyset$. By Lemma 3.1 (1), $U \subset W$.
Theorem 3.3. If $U \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$, then $U=\cap\left\{W: W \in \omega c\left(\tau_{1}, \tau_{2}, x\right)\right\}$.
Proof. By Theorem 3.2 and $U \in \omega c\left(\tau_{1}, \tau_{2}, x\right)$, we have $U \subset \cap\left\{W: W \in \omega c\left(\tau_{1}, \tau_{2}, x\right)\right\}$. Next let, $x \in \cap\left\{W: W \in \omega c\left(\tau_{1}, \tau_{2}, x\right)\right\}$. Then $x \in W$ for all $W \in \omega c\left(\tau_{1}, \tau_{2}\right)$. As $U \in \omega c\left(\tau_{1}, \tau_{2}\right), x \in U$; hence $\cap\left\{W: W \in \omega c\left(\tau_{1}, \tau_{2}, x\right)\right\}=U$.

Theorem 3.4. Let U be a nonempty u - ω-closed subset of $\left(X, \tau_{1}, \tau_{2}\right)$. Then the following statements are equivalent:
(1) $U \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$.
(2) $U \subset\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(S)$ for any nonempty subset S of U.
(3) $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(U)=\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(S)$ for any nonempty subset S of U.

Proof. (1) \Rightarrow (2): Let $x \in U ; U \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$ and $S(\neq \emptyset) \subset U$. By Theorem 3.2, for any $W \in \omega c\left(\tau_{1}, \tau_{2}, x\right), S \subset U \subset W$ gives $S \subset W$. Now $S=S \cap U \subset S \cap W$. Since $S \neq \emptyset, S \cap W \neq \emptyset$. Since $W \in \omega c\left(\tau_{1}, \tau_{2}, x\right)$, by Theorem 3.2, $x \in\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(S)$. That is, $x \in U \Rightarrow x \in\left(\tau_{1}, \tau_{2}\right)-$ $\omega \mathrm{Cl}(S)$. Hence $U \subset\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(S)$ for any nonempty subset S of U.
(2) \Rightarrow (3): Let S be a nonempty subset of U. Then $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(S) \subset\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(U)$. By (2), $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(U) \subset\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(S)\right)=\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(S)$. That is, $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(U) \subset$ $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(S)$. We have $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(U)=\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(S)$ for any nonempty subset S of U.
(3) $\Rightarrow(1)$: Suppose $U \notin \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$. Then there exists $V \in \omega c\left(\tau_{1}, \tau_{2}\right)$ such that $V \subset U$ and
$V \neq U$. Now, there exists $a \in U$ such that $a \notin V$. That is, $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(\{a\}) \subset\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(X \backslash V)=$ $X \backslash V$, as $X \backslash V \in \omega c\left(\tau_{1}, \tau_{2}\right)$. Then $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(\{a\}) \neq\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(U)$, a contradiction for $\left(\tau_{1}, \tau_{2}\right)$ $\omega \mathrm{Cl}(\{a\})=\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(U)$ for any $\{a\}(\neq \emptyset) \subset U$. Therefore, $U \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$.

Theorem 3.5. If V is a nonempty finite u - ω-closed subset of $\left(X, \tau_{1}, \tau_{2}\right)$, then there exists at least one (finite) $U \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$ such that $U \subset V$.

Proof. If $V \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$, we may set $U=V$. If $V \notin \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$, then there exists (finite) $V_{1} \in \omega c\left(\tau_{1}, \tau_{2}\right)$ such that $\emptyset \neq V_{1} \subset V$. If $V_{1} \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$, we may set $U=V_{1}$. If $V_{1} \notin \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$, then there exists (finite) $V_{2} \in \omega c\left(\tau_{1}, \tau_{2}\right)$ such that $\emptyset \neq V_{2} \subset V_{1}$. Continuing this process, we have a sequence of u - ω-closed sets $V \supset V_{1} \supset V_{2} \supset V_{3} \supset \cdots \supset V_{k} \supset \cdots$. Since V is a finite set, this process repeats only finitely many time and finally we get a minimal u - ω-closed set $U=V_{n}$ for some positive integer n.

Theorem 3.6. Let $U, U_{\alpha} \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$ for any element $\alpha \in \Delta$. If $U \subset \underset{\alpha \in \Delta}{\cup} U_{\alpha}$, then there exists $\alpha \in \Delta$ such that $U=U_{\alpha}$.

Proof. Let $U \subset \underset{\alpha \in \Delta}{\cup} U_{\alpha}$. Then $U \cap\left(\cup_{\alpha \in \Delta} U_{\alpha}\right)=U$. That is $\underset{\alpha \in \Delta}{ }\left(U \cap U_{\alpha}\right)=U$. Also by Lemma 3.1 (2), $U \cap U_{\alpha}=\emptyset$ or $U=U_{\alpha}$ for any $\alpha \in \Delta$. Then there exists $\alpha \in \Delta$ such that $U=U_{\alpha}$.

Theorem 3.7. Let $U, U_{\alpha} \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$ for any $\alpha \in \Delta$. If $U \neq U_{\alpha}$ for any $\alpha \in \Delta$, then $\left(\cup_{\alpha \in \Delta} U_{\alpha}\right) \cap U=$ \emptyset.

Proof. Suppose that $\left(\cup_{\alpha \in \Delta} U_{\alpha}\right) \cap U \neq \emptyset$. Then there exists $\alpha \in \Delta$ such that $U \cap U_{\alpha} \neq \emptyset$. By Lemma 3.1 (2), we have $U=U_{\alpha}$, which contradicts the fact that $U \neq U_{\alpha}$ for any $\alpha \in \Delta$. Hence $\left(\cup_{\alpha \in \Delta} U_{\alpha}\right) \cap U=\emptyset$.

Lemma 3.2. For the subsets A and B of X, we have the following:
(1) If $A \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ and $B \in \omega\left(\tau_{1}, \tau_{2}\right)$, then $A \cup B=X$ or $B \subset A$.
(2) Let $A, B \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$, then $A \cup B=X$ or $A=B$.

Proof. (1). If $A \cup B=X$, then there is nothing to prove. If $A \cup B \neq X$, then $A \cup B \in \omega\left(\tau_{1}, \tau_{2}\right)$ such that $A \subset A \cup B$. Then $A \cup B=A$. Hence $B \subset A$.
(2). If $A \cup B \neq X$, then $A \cup B \in \omega\left(\tau_{1}, \tau_{2}\right)$ such that $A, B \subset A \cup B$, that is, $A \cup B=A$ and $A \cup B=B$. Hence $A=B$.

Theorem 3.8. Let $F \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$. If $x \in F$, then $S \subset F$ for some $S \in \omega\left(\tau_{1}, \tau_{2}, x\right)$.
Proof. Similar to the proof of Theorem 3.2.

Theorem 3.9. Let $A, B, C \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ such that $A \neq B$. If $A \cap B \subset C$, then either $A=C$ or $B=C$.

Proof. If $A=C$, then there is nothing to prove. If $A \neq C$, then we have to prove $B=C$. Now $B \cap C=B \cap(C \cap X)=B \cap(C \cap(A \cup B)$ (by Theorem $3.2(2))=B \cap((C \cap A) \cup(C \cap B))=$ $(B \cap C \cap A) \cup(B \cap C)=(A \cap B) \cup(C \cap B)=(A \cup C) \cap B=X \cap B=B$ (Since $A, C \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ by Theorem 3.2 (2), $A \cup C=X$). That is, $B \cap C=B \Rightarrow B \subset C$. Since $B, C \in \omega^{+}\left(\tau_{1}, \tau_{2}\right), B=C$. Hence $B=C$.

Theorem 3.10. If $A, B, C \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ which are different from each other, then $(A \cap B) \nsubseteq(A \cap C)$.
Proof. Let $A \cap B \subset A \cap C$. Then $(A \cap B) \cup(C \cap B) \subset(A \cap C) \cup(C \cap B)$. That is, $(A \cup C) \cap B \subset C \cap(A \cup B)$. By Theorem 3.2 (2), $A \cup C=X=A \cup B$. Hence $X \cap B \subset C \cap X \Rightarrow B \subset C$. Thus from the definition of maximal u - ω-open set, we have $B=C$, a contradiction to the fact that A, B and C are different to each other. Therefore, $(A \cap B) \nsubseteq(A \cap C)$.

Theorem 3.11. If $F \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ and $x \in F$, then $F=\cup\left\{S: S \in \omega\left(\tau_{1}, \tau_{2}, x\right)\right.$ such that $\left.F \cup S \neq X\right\}$.
Proof. Similar to the proof of Theorem 3.3.
We call a set cofinite if its complement is finite.
Theorem 3.12. If F is a proper nonempty cofinite u - ω-open set, then there exists (cofinite) $E \in$ $\omega^{+}\left(\tau_{1}, \tau_{2}\right)$ such that $F \subset E$.

Proof. If $F \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$, we may set $E=F$. If $F \notin \omega^{+}\left(\tau_{1}, \tau_{2}\right)$, then there exists (cofinite) $F_{1} \in \omega\left(\tau_{1}, \tau_{2}\right)$ such that $F \subset F_{1} \neq X$. If $F_{1} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$, we may set $E=F_{1}$. If $F_{1} \notin \omega^{+}\left(\tau_{1}, \tau_{2}\right)$, then there exists (cofinite) $F_{2} \in \omega\left(\tau_{1}, \tau_{2}\right)$ such that $F \subset F_{1} \subset F_{2}(\neq X)$. Continuing this process, we have a sequence of u - ω-open sets such that $F \subset F_{1} \subset F_{2} \subset \cdots \subset F_{k} \subset \cdots$. Since F is cofinite, this process repeats only finitely many times and finally we get a maximal u - ω-open set $E=F$.

Theorem 3.13. For a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$, we have the following:
(1) If $A \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ and $x \in X \backslash A$, then $X \backslash A \subset B$ for any $B \in \omega\left(\tau_{1}, \tau_{2}, x\right)$.
(2) If $A \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$, then either of the following (i) or (ii) holds:
(i) For each $x \in X \backslash A$ and each $B \in \omega\left(\tau_{1}, \tau_{2}, x\right), B=X$.
(ii) There exists $B \in \omega\left(\tau_{1}, \tau_{2}\right)$ such that $X \backslash A \subset B$.
(3) If $A \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$, then either of the following (i) or (ii) holds:
(i) For each $x \in X \backslash A$ and each $B \in \omega\left(\tau_{1}, \tau_{2}, x\right), X \backslash A \subset B$.
(ii) There exists $B \in \omega\left(\tau_{1}, \tau_{2}\right)$ such that $X \backslash A=B$.

Proof. (1). Since $x \in X \backslash A, B \nsubseteq A$ for any $B \in \omega\left(\tau_{1}, \tau_{2}, x\right)$. Then by Theorem 3.2 (1), $A \cup B=$ $X \Rightarrow X \backslash A \subset B$.
(2). If (i) holds, we are done. Let (i) do not hold. Then there exist $x \in X \backslash A$ and $B \in \omega\left(\tau_{1}, \tau_{2}, x\right)$ such that $B \subset X$. Then by Theorem 3.2 (1), $A \cup B=X$ or $B \subset A$. But $B \nsubseteq A \Rightarrow A \cup B=X \Rightarrow X \backslash A \subset B$.
(3). If (ii) holds, we are done. Let (ii) do not hold. Then (by (i)) for each $x \in X \backslash A$ and each $B \in \omega\left(\tau_{1}, \tau_{2}, x\right), X \backslash A \subset B$. Hence by assumption $X \backslash A \subset B$.

Theorem 3.14. If $A \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$, then either $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(A)=X$ or $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(A)=A$.
Proof. Since $A \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$, only the following cases (i) and (ii) occur by Theorem 3.13 (3).
(i). For each $x \in X$ and $x \in X \backslash A$ and each $B \in \omega\left(\tau_{1}, \tau_{2}, x\right)$, we have $X \backslash A \subset B$. Let $x \in X \backslash A$ and $B \in \omega\left(\tau_{1}, \tau_{2}, x\right)$. Since $X \backslash A \neq B, B \cap A \neq \emptyset$ and $X \backslash A \subset\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(A)$. Since $X=A \cup(X \backslash A) \subset A \cup\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(A)=\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(A) \subset X, X=\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(A)$.
(ii). There exists $B \in \omega\left(\tau_{1}, \tau_{2}\right)$ such that $X \backslash A=B(\neq X)$. Since $X \backslash A=B, A \in \omega c\left(\tau_{1}, \tau_{2}\right) \Rightarrow$ $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(A)=A$.

Theorem 3.15. If $A \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$, then either $\left(\tau_{1}, \tau_{2}\right)-\omega \operatorname{lnt}(X \backslash A)=X \backslash A$ or $\left(\tau_{1}, \tau_{2}\right)-\omega \operatorname{lnt}(X \backslash A)=\emptyset$.
Proof. By Theorem 3.14, we have $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(A)=A$ or $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(A)=X$. That is, $\left(\tau_{1}, \tau_{2}\right)-$ $\omega \operatorname{Int}(X \backslash A)=X \backslash A$ or $\left(\tau_{1}, \tau_{2}\right)-\omega \operatorname{Int}(X \backslash A)$
$=\emptyset$.
Theorem 3.16. If $A \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ and $\emptyset \neq B \subset X \backslash A$, then $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(B)=X \backslash A$.

Proof. Since $\emptyset \neq B \subset X \backslash A, W \cap B \neq \emptyset$ for any element $x \in X \backslash A$ and any $W \in \omega\left(\tau_{1}, \tau_{2}, x\right)$, by Theorem 3.13 (1). Thus, $X \backslash A \subset\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(B)$. Since $X \backslash A \in \omega c\left(\tau_{1}, \tau_{2}\right)$ and $B \subset X \backslash A$, we have $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(B) \subset X \backslash A$.

Corollary 3.1. If $A \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ and $A \subset B$, then $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(B)=X$.

Proof. The proof follows from Theorem 3.14.
Theorem 3.17. If $A \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ and $X \backslash A$ have at least two elements, then $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(X \backslash\{a\})=X$ for any $a \in X \backslash A$.

Proof. As $A \subset X \backslash\{a\}$, we have, by Corollary 3.1, $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{CI}(X \backslash\{a\})=X$.
Theorem 3.18. If $A \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ and $\emptyset \neq G \subset X$ with $A \subset G$, then $\left(\tau_{1}, \tau_{2}\right)-\omega \operatorname{lnt}(G)=A$.
Proof. If $G=A$, then $\left(\tau_{1}, \tau_{2}\right)-\omega \operatorname{lnt}(G)=\left(\tau_{1}, \tau_{2}\right)-\omega \operatorname{lnt}(A)=A$. If $G \neq A$, then $A \subset G$. Thus $A \subset$ $\left(\tau_{1}, \tau_{2}\right)-\omega \operatorname{lnt}(G)$. Since $A \in \omega^{+}\left(\tau_{1}, \tau_{2}\right),\left(\tau_{1}, \tau_{2}\right)-\omega \operatorname{lnt}(G) \subset A$. Hence $\left(\tau_{1}, \tau_{2}\right)-\omega \operatorname{lnt}(G)=A$.

Theorem 3.19. If $A \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ and $F \subset X \backslash A$, then $X \backslash\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(F)=A$.

Proof. Since $A \subset X \backslash F \subset X$, by our assumption and by Theorem ??, $X \backslash\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}(F)=A$.

4. Basic properties of u - ω-radical

In this section, we study some fundamental properties of radical of maximal u - ω-open sets. We establish a very useful decomposition theorem for a maximal u-w-open sets.

Definition 4.1. Let $\mathcal{U}=\left\{U_{\alpha}: \alpha \in \Delta\right\} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$. Then $\cap \mathcal{U}=\bigcap_{\alpha \in \Delta} U_{\alpha}$ is called the u - ω-radical of \mathcal{U}.

Theorem 4.1. Suppose that $|\Delta| \geq 2$. Let $U_{\alpha} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ for any $\alpha \in \Delta$ and $U_{\alpha} \neq U_{\beta}$, for any $\alpha, \beta \in \Delta$ with $\alpha \neq \beta$. If $\beta \in \Delta$, then the following hold:
(1) $X \backslash \bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha} \subseteq U_{\beta}$.
(2) $\bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha} \neq \emptyset$.

Proof. (1). By Lemma 3.2 (2), we have $X \backslash U_{\beta} \subseteq U_{\alpha}$ for any $\alpha \in \Delta$ with $\alpha \neq \beta$. Then $X \backslash U_{\beta} \subseteq$ $\bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}$. Therefore, $X \backslash \bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha} \subseteq U_{\beta}$.
(2). If $\bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}=\emptyset$. By (1), we have $X=U_{\beta}$, a contradiction to our supposition that $U_{\alpha} \in$ $\omega^{+}\left(\tau_{1}, \tau_{2}\right)$. Therefore, $\bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha} \neq \emptyset$.

Corollary 4.1. Let $U_{\alpha} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ for any $\alpha \in \Delta$ and $U_{\alpha} \neq U_{\beta}$ for any $\alpha, \beta \in \Delta$ with $\alpha \neq \beta$. If $|\Delta| \geq 2$, then $U_{\alpha} \cap U_{\beta} \neq \emptyset$ for any $\alpha, \beta \in \Delta$ with $\alpha \neq \beta$.

Proof. The proof follows from Theorem 4.1 (2).
Theorem 4.2. Let $U_{\alpha} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ for any $\alpha \in \Delta$ and $U_{\alpha} \neq U_{\beta}$ for any $\alpha, \beta \in \Delta$ with $\alpha \neq \beta$. Assume that $|\Delta| \geq 2$. If $\beta \in \Delta$, then $\bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha} \nsubseteq U_{\beta} \nsubseteq \bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}$.
Proof. If $\bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha} \subseteq U_{\beta}$. Then by Theorem 4.1 (2), we have $X=\left(X \backslash \bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}\right) \cup\left(\bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}\right) \subseteq$ U_{α}, a contradiction. If $U_{\beta} \subseteq \bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}$, then $U_{\beta} \subseteq U_{\alpha}$ and $U_{\beta}=U_{\alpha}$ for any element $\alpha \in(\Delta \backslash\{\beta\})$. This contradicts our assumption that $U_{\beta} \neq U_{\alpha}$ when $\alpha \neq \beta$.

Corollary 4.2. Let $U_{\alpha} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ for any $\alpha \in \Delta$ and $U_{\alpha} \neq U_{\beta}$ for any $\alpha, \beta \in \Delta$ with $\alpha \neq \beta$. If $\emptyset \neq \Delta^{\star} \subseteq \Delta$, then $\bigcap_{\alpha \in \Delta \backslash \Delta^{\star}} U_{\alpha} \nsubseteq \bigcap_{\iota \in \Delta^{\star}} U_{\iota} \nsubseteq \bigcap_{\alpha \in \Delta \backslash \Delta^{\star}} U_{\alpha}$

Proof. Let $\iota \in \Delta^{\star}$. By Theorem 4.2, $\bigcap_{\alpha \in \Delta \backslash \Delta^{\star}} U_{\alpha}=\bigcap_{\alpha \in \Delta \backslash\left(\Delta^{\star} \cup\{\iota\}\right)} U_{\alpha} \nsubseteq U_{i}$. Then $\bigcap_{\alpha \in \Delta \Delta^{\star}} U_{\alpha} \nsubseteq \bigcap_{\iota \in \Delta^{\star}} U_{\iota}$. On the other hand, since $\bigcap_{\iota \in \Delta^{\star}} U_{\iota}=\bigcap_{\iota \in \Delta \backslash\left(\Delta \backslash \delta^{*}\right)} U_{\iota} \nsubseteq \bigcap_{\alpha \in \Delta \backslash \Delta^{\star}} U_{\alpha}$, we have $\bigcap_{\iota \in \Delta^{\star}} U_{\iota} \nsubseteq \bigcap_{\alpha \in \Delta \backslash \Delta^{\star}} U_{\alpha}$.

Theorem 4.3. Let $U_{\alpha} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ for any $\alpha \in \Delta$ and $U_{\alpha} \neq U_{\beta}$ for any $\alpha, \beta \in \Delta$ with $\alpha \neq \beta$. If $\emptyset \neq \Delta^{\star} \subseteq \Delta$, then $\bigcap_{\alpha \in \Delta} U_{\alpha} \nsubseteq \bigcap_{\iota \in \Delta^{\star}} U_{\iota}$.

Proof. By Corollary 4.2, we have $\bigcap_{\alpha \in \Delta} U_{\alpha}=\left(\bigcap_{\alpha \in \Delta \backslash \Delta^{\star}} U_{\alpha}\right) \cap\left(\bigcap_{\iota \in \Delta} U_{\iota}\right) \nsubseteq \bigcap_{\iota \in \Delta} U_{\iota}$.
The following theorem shows the useful decomposition theorem for a maximal u - ω-open sets.

Theorem 4.4. Let $|\Delta| \geq 2$. If $U_{\alpha} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ for any $\alpha \in \Delta$ and $U_{\alpha} \neq U_{\beta}$ for any $\alpha, \beta \in \Delta$ with $\alpha \neq \beta$. Then for any $\beta \in \Delta, U_{\beta}=\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right) \cup\left(X \backslash \bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}\right)$.

Proof. Let $\beta \in \Delta$. By Theorem 4.1 (1), we have

$$
\begin{aligned}
\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right) \cup\left(X \backslash \bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}\right)= & \left(\left(\bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}\right) \cap U_{\beta}\right) \cup\left(X \backslash \bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}\right) \\
= & \left(\left(\bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}\right) \cup\left(X \backslash \bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}\right)\right) \\
& \cap\left(U_{\beta} \cup\left(X \backslash \bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}\right)\right) \\
= & U_{\beta} \cup\left(X \backslash \bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}\right) \\
= & U_{\beta} .
\end{aligned}
$$

Therefore, $U_{\beta}=\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right) \cup\left(X \backslash \bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}\right)$.
Theorem 4.5. Let Δ be a finite set and $U_{\alpha} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ for any $\alpha \in \Delta$ and $U_{\alpha} \neq U_{\beta}$ for any $\alpha, \beta \in \Delta$ with $\alpha \neq \beta$. If $\bigcap_{\alpha \in \Delta} U_{\alpha} \in \omega c\left(\tau_{1}, \tau_{2}\right)$, then $U_{\alpha} \in \omega c\left(\tau_{1}, \tau_{2}\right)$ for any $\alpha \in \Delta$.

Proof. By Theorem 4.4, we have $U_{\beta}=\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right) \cup\left(X \backslash \bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}\right)=\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right) \cup\left(\underset{\alpha \in \Delta \backslash\{\beta\}}{\cup}\left(X \backslash U_{\alpha}\right)\right)$. Since Δ is finite, $\underset{\alpha \in \Delta \backslash\{\beta\}}{\cup} X \backslash U_{\alpha} \in \omega c\left(\tau_{1}, \tau_{2}\right)$. Hence $U_{\alpha} \in \omega c\left(\tau_{1}, \tau_{2}\right)$.

Theorem 4.6. Assume that $|\Delta| \geq 2$. Let $U_{\alpha} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ for any $\alpha \in \Delta$ and $U_{\alpha} \neq U_{\beta}$ for any $\alpha, \beta \in \Delta$ with $\alpha \neq \beta$. If $\bigcap_{\alpha \in \Delta} U_{\alpha}=\emptyset$, then $\left\{U_{\alpha}: \alpha \in \Delta\right\} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$.

Proof. If there exists $U_{v} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$, which is not equal to U_{α} for any $\alpha \in \Delta$, then $\emptyset=\bigcap_{\alpha \in \Delta} U_{\alpha}=$ $\bigcap_{\alpha \in(\Delta \cup\{v\}) \backslash\{v\}} U_{\alpha}$. By Theorem 4.1 (2), $\bigcap_{\alpha \in(\Delta \cup\{v\}) \backslash\{v\}} U_{\alpha} \neq \emptyset$, a contradiction.

Proposition 4.1. If $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right)=X$, then $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(U_{\alpha}\right)=X$ for any $\alpha \in \Delta$.
Proof. We see that $X=\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right) \subseteq\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(U_{\alpha}\right)$. Then $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(U_{\alpha}\right)=X$ for any $\alpha \in \Delta$.

Theorem 4.7. Let Δ be a finite set and $U_{\alpha} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ for any $\alpha \in \Delta$. If $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right) \neq X$, then there exists $\alpha \in \Delta$ such that $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{CI}\left(U_{\alpha}\right)=U_{\alpha}$.

Proof. Suppose that $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(U_{\alpha}\right)=X$ for any $\alpha \in \Delta$. Let $\beta \in \Delta$. Then $\bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha} \in \omega\left(\tau_{1}, \tau_{2}\right)$. Also

$$
\begin{aligned}
\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right) & =\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\left(\bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}\right) \cap U_{\beta}\right) \\
& =\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}\right) \cap\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(U_{\beta}\right) \\
& \supseteq \bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha} \cap\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(U_{\beta}\right) \\
& =\bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha} \cap X \\
& =\bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}
\end{aligned}
$$

So $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}\right) \subseteq\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right)\right)=\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right)$. On the other hand, $\bigcap_{\alpha \in \Delta} U_{\alpha} \subseteq \bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}$. It follows that $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right)=\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta \backslash\{\beta\}} U_{\alpha}\right)$. Then by induction on the element of $\Delta,\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right) \neq X$. Then there exists $\alpha \in \Delta$ such that $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(U_{\alpha}\right)=U_{\alpha}$.

Theorem 4.8. Let Δ be finite and $U_{\alpha} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ for each $\alpha \in \Delta$. Let $\Delta^{\star} \subseteq \Delta$ such that

$$
\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(U_{\alpha}\right)=\left\{\begin{aligned}
U_{\alpha} & \text { for any } \alpha \in \Delta^{\star} \\
X & \text { for any } \alpha \in \Delta \backslash \Delta^{\star}
\end{aligned}\right.
$$

Then $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right)=\bigcap_{\alpha \in \Delta} U_{\alpha}\left(=X\right.$, if $\left.\Delta^{\star}=\emptyset\right)$.
Proof. If $\Delta=\emptyset$, then we have the result by Theorem 4.7. Otherwise, $\Delta \neq \emptyset$, and

$$
\begin{aligned}
\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right) & =\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\left(\bigcap_{\alpha \in \Delta^{\star}} U_{\alpha}\right) \cap\left(\bigcap_{\alpha \in \Delta \backslash \Delta^{\star}} U_{\alpha}\right)\right) \\
& =\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta^{\star}} U_{\alpha}\right) \cap\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta \backslash \Delta^{\star}} U_{\alpha}\right) \\
& \supseteq\left(\bigcap_{\alpha \in \Delta^{\star}} U_{\alpha}\right) \cap\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta \backslash \Delta^{\star}} U_{\alpha}\right) \\
& =\bigcap_{\alpha \in \Delta^{\star}} U_{\alpha} \cap X \\
& =\bigcap_{\alpha \in \Delta^{\star}} U_{\alpha}
\end{aligned}
$$

By Theorem 4.7 and the fact that $\bigcap_{\alpha \in \Delta^{\star}} U_{\alpha} \in \omega\left(\tau_{1}, \tau_{2}\right)$. Hence $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right)=\left(\tau_{1}, \tau_{2}\right)$ $\omega \mathrm{Cl}\left(\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right)\right) \supseteq\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta^{\star}} U_{\alpha}\right)$. On the other hand, we see that $\bigcap_{\alpha \in \Delta} U_{\alpha} \subseteq$ $\bigcap_{\alpha \in \Delta^{\star}} U_{\alpha}$, and hence $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right) \subseteq\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta^{\star}} U_{\alpha}\right)$. It follows that $\left(\tau_{1}, \tau_{2}\right)$ $\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right)=\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{Cl}\left(\bigcap_{\alpha \in \Delta^{\star}} U_{\alpha}^{\alpha \in \Delta}\right)$. The u - ω-radical $\bigcap_{\alpha \in \alpha} U_{\alpha}^{\alpha \in \Delta^{\star}} \in \omega c\left(\tau_{1}, \tau_{2}\right)$ since $U_{\alpha} \in \omega c\left(\tau_{1}, \tau_{2}\right)$ for any $\alpha \in \Delta^{\star}$ by our assumption. Therefore, $\left(\tau_{1}, \tau_{2}\right)-\omega \mathrm{CI}\left(\bigcap_{\alpha \in \Delta} U_{\alpha}\right)=\bigcap_{\alpha \in \Delta^{\star}} U_{\alpha}$.

5. Bitopological u - ω-paraopen / u - ω-paraclosed sets

In this section, a new class of sets called paraopen sets and paraclosed sets in bitopological spaces are introduced and studied. Some properties of the new concepts have been studied.

Definition 5.1. An u - ω-open set A is said to be u - ω-paraopen if it is neither u - ω-minimal open nor u - ω-maximal open. The collection of all u - ω-paraopen sets of X is denoted by ω po $\left(\tau_{1}, \tau_{2}\right)$.

Definition 5.2. An $u-\omega$-closed A is said to be an u - ω-paraclosed set if its complement is an $u-\omega$ paraopen set. The collection of all u - ω-paraclosed sets of X is denoted by $\omega p c\left(\tau_{1}, \tau_{2}\right)$.

Example 5.1. From Example 3.1, the set $B=\mathbb{R} \backslash \mathbb{Q}$ is u - ω-paraopen, and the set $A=\mathbb{Q}$ is a u - ω-paraclosed.

Now we describe some properties of the u - ω-paraopen and u - ω-paraclosed sets.
Proposition 5.1. If $A \in \omega \operatorname{po}\left(\tau_{1}, \tau_{2}\right)$ such that $A \neq \emptyset$, then there exists $B \in \omega^{-}\left(\tau_{1}, \tau_{2}\right)$ such that $B \subset A$.

Proof. It is evident that $B \subset A$, by the definition of u - ω-minimal open set.
Proposition 5.2. If $A \in \omega \operatorname{po}\left(\tau_{1}, \tau_{2}\right)$ such that $A \neq \emptyset$, then there exists $B \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ such that $A \subset B$.

Proof. It is apparent that $A \subset B$ by the definition of u - ω-maximal open set.
Proposition 5.3. If $A \in \omega p o\left(\tau_{1}, \tau_{2}\right)$ and $B \in \omega^{-}\left(\tau_{1}, \tau_{2}\right)$, then $A \cap B=\emptyset$ or $B \subset A$.
Proof. Since $A \in \omega p o\left(\tau_{1}, \tau_{2}\right)$ and $B \in \omega^{-}\left(\tau_{1}, \tau_{2}\right), A \cap B=\emptyset$ or $A \cap B \neq \emptyset$. If $A \cap B=\emptyset$, then there is nothing to prove. If $A \cap B \neq \emptyset$, then $A \cap B \in \omega\left(\tau_{1}, \tau_{2}\right)$ and $A \cap B \subseteq B$. Since $B \in \omega^{-}\left(\tau_{1}, \tau_{2}\right)$, $A \cap B=B$ which implies $B \subset A$.

Proposition 5.4. If $A \in \omega \operatorname{po}\left(\tau_{1}, \tau_{2}\right)$ and $B \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$, then $A \cap B=\emptyset$ or $A \subset B$.
Proof. Since $A \in \omega p o\left(\tau_{1}, \tau_{2}\right)$ and $B \in \omega^{+}\left(\tau_{1}, \tau_{2}\right), A \cap B=\emptyset$ or $A \cap B \neq \emptyset$. If $A \cap B=\emptyset$, then there is nothing to prove. If $A \cap B \neq \emptyset$, then $A \cap B \in \omega\left(\tau_{1}, \tau_{2}\right)$ and $B \subseteq A \cap B$. Since $B \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$, $A \cap B=B$, which implies $A \subset B$.

Proposition 5.5. If $A_{1}, A_{2} \in \omega p o\left(\tau_{1}, \tau_{2}\right)$, then $A_{1} \cap A_{2} \in \omega p o\left(\tau_{1}, \tau_{2}\right) \cup \omega^{-}\left(\tau_{1}, \tau_{2}\right)$.
Proof. Let $A_{1} \cap A_{2} \in \omega \operatorname{po}\left(\tau_{1}, \tau_{2}\right)$. If $A_{1} \cap A_{2} \in \omega p o\left(\tau_{1}, \tau_{2}\right)$, then there is nothing to prove. If $A_{1} \cap A_{2} \notin \omega p o\left(\tau_{1}, \tau_{2}\right)$, then $A_{1} \cap A_{2} \in \omega p o\left(\tau_{1}, \tau_{2}\right) \cup \omega^{+}\left(\tau_{1}, \tau_{2}\right)$. If $A_{1} \cap A_{2} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$, then there is nothing to prove. So, let $A_{1} \cap A_{2} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$. Now $A_{1} \cap A_{2} \subseteq A_{1}$ and $A_{1} \cap A_{2} \subseteq A_{2}$, a contradiction, since $A_{1}, A_{2} \in \omega p o\left(\tau_{1}, \tau_{2}\right)$. Hence $A_{1} \cap A_{2} \notin \omega^{+}\left(\tau_{1}, \tau_{2}\right)$. Hence $A_{1} \cap A_{2} \in \omega^{-}\left(\tau_{1}, \tau_{2}\right)$.

Proposition 5.6. If $A_{1}, A_{2} \in \omega p o\left(\tau_{1}, \tau_{2}\right)$, then $A_{1} \cup A_{2} \in \omega p o\left(\tau_{1}, \tau_{2}\right) \cup \omega^{+}\left(\tau_{1}, \tau_{2}\right)$.
Proof. Let $A_{1}, A_{2} \in \omega \operatorname{po}\left(\tau_{1}, \tau_{2}\right)$. If $A_{1} \cup A_{2} \in \omega \operatorname{po}\left(\tau_{1}, \tau_{2}\right)$, then there is nothing to prove. If $A_{1} \cup A_{2} \notin \omega p o\left(\tau_{1}, \tau_{2}\right)$, then $A_{1} \cup A_{2} \in \omega^{-}\left(\tau_{1}, \tau_{2}\right) \cup \omega^{+}\left(\tau_{1}, \tau_{2}\right)$. If $A_{1} \cup A_{2} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$, then there is nothing to prove. So, let $A_{1} \cup A_{2} \in \omega^{-}\left(\tau_{1}, \tau_{2}\right)$. Now $A_{1} \subseteq A_{1} \cup A_{2}$ and $A_{2} \subseteq A_{1} \cup A_{2}$, a contradiction to the fact that $A_{1}, A_{2} \in \omega \operatorname{po}\left(\tau_{1}, \tau_{2}\right)$. Hence $A_{1} \cup A_{2} \notin \omega^{-}\left(\tau_{1}, \tau_{2}\right)$. Hence $A_{1} \cup A_{2} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$.

Proposition 5.7. For a subset A of $X, A \in \omega p c\left(\tau_{1}, \tau_{2}\right) \Leftrightarrow A \notin \omega^{+} c\left(\tau_{1}, \tau_{2}\right) \cap \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$.
Proof. It is apparent from the facts that the complement of an $u-\omega$-minimal open set is a u - ω-maximal closed set and the complement of an u - ω-maximal open set is a u - ω-minimal closed set.

Proposition 5.8. If $\emptyset \neq A \in \omega p c\left(\tau_{1}, \tau_{2}\right)$, then there exists $B \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$ such that $B \subset A$.
Proof. It is evident that $B \subset A$, by the definition of u - ω-minimal closed set.
Proposition 5.9. If $A \in \omega p c\left(\tau_{1}, \tau_{2}\right)$, then there exists $B \in \omega^{+} c\left(\tau_{1}, \tau_{2}\right)$ such that $A \subset B$.
Proof. It is apparent that $A \subset B$, by the definition of u - ω-maximal closed set.
Proposition 5.10. If $\emptyset \neq C \in \omega p c\left(\tau_{1}, \tau_{2}\right)$, then there exist $A, B(\neq C) \in \omega c\left(\tau_{1}, \tau_{2}\right)$ such that $A \subset C \subset B$.

Proof. Follows from the respective Definition.
Proposition 5.11. If $A \in \omega p c\left(\tau_{1}, \tau_{2}\right)$ and $B \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$, then $A \cap B=\emptyset$ or $B \subset A$.
Proof. Let $A \in \omega p c\left(\tau_{1}, \tau_{2}\right)$ and $B \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$. Then $X \backslash A \in \omega p o\left(\tau_{1}, \tau_{2}\right)$ and $X \backslash B \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$. Then $X \backslash A \cup X \backslash B=X$ or $B \subset A$. Hence $A \cap B=\emptyset$ or $B \subset A$.

Proposition 5.12. If $A \in \omega p c\left(\tau_{1}, \tau_{2}\right)$ and $B \in \omega^{+} c\left(\tau_{1}, \tau_{2}\right)$, then $A \cup B=X$ or $A \subset B$.
Proof. Since $A \in \omega p c\left(\tau_{1}, \tau_{2}\right)$ and $B \in \omega^{+} c\left(\tau_{1}, \tau_{2}\right), X \backslash A \in \omega p o\left(\tau_{1}, \tau_{2}\right)$ and $X \backslash B \in \omega^{-}\left(\tau_{1}, \tau_{2}\right)$. Then $(X \backslash A) \cap(X \backslash B)=\emptyset$ or $X \backslash B \subset X \backslash A$, which implies that $X \backslash(A \cup B)=\emptyset$ or $A \subset B$. Hence $A \cup B=X$ or $A \subset B$.

Proposition 5.13. If $A_{1}, A_{2} \in \omega p c\left(\tau_{1}, \tau_{2}\right)$, then $A_{1} \cap A_{2} \in \omega p c\left(\tau_{1}, \tau_{2}\right) \cup \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$.
Proof. Let $A_{1}, A_{2} \in \omega p c\left(\tau_{1}, \tau_{2}\right)$. If $A_{1} \cap A_{2} \in \omega p c\left(\tau_{1}, \tau_{2}\right)$, then there is nothing to prove. If $A_{1} \cap A_{2} \notin \omega p c\left(\tau_{1}, \tau_{2}\right)$, then $A_{1} \cap A_{2} \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right) \cup \omega^{+} c\left(\tau_{1}, \tau_{2}\right)$. If $A_{1} \cap A_{2} \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$, then there is nothing to prove. Suppose $A_{1} \cap A_{2} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$. Now $A_{1} \cap A_{2} \subseteq A_{1}$ and $A_{1} \cap A_{2} \subseteq A_{2}$ which is a contradiction to the fact that $A_{1}, A_{2} \in \omega p c\left(\tau_{1}, \tau_{2}\right)$. Hence $A_{1} \cap A_{2} \notin \omega^{+}\left(\tau_{1}, \tau_{2}\right)$. Hence $A_{1} \cap A_{2} \in \omega^{-} c\left(\tau_{1}, \tau_{2}\right)$.

Proposition 5.14. If $A_{1}, A_{2} \in \omega p c\left(\tau_{1}, \tau_{2}\right)$, then $A_{1} \cup A_{2} \in \omega p c\left(\tau_{1}, \tau_{2}\right) \cup \omega^{+} c\left(\tau_{1}, \tau_{2}\right)$.
Proof. Similar to the Proposition 5.13.

6. Bitopological $u-\omega$-mean open / u - ω-closed sets

In this section, we introduce and study the concept of u - ω-mean open sets and u - ω-mean closed sets in bitopological spaces.

Definition 6.1. $A n u-\omega$-open set A is said to be u - ω-mean open if there exist two distinct proper u - ω-open sets $A_{1}, A_{2}(\neq A)$ such that $A_{1} \subset A \subset A_{2}$. The collection of all u - ω-mean open sets of X is denoted by $\bar{\omega}\left(\tau_{1}, \tau_{2}\right)$.

Definition 6.2. An u - ω-closed set A is said to be u - ω-mean closed if there exist two distinct proper u - ω-closed sets $A_{1}, A_{2}(\neq A)$ such that $A_{1} \subset A \subset A_{2}$. The collection of all u - ω-mean closed sets of X is denoted by $\bar{\omega} c\left(\tau_{1}, \tau_{2}\right)$.

Example 6.1. From Example 3.1, the set $B=\mathbb{R} \backslash \mathbb{Q}$ is u - ω-mean open, and the set $A=\mathbb{Q}$ is a u - ω-mean closed. For the first case, take $B_{1}=B \cup\left\{\alpha_{0}, \alpha_{0} \in \mathbb{Q}\right\}$ and $B_{2}=B \backslash\left\{\beta_{0}, \beta_{0} \in \mathbb{R} \backslash \mathbb{Q}\right\}$.

Theorem 6.1. An u - ω-open set of X is u - ω-mean open if and only if its complement is $u-\omega$-mean closed.

Proof. Let $B \in \bar{\omega}\left(\tau_{1}, \tau_{2}\right)$. Then $A_{1}(\neq \emptyset), B, A_{2}(\neq B), X \in \omega\left(\tau_{1}, \tau_{2}\right)$ such that $A_{1} \subset B \subset A_{2}$ and so $X \backslash A_{2} \subset X \backslash B \subset X \backslash A_{1}$. Since $X \backslash A_{2} \neq \emptyset, X \backslash B$ and $X \backslash A_{1} \neq X \backslash B$, X; hence $X \backslash B \in \bar{\omega} c\left(\tau_{1}, \tau_{2}\right)$. Conversely, let $B \in \omega\left(\tau_{1}, \tau_{2}\right)$ such that $X \backslash B \in \bar{\omega} c\left(\tau_{1}, \tau_{2}\right)$. Hence there exist $C_{1} \neq \emptyset, X \backslash B, C_{2} \neq$ $X \backslash B, X \in \omega C\left(\tau_{1}, \tau_{2}\right)$ such that $C_{1} \subset X \backslash B \subset C_{2}$. Then $X \backslash C_{2} \subset B \subset X \backslash C_{1}$. Since $X \backslash C_{2} \neq \emptyset, B$ and $X \backslash C_{1} \neq B, X$ and hence $B \in \bar{\omega}\left(\tau_{1}, \tau_{2}\right)$.

Theorem 6.2. (1) A proper u - ω-paraopen set is an u - ω-mean open set and vice-versa.
(2) A proper u - ω-paraclosed set is an u - ω-mean closed set and vice-versa.

Proof. (1). If $\alpha \in \omega \operatorname{pos}\left(\tau_{1}, \tau_{2}\right)$ such that $\alpha \notin\{\emptyset, X\}$, then $\alpha \in \bar{\omega}\left(\tau_{1}, \tau_{2}\right)$. Conversely, let $B \in$ $\bar{\omega}\left(\tau_{1}, \tau_{2}\right)$. Then there exist $B_{1}(\neq B), B_{2}(\neq B) \in \omega\left(\tau_{1}, \tau_{2}\right)$ such that $B_{1} \subset B \subset B_{2}$ and $B_{1}, B_{2} \notin$ $\{\emptyset, X\}$. Since $B_{1} \neq \emptyset, B$ and $B_{2} \neq X, B, B \notin \omega^{-}\left(\tau_{1}, \tau_{2}\right) \cap \omega^{+}\left(\tau_{1}, \tau_{2}\right)$. As $B \neq \emptyset, X, B \in \omega p o\left(\tau_{1}, \tau_{2}\right)$. (2). Similar to (1).

Theorem 6.3. (1) If $C_{1}, C_{2} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ with $C_{1} \neq C_{2}$ and $\omega \in \bar{\omega}\left(\tau_{1}, \tau_{2}\right)$, then $C_{1} \cap C_{2} \neq \emptyset$.
(2) If $C_{1}, C_{2} \in \omega^{-}\left(\tau_{1}, \tau_{2}\right)$ with $C_{1} \neq C_{2}$ and $\omega \in \bar{\omega}\left(\tau_{1}, \tau_{2}\right)$, then $C_{1} \cup C_{2} \neq X$.
(3) If $C_{1}, C_{2} \in \omega^{+} c\left(\tau_{1}, \tau_{2}\right)$ with $C_{1} \neq C_{2}$ and $\omega \in \bar{\omega} c\left(\tau_{1}, \tau_{2}\right)$, then $C_{1} \cap C_{2} \neq \emptyset$.
(4) If $C_{1}, C_{2} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ with $C_{1} \neq C_{2}$ and $\omega \in \bar{\omega}\left(\tau_{1}, \tau_{2}\right)$, then $C_{1} \cup C_{2} \neq X$.

Proof. (1). Let $C_{1}, C_{2} \in \omega^{+}\left(\tau_{1}, \tau_{2}\right)$ with $C_{1} \neq C_{2}$ and $A \in \bar{\omega}\left(\tau_{1}, \tau_{2}\right)$. Then $C_{1} \cup C_{2}=X . A \in$ $\bar{\omega}\left(\tau_{1}, \tau_{2}\right)$ implies $A \notin \omega^{+}\left(\tau_{1}, \tau_{2}\right) \cap \omega^{-}\left(\tau_{1}, \tau_{2}\right)$. Then $A \neq C_{1}, C_{2}$. Also $A \neq X$. Then $A \nsubseteq C_{1}$ or $A \cup C_{1}=X$ and $A \nsubseteq C_{2}$ or $A \cup C_{2}=X$. Then we have the following cases: (i). $A \nsubseteq C_{1}$ and $A \nsubseteq C_{2}$, (ii). $A \nsubseteq C_{1}$ and $A \cup C_{2}=X$, (iii). $A \cup C_{1}=X$ and $A \nsubseteq C_{2}$ and (iv). $A \cup C_{1}=X$ and $A \cup C_{2}=X$.

Case (i): Obviously, $C_{1} \cap C_{2} \neq \emptyset$ if $A \nsubseteq C_{1}$ and $A \nsubseteq C_{2}$. Case (ii): If $A \cap C_{2} \neq \emptyset$, then $C_{1} \cap C_{2} \neq \emptyset$. Now suppose $A \cap C_{2} \neq \emptyset$. As $A \nsubseteq C_{1}$, then there exists $x \in C_{1}$ such that $x \notin C_{2}$. Since $A \cup C_{2}=X$, $x \in C_{2}$. So $C_{1} \cap C_{2} \neq \emptyset$. Case (iii): Similar to Case (ii). Case (iv): $A \cup C_{1}=X$ and $A \cup C_{2}=X$ imply that $A \cup\left(C_{1} \cap C_{2}\right)=X$ which in turn imply that $A \neq X$, we have $C_{1} \cap C_{2} \neq \emptyset$.
(2). Similar to (1).
(3). Follows from (1).
(4). Follows from (2).

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] S.A. Ghour, S. Issa, On $u-\omega$-Open and $q-\omega$-Open Sets in Bitopological Spaces, Missouri J. Math. Sci. 24 (2012), 37-53. https://doi.org/10.35834/mjms/1337950498.
[2] A. Al-Omari, M.S.M. Noorani, Contra- ω-Continuous and Almost ω-Continuous Functions, Int. J. Math. Math. Sci. 9 (2007), 169-179.
[3] A. Al-Omari, T. Noiri, M.S.M. Noorani, Weak and Strong Forms of ω-Continuous Functions, Int. J. Math. Math. Sci. 2009 (2009), 174042. https://doi.org/10.1155/2009/174042.
[4] K. Al-Zoubi, B. Al-Nashef, The Topology of ω-Open Subsets, Al-Manarah. 9 (2003), 169-179.
[5] H.Z. Hdeib, ω-Closed Mappings, Revista Colombiana Mat. 16 (1982), 65-78.
[6] H.Z. Hdeib, ω-Continuous Functions, Dirasat, 16 (1989), 136-142.
[7] J.C. Kelly, Bitopological Spaces, Proc. London Math. Soc. s3-13 (1963), 71-89. https://doi.org/10.1112/plms/ s3-13.1.71.

[^0]: Received: Sep. 13, 2023.
 2020 Mathematics Subject Classification. 54A40.

